Способ получения гранулированного без связующего цеолита nay


 


Владельцы патента RU 2540086:

Федеральное государственное бюджетное учреждение науки Институт нефтехимии и катализа Российской академии наук (RU)

Изобретение относится к способам получения гранулированного без связующего цеолита NaY. Цеолит может быть использован в химической и нефтехимической промышленности для разделения смесей углеводородов на молекулярном уровне и в качестве активного компонента - полупродукта при производстве катализаторов, в том числе катализаторов алкилирования и трансалкилирования ароматических углеводородов. Способ предусматривает смешение каолина с порошкообразным цеолитом NaY, белой сажей и лигносульфонатом, увлажнение и перемешивание смеси до получения однородной массы, формование гранул, термоактивацию, гидротермальную кристаллизацию в растворе силиката натрия, отмывку и сушку гранул. Способ осуществляют при следующем содержании сырьевых компонентов в смеси, % масс.: порошкообразный цеолит NaY 55-65, белая сажа 5-7, лигносульфонат 1,0-1,5, каолин остальное. Гранулированный без связующего цеолит NaY обладает развитой мезопористой структурой, а также имеет высокие показатели фазовой чистоты, степени кристалличности, динамической адсорбционной емкости и механической прочности. 1 табл., 9 пр.

 

Изобретение относится к способам получения гранулированного без связующего синтетического цеолита NaY. Цеолит может быть использован в химической и нефтехимической промышленности для разделения смесей углеводородов на молекулярном уровне и в качестве активного компонента - полупродукта при производстве катализаторов, в том числе катализаторов алкилирования и трансалкилирования ароматических углеводородов.

Известен способ получения гранулированного без связующего цеолита NaY (Л.М. Ищенко, Н.Ф. Мегедь, Я.В. Мирский, Л.П. Митяева. Синтез гранулированных цеолитов типов фожазита и морденита без связующих веществ - сорбентов и носителей катализаторов // Цеолитные катализаторы и адсорбенты. Сб. Тр. ГрозНИИ. - М.: ЦНИИТЭнефтехим. - 1978, - Вып.33. - С.37-45). Способ предусматривает смешение метакаолина (прокаленного каолина) с силикагелем и раствором гидроксида натрия. Полученную при этом густую пасту формуют в гранулы, которые затвердевают при комнатной температуре. Затвердевшие гранулы кристаллизуют в растворе гидроксида натрия из реакционных смесей следующих химических составов:

1,8Na2O·Al2O3·6SiO2·(40-70)H2O.

Кристаллизацию проводят сначала при комнатной температуре, а затем при 100°C в течении 48-72 ч.

К недостаткам известного способа относится:

- сложность технологии, связанная с предварительным прокаливанием порошкообразного каолина (для получения метакаолина), формованием щелочных масс и необходимостью их охлаждения;

- низкие: степень кристалличности и адсорбционная емкость цеолитных гранул;

- недостаточно развитая вторичная мезопористая структура цеолитных гранул.

Известен способ получения гранулированного цеолита NaY без связующего (Л.М. Ищенко, Н.Ф. Мегедь, Я.В. Мирский, Л.П. Митяева. Синтез гранулированных цеолитов типов фожазита и морденита без связующих веществ - сорбентов и носителей катализаторов // Цеолитные катализаторы и адсорбенты. Сб. Тр. ГрозНИИ. - М.: ЦНИИТЭнефтехим. - 1978, - Вып.33. - С.37-45). Согласно этому способу природный глинистый минерал каолин смешивают с силикагелем. Полученную смесь формуют в гранулы, которые прокаливают при 650°C в течение 6 ч. Прокаленные гранулы кристаллизуют в растворе гидроксида натрия из реакционных смесей следующих химических составов: (2,0-2,2)·Na2O·Al2O3·6SiO2·(40-70)·H2O. Кристаллизацию проводят сначала при комнатной температуре, а затем при 100°C в течение 48-72 ч. Откристаллизованные цеолитные гранулы отмывают от избытка гидроксида натрия и высушивают.

Известный способ имеет недостатки:

- проведение гидротермальной кристаллизации гранул в растворе гидроксида натрия приводит к получению цеолита NaY, обладающего низкими: степенью кристалличности, прочностными и динамическими адсорбционными свойствами;

- цеолитные гранулы не обладают развитой вторичной мезопористой структурой.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является «Способ получения гранулированного без связующего цеолита NaY высокой фазовой чистоты» (патент РФ №2412903 от 3/08/2009), который и выбран за прототип. Согласно прототипу природный глинистый материал - каолин смешивают с 60-70% масс. порошкообразного цеолита NaY и 2-3% масс. поливинилового спирта. Смесь увлажняют до образования однородной пластичной массы, которую формуют в гранулы. Полученные гранулы высушивают при 90-120°C в течение 3 ч и термоактивируют при 550-650°C. При этом гранулы приобретают необходимую проницаемость для эффективного массообмена в процессе гидротермальной кристаллизации. Состав исходных для кристаллизации гранул, % масс.:

порошкообразный цеолит NaY 60,0-70,0
поливиниловый спирт 2,0-3,0
каолин остальное

Прокаленные гранулы охлаждают и кристаллизуют в растворе силиката натрия из реакционных смесей состава (2,2-2,6)Na2O·Al2O3·(6,5-7,5)SiO2·(155-165)H2O. Температурный режим кристаллизации: 12-24 ч при 25-30°C, затем 48-60 ч при 98-100°C. Готовый цеолит промывают и высушивают при 100-200°C.

Недостатком известного способа является то, что цеолитные гранулы не обладают развитой вторичной мезопористой структурой.

Термины «мезопористость» и «макропористость» использованы в соответствии с классификацией М.М. Дубинина (S. Lowell. Introduction to Powder Surface Area. // A Wiley-Interscience Publication. - New York. - 1979, - P.X, p.80):

а) макропористость - поры с радиусом более 1000 Å (100 нм) или соответственно диаметром более 200 нм;

б) мезопористость - поры с радиусом от 1000 Å (100 нм) до 15 Å (1,5 нм) или соответственно диаметром от 200 нм до 3 нм.

Мезопоры являются основными транспортными порами, которые обеспечивают эффективную диффузию молекул в большие полости структуры цеолита NaY в процессах адсорбции и катализа.

Задача предлагаемого изобретения заключается в совершенствовании способа получения гранулированного без связующего цеолита NaY, обладающего не только высокими: степенью кристалличности, модулем, динамическими адсорбционными и прочностными характеристиками, но и развитой вторичной мезопористой структурой гранул.

Поставленная задача достигается за счет использования следующих новых технологических приемов.

Смешение каолина, порошкообразного цеолита NaY, белой сажи и лигносульфаната осуществляют в соотношении, % масс.:

порошкообразный цеолит NaY 55,0-65,0
белая сажа 5,0-7,0
лигносульфонат 1,0-1,5
каолин остальное

Кристаллизация сформованных из этой смеси гранул в растворе силиката натрия позволяет получать гранулированный без связующего цеолит NaY, обладающий развитой вторичной мезопористой структурой, а также высокими показателями фазовой чистоты, модуля, механической прочности и адсорбционной емкости.

Порошкообразный цеолит NaY, введенный в сырьевую смесь для формования гранул, при гидротермальной кристаллизации играет роль кристаллической затравки для образования поликристаллических цеолитных сростков. Использование такой затравки при синтезе порошкообразных и гранулированных цеолитов известно. Однако только новый технологический прием совместного введения в сырьевую смесь для формования гранул 55-65% масс. порошкообразного цеолита NaY, 5-7% масс. белой сажи, 1,0-1,5% масс. лигносульфоната и каолина (остальное) позволяет получать гранулированный без связующего цеолит с развитой мезопористой структурой. Белая сажа в составе гранул при кристаллизации в растворе силиката натрия (температура 98-100°C) постепенно растворяется и, взаимодействуя с частично растворенными компонентами метакаолина, переосаждается с образованием единого поликристаллического сростка - гранулированного без связующего цеолита NaY. Так как процесс растворения - переосаждения белой сажи продолжается вплоть до завершения кристаллизации, откристаллизованные цеолитные гранулы обладают развитой мезопористой структурой, а также высокими: фазовой чистотой, модулем, динамическими адсорбционными и прочностными характеристиками.

Введение в исходную для формования гранул смесь 1,0-1,5% масс. лигносульфоната придает высокую пластичность смеси при формовке гранул и после прокаливания обеспечивает, в начальный период кристаллизации при температурах 20-25°C, необходимую пористость гранул для эффективного массообмена между кристаллообразующими компонентами гранул и кристаллизационного раствора.

Указанные технологические приемы позволяют усовершенствовать способ получения и обеспечить высокое качество синтезированного цеолита, который обладает развитой вторичной мезопористой структурой гранул, высокими показателями степени кристалличности, модуля, динамической адсорбционной емкости и механической прочности.

Предлагаемый способ осуществляется следующим образом.

Природный глинистый минерал - каолин смешивают с 50-65% масс. порошкообразного цеолита NaY, 5-7% масс. белой сажи и 1,0-1,5% масс. лигносульфоната. Смесь увлажняют и перемешивают до образования однородной пластичной массы, которую формуют в гранулы. Полученные гранулы высушивают при 90-120°C в течение 3 ч и термоактивируют при 550-650°C. Состав исходных для кристаллизации гранул, % масс.:

порошкообразный цеолит NaY 55,0-65,0
белая сажа 5,0-7,0
лигносульфонат 1,0-1,5
каолин остальное

Прокаленные гранулы охлаждают и кристаллизуют в растворе силиката натрия из реакционных смесей состава (2,2-2,6)·Na2O·Al2O3·(6,5-7,5)SiO2·(155-165)H2O. Температурный режим кристаллизации: 12-24 ч при 25-30°C, затем 48-60 ч при 98-100°C. Готовый цеолит промывают и высушивают при 100-200°C.

Сущность способа иллюстрируется конкретными примерами его осуществления.

Пример 1. Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (5% масс.), лигносульфоната (1% масс.) и 60% масс. порошкообразного цеолита NaY.

В смеситель загружают 34 г каолина, 5 г белой сажи, 1 г лигносульфоната и 60 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 60,0
белая сажа 5,0
лигносульфонат 1,0
каолин 34,0

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,5SiO2·155H2O. Режим кристаллизации: 24 ч при 30°C, затем 48 ч при 98°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Цеолит анализируют. Вторичную пористую структуру гранул исследуют методом ртутной порометрии на ртутном поромере «Porosimeter-2000» по измерению кривых вдавливания ртути. Пенетрацию ртути в поры диаметром от 3 до 2000 нм осуществляют при давлении от 0,1 до 200МПа. Определяют: распределение размера транспортных мезо- и макропор по их диаметру. Тип цеолита и степень кристалличности определяют фазовым рентгеноструктурным анализом. Механическую прочность, динамическую адсорбционную емкость и модуль (мольное отношение SiO2/Al2O3) - общепринятыми методами.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Пример 2. Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (7% масс.), лигносульфоната (1,5% масс.) и 65% масс. порошкообразного цеолита NaY.

В смеситель загружают 26,5 г каолина, 7 г белой сажи, 1,5 г лигносульфоната и 65 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 65,0
белая сажа 7,0
лигносульфонат 1,5
каолин 26,5

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,5SiO2·155H2O. Режим кристаллизации: 24 ч при 30°C, затем 48 ч при 100°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Пример 3. Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (6% масс.), лигносульфоната (1% масс.) и 55% масс. порошкообразного цеолита NaY.

В смеситель загружают 38 г каолина, 6 г белой сажи, 1 г лигносульфоната и 55 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 55,0
белая сажа 6,0
лигносульфонат 1,0
каолин 38,0

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,6Na2O·Al2O3·7,50SiO3·165H2O. Режим кристаллизации: 24 ч при 30°C, затем 60 ч при 98°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Пример 4 (сравнительный). Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (6% масс.), лигносульфоната (1% масс.) и 50% масс. порошкообразного цеолита NaY.

В смеситель загружают 43 г каолина, 6 г белой сажи, 1 г лигносульфоната и 50 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 50,0
белая сажа 6,0
лигносульфонат 1,0
каолин 43,0

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,58SiO2·155H2O. Режим кристаллизации: 24 ч при 30°C, затем 48 ч при 100°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Снижение содержания порошкообразного цеолита NaY в составе сырьевой смеси для формования гранул менее 55% масс. приводит к получению после кристаллизации гранулированного цеолита без связующего, не обладающего достаточно развитой мезопористой структурой и высокими: степенью кристалличности и адсорбционной емкости. Причина этого заключается в низком содержании кристаллической затравки (порошкообразного цеолита) в исходных для кристаллизации гранулах.

Пример 5 (сравнительный). Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (6% масс.), лигносульфоната (1% масс.) и 70% масс. порошкообразного цеолита NaY.

В смеситель загружают 23 г каолина, 6 г белой сажи, 1 г лигносульфоната и 70 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 70,0
белая сажа 6,0
лигносульфонат 1,0
каолин 23,0

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,5SiO2·155H2O. Режим кристаллизации: 24 ч при 30°C, затем 48 ч при 98°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Увеличение содержания порошкообразного цеолита NaY в составе сырьевой смеси для формования гранул свыше 65% масс. приводит к частичному образованию крошки при грануляции и в процессе всех последующих операций получения цеолита без связующего. Оставшиеся после кристаллизации целые гранулы цеолита NaY без связующего обладают низкой механической прочностью. Причина этого заключается в недостаточном содержании каолина в составе смеси, из которой формуются исходные гранулы, т.к. каолин обладает связующими свойствами. Поэтому, гранулы имеют низкую механическую прочность на всех стадиях получения цеолита.

Пример 6 (сравнительный). Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (6% масс.), лигносульфоната (3% масс.) и 60% масс. порошкообразного цеолита NaY.

В смеситель загружают 31 г каолина, 6 г белой сажи, 3 г лигносульфоната и 60 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 60,0
белая сажа 6,0
лигносульфонат 3,0
каолин 31,0

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,5SiO2·155H2O. Режим кристаллизации: 24 ч при 25°C, затем 48 ч при 100°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Увеличение содержания лигносульфоната в составе сырьевой смеси для формования гранул свыше 1,5% масс. приводит к снижению механической прочности гранулированного цеолита NaY без связующего. Выгорание лигносульфоната при прокаливании приводит к получению менее прочных, чем необходимо, цеолитных гранул.

Пример 7 (сравнительный). Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (6% масс.), лигносульфоната (0,5% масс.) и 60% масс. порошкообразного цеолита NaY.

В смеситель загружают 35,5 г каолина, 6 г белой сажи, 0,5 г лигносульфоната и 60 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 60,0
белая сажа 6,0
лигносульфонат 0,5
каолин 33,5

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,5SiO2·155H2O. Режим кристаллизации: 24 ч при 25°C, затем 48 ч при 100°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Снижение содержания лигносульфоната в составе сырьевой смеси для формования гранул менее 1% масс. приводит к снижению количества мезопор, степени кристалличности и адсорбционной емкости цеолита NaY без связующего. Причиной этого является низкая пластичность формуемой смеси и, как следствие, недостаточно развитая вторичная пористая структура прокаленных гранул, не обеспечивающая эффективный массообмен при их кристаллизации.

Пример 8 (сравнительный). Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (8% масс.), лигносульфоната (1,0% масс.) и 60% масс. порошкообразного цеолита NaY.

В смеситель загружают 31 г каолина, 8 г белой сажи, 3 г лигносульфоната и 60 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 60,0
белая сажа 8,0
лигносульфонат 1,0
каолин 31,0

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,5SiO2·155H2O. Режим кристаллизации: 24 ч при 25°C, затем 48 ч при 100°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Увеличение содержания белой сажи в составе сырьевой смеси для формования гранул свыше 7% масс. приводит к снижению механической прочности гранулированного цеолита NaY без связующего. Это объясняется тем, что при кристаллизации белая сажа растворяется (выщелачивается) и не полностью переосаждается в состав гранул. При этом образуются менее прочные, чем необходимо, цеолитные гранулы.

Пример 9 (сравнительный). Данный пример демонстрирует возможность получения гранулированного цеолита NaY без связующего из смеси каолина, белой сажи (4% масс.), лигносульфоната (1% масс.) и 60% масс. порошкообразного цеолита NaY.

В смеситель загружают 35 г каолина, 4 г белой сажи, 1 г лигносульфоната и 60 г порошкообразного цеолита NaY. Смесь увлажняют и перемешивают. Перемешивание продолжают до получения однородной пластичной массы, которую формуют на шнековом экструдере в гранулы диаметром 1,6 мм. Полученные гранулы высушивают при 90-120°C в течение 3 ч, прокаливают при 550-650°C - 4 ч, после чего охлаждают. Состав гранул, % масс.:

порошкообразный цеолит NaY 60
белая сажа 4
лигносульфонат 1
каолин 35

Гранулы кристаллизуют в растворе силиката натрия. Химический состав реакционной смеси отвечает формуле 2,2Na2O·Al2O3·6,5SiO2·155H2O. Режим кристаллизации: 24 ч при 25°C, затем 48 ч при 100°C. Гранулированный цеолит промывают водой и высушивают при 100-200°C.

Физико-химические свойства гранулированного цеолита NaY без связующего приведены в таблице.

Снижение содержания белой сажи в составе сырьевой смеси для формования менее 5% масс. приводит к получению цеолитных гранул с недостаточно развитой мезопористой структурой.

Таблица
Физико-химические свойства гранулированного без связующего цеолита NaY
Показатели Прототип Примеры
1 2 3 4 5 6 7 8 9
Заявляемые Сравнительные
Тип цеолита Y Y Y Y Y Y Y Y Y Y
Степень кристалличности, % 100 100 100 100 82 100 100 92 100 98
Динамическая адсорбционная емкость по парам воды, мг/см3 196 194 198 193 162 200 195 181 194 190
Прочность на раздавливание, кг/мм2 2,2 2,4 2,2 2,6 2,6 крошка, прочность целых гранул 1,4 1,6 2,1 1,9 2,4
Модуль цеолита SiO2/Al2O3, моль/моль 5,2 5,3 5,2 5,3 5,0 5,2 5,2 5,0 5,2 5,2
Распределение транспортных пор, (%), по диаметру:
3-200 нм (мезопоры) 46,2 58,6 64,335 56,2 44,4 68,4 57,9 52,1 65,2 54,2
более 200 нм (макропоры) 53,8 41,4 35,7 43,8 55,6 31,6 42,1 47,9 34,8 45,8

Способ получения гранулированного без связующего цеолита NaY, включающий смешение каолина с порошкообразным цеолитом NaY и другими сырьевыми компонентами; увлажнение и перемешивание смеси до получения однородной массы; формование гранул; термоактивацию; гидротермальную кристаллизацию в растворе силиката натрия; отмывку и сушку гранул, отличающийся тем, что в качестве других сырьевых компонентов в смесь для формования гранул вводят белую сажу и лигносульфонат в таком количестве, чтобы общее содержание сырьевых компонентов в смеси составляло, % масс.:

порошкообразный цеолит NaY 55-65
белая сажа 5-7
лигносульфонат 1,0-1,5
каолин остальное



 

Похожие патенты:

Изобретение относится к области катализа. Изобретение относится к цеолиту Y с модифицированной фожазитной структурой, внутрикристаллическая структура которого содержит по меньшей мере одну систему микропор, по меньшей мере одну систему мелких мезопор средним диаметром от 2 до 5 нм и по меньшей мере одну систему крупных мезопор средним диаметром от 10 до 50 нм.
Цеолит y // 2487756

Изобретение относится к цеолитам, используемым в качестве адсорбентов или носителей катализаторов. .

Изобретение относится к области производства цеолитных адсорбентов. .
Изобретение относится к синтезу цеолитов. .

Изобретение относится к получению гранулированного без связующего типа NaY высокой фазовой чистоты. .

Изобретение относится к синтезу цеолитов. .

Изобретение относится к получению моторных топлив и может быть использовано в нефтеперерабатывающей промышленности для получения высокооктановых низкосернистых бензинов.

Изобретение относится к цеолитам, которые применяются в качестве адсорбентов или носителей катализаторов. .
Группа изобретений относится к способу получения носителя катализатора гидрокрекинга, носителю, способу получения катализатора, катализатору и способу гидрокрекинга в присутствии полученного катализатора.

Изобретение относится к алкилированию арильных соединений олефинами. Способ регулировки содержания 2-фенильного изомера в линейном алкилбензоле, получаемом путем алкилирования бензола олефином, включает реакцию олефина с бензолом в технологическом потоке, содержащем воду, в присутствии катализатора, а также контроль концентрации воды в сырье в диапазоне от совершенно сухого до 100 м.д.
Изобретение относится к нефтепереработке, в частности к способу получения катализатора для крекинга тяжелых и остаточных нефтяных фракций. Предложенный способ получения гранулированного катализатора крекинга включает введение цеолита типа Y в носитель, содержащий коллоидные компоненты и/или их предшественники, формование и термическую обработку.

Изобретение относится к вариантам способа получения алкилированного ароматического соединения. Один из вариантов включает следующие стадии: (а) подача потока сырья в зону дегидратации, указанный поток сырья включает способное к алкилированию ароматическое соединение, воду и примеси, причем указанные примеси включают соединение, содержащее по меньшей мере один из следующих элементов: азот, галогены, кислород, сера, мышьяк, селен, теллур, фосфор, а также металлы групп с 1 по 12; (б) удаление по меньшей мере части указанной воды из указанного потока сырья в указанной зоне дегидратации, которая эксплуатируется при подходящих условиях дегидратации с получением дегидратированного потока, включающего указанное способное к алкилированию ароматическое соединение, любые остатки воды и указанные примеси; (в) контактирование по меньшей мере части указанного дегидратированного потока и первого потока алкилирующего агента с первым катализатором алкилирования, имеющим первую емкость по яду, причем указанный первый катализатор алкилирования представляет собой крупнопористое молекулярное сито, имеющее индекс затрудненности менее чем 2, в первой реакционной зоне алкилирования при подходящих по меньшей мере частично жидкофазных первых реакционных условиях с целью удаления по меньшей мере части указанных примесей, а также алкилирования по меньшей мере части указанного способного к алкилированию ароматического соединения указанным первым потоком алкилирующего агента и получения первого алкилированного потока, включающего алкилированное ароматическое соединение (соединения), непрореагировавшее способное к алкилированию ароматическое соединение, любые остатки воды и любые остатки примесей; (г) контактирование указанного первого алкилированного потока и второго потока алкилирующего агента со вторым катализатором алкилирования, отличающимся от указанного первого катализатора алкилирования, причем указанный второй катализатор алкилирования имеет вторую емкость по яду, и включает молекулярное сито семейства МСМ-22 или среднепористое молекулярное сито, имеющее индекс затрудненности от 2 до 12, во второй реакционной зоне алкилирования при подходящих по меньшей мере частично жидкофазных вторых реакционных условиях с целью алкилирования по меньшей мере части указанного непрореагировавшего способного к алкилированию ароматического соединения указанным вторым потоком алкилирующего агента и получения второго алкилированного потока, включающего дополнительное количество указанного алкилированного ароматического соединения (соединений), непрореагировавшее способное к алкилированию ароматическое соединение, любые остатки воды и любые остатки примесей.

Изобретение относится к способу получения моноалкилированного ароматического соединения, в котором: ароматическое сырье и олефиновое соединение пропускают в реактор алкилирования, при этом реактор алкилирования включает в себя катализатор, содержащий цеолит с мольным отношением диоксида кремния к оксиду алюминия меньше 8, и редкоземельный элемент, внедренный в цеолитную решетку, причем количество редкоземельного элемента составляет более 16,5 мас.% в расчете на цеолит, а остальное составляют катионы щелочных, щелочноземельных элементов, соединений азота или их смеси, и редкоземельные элементы вовлечены в обмен в такой степени, что молярное отношение редкоземельного элемента к алюминию находится в интервале 0,51-1,2, а остальные катионообменные ионы составляют катионы, выбранные из группы, состоящей из щелочных, щелочноземельных элементов, соединений азота или их смеси, формируя таким образом выходящий поток.

Изобретение относится к области катализа. Изобретение относится к цеолиту Y с модифицированной фожазитной структурой, внутрикристаллическая структура которого содержит по меньшей мере одну систему микропор, по меньшей мере одну систему мелких мезопор средним диаметром от 2 до 5 нм и по меньшей мере одну систему крупных мезопор средним диаметром от 10 до 50 нм.
Изобретение относится к области катализа. Описан способ приготовления катализатора для крекинга нефтяных фракций, включающий проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, ультрастабилизацию цеолита в среде водяного пара, смешение цеолита с матрицей, в качестве компонентов которой используют бентонитовую глину, гидроксид алюминия и аморфный алюмосиликат, получение композиции, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора, в котором ультрастабилизацию цеолита проводят трижды: первую и вторую - на стадиях приготовления цеолита до смешения с компонентами матрицы, а третью ультрастабилизацию цеолита проводят в составе композиции катализатора, ионные обмены на катионы редкоземельных элементов и аммония проводят четырежды для получения ультрастабильного цеолита Y с содержанием оксида натрия не более 0,6 мас.%, оксидов редкоземельных элементов от 0,5 до 5,5 мас.% и содержания оксидов редкоземельных элементов в катализаторе от 0,05 до 1,1 мас.%.
Изобретение относится к технологии производства катализаторов и может быть использовано для процесса алкилирования изопарафиновых углеводородов олефинами в нефтеперерабатывающей и нефтехимической отраслях промышленности.

Изобретение относится к способу получения 1,3-диметиладамантана формулы (1) каталитической изомеризацией пергидроаценафтена. Способ характеризуется тем, что в качестве катализатора используют цеолит HNaY со степенью ионного обмена Na+ на H+ 97%, подвергнутый термообработке при 450°C в течение 3-5 ч в атмосфере воздуха, взятый в количестве 50-100% в расчете на пергидроаценафтен (2), и реакцию проводят в гексане при массовом соотношении [пергидроаценафтен]:[гексан]=100:50÷100 при температуре 300-320°C в течение 3-15 часов.

Изобретение относится к области катализа. Описан способ получения гранулированного катализатора крекинга, состоящий в смешении цеолита Y, глины и связующего с последующими формовкой, сушкой и прокалкой, в котором смешивают цеолит в виде окристаллизованной фазы или в составе смеси с аморфным алюмосиликатом и/или глиной, связующее, глину и отощающую добавку в массовом соотношении (25-40):(5-10):(40-50):(10-20), в качестве связующего используют оксихлорид алюминия, смесь формуют путем экструзии.

Изобретение относится к способам производства катализатора каталитического крекинга, способу каталитического крекинга и к применению полученного катализатора. Способ содержит подачу свежего катализатора в псевдоожиженный слой, где он входит в контакт с водяным паром или регенерированным топочным газом, и его старение при гидротермальных условиях, включающих температуру старения 400-850°C, поверхностную линейную скорость псевдоожиженного слоя 0,1-0,6 м/с и время старения 1-720 часов с последующей подачей произведенного катализатора в промышленную установку каталитического крекинга. Свежий катализатор содержит, по отношению к общему весу катализатора, 1-50% по весу цеолита, 5-99% по весу неорганической окиси, выбранной из SiO2 и/или Al2O3, и 0-70% по весу дополнительной глины. Глина выбрана из каолина и/или галлуазита. Цеолит выбран из среднепористых цеолитов ZSM или ZRP и/или крупнопористых цеолитов, выбранных из редкоземельного элемента Y(REY), редкоземельного водорода Y(REHYK) ультрастойкого цеолита Y и высококремнеземного цеолита Y. Другой способ получения катализатора содержит: (1) подачу свежего катализатора в псевдоожижженный слой, ввод горячего регенерированного катализатора в регенератор, с осуществлением теплообмена между свежим катализатором и горячим регенерированным катализатором в псевдоожиженном слое; (2) осуществление контакта продукта, полученного на стадии (1) с паром или с регенерированным топочным газом при гидротермальных условиях, включая температуру старения 400-850°C, поверхностную линейную скорость псевдоожиженного слоя 0,1-0,6 м/с и время старения 1-720 часов для получения состаренного катализатора, и (3) подачу катализатора, произведенного на стадии (2), в промышленную установку каталитического крекинга. Указанный способ позволяет регулировать активность и селективность катализатора в установке каталитического крекинга более равномерно и значительно улучшает селективность катализатора каталитического крекинга, чтобы значительно уменьшить выходы сухого газа и кокса, эффективно использовать пар и снизить потребление энергии в установке FCC. 4 н. и 11 з.п. ф-лы, 4 ил., 4 табл., 3 пр.
Наверх