Способ определения концентрации примесей в монокристалле

Использование: для определения концентрации примесей в монокристалле. Сущность изобретения заключается в том, что в нейтронном спектрометре обратного рассеяния изменяют температуру эталонного кристалла до момента, когда межплоскостное расстояние эталонного кристалла совпадет с межплоскостным расстоянием исследуемого кристалла, и вычисляют относительное изменение межплоскостного расстояния исследуемого кристалла в данной точке. Измерение величины межплоскостного расстояния исследуемого кристалла относительно эталонного проводят в нескольких «m» точках, по всем измеренным точкам исследуемого кристалла, вычисляют среднее значение межплоскостного расстояния исследуемого кристалла, определяют изменение пространственного распределения концентрации примесей для каждой точки исследуемого кристалла относительно полученного среднего значения. Технический результат: обеспечение возможности получения многомерной картины распределения примесей. 2 ил.

 

Изобретение относится к области исследований кристаллической структуры монокристаллов. Одной из важных задач такого исследования является, в частности, изучение влияния легирующих примесей, которые внедряются в кристаллическую решетку при выращивании искусственных кристаллов с заданными свойствами. В настоящее время особое внимание при этом уделяется монокристаллам кремния и германия, которые являются основой элементной базы информационных устройств. Введение примесей в кристаллическую решетку монокристалла приводит к изменению постоянных решетки и, следовательно, к изменению межплоскостных расстояний кристаллографических плоскостей. Такое изменение в зависимости от концентрации примесей описывается выражением

( Δ d d ) i m = k i m n i m ,     (1) ,

где d - межплоскостное расстояние системы кристаллографических плоскостей,

nim - концентрация примесей [см-3],

kim - коэффициент влияния конкретной примеси на межплоскостное расстояние.

Таким образом, определение концентрации примесей nim при известном значении kim сводится к измерению относительного изменения межплоскостных расстояний исследуемых монокристаллов. С другой стороны, как следует из соотношения (1), изменение Δ d d при известных значениях концентрации nim позволяет определить коэффициент влияния kim.

Следует отметить, что в обоих указанных случаях экспериментально определяется величина Δ d d . Измерение Δ d d преимущественно проводится с помощью двух-трех кристальных рентгеновских (реже нейтронных) спектрометров.

Так, в работе G. Celotti, D. Nobili, P. Ostoja, Journal of materials science 9 (1974) 821-828 [1] для ряда кристаллов кремния измерена величина постоянной решетки при различных концентрациях примесных атомов бора и фосфора. Измерения проводились с помощью двухкристального рентгеновского спектрометра. В качестве источника использовалось рентгеновское C u K α 1 излучение. Постоянная решетки кристаллов с примесями, которая однозначно связана с межплоскостным расстоянием кристаллографических плоскостей, определялась по изменению углов дифракции этих кристаллов по сравнению с углом дифракции для эталонного (свободного от примесей) кристалла. В этой работе приведены также значения коэффициентов влияния kim для атомов бора и фосфора.

В работе J.A. Baker, T.N. Tucker, N.E. Moyer, R.C. Buschert, Journal of applied physics 39 9 (1968) 4365-4368 [2] описан способ определения относительного изменения межплоскостных расстояний кремния при внедрении в кристаллическую решетку примесных атомов углерода. В этой работе на трехкристальном рентгеновском спектрометре измерена зависимость Δ d d кремния (плоскости (111)) от концентрации примеси углерода. Получено значение kim=-6,5ּ10-24. С другой стороны, если известна величина Δ d d и значение kim, можно определить концентрацию примеси углерода, т.е. указанная зависимость может служить калибровочной для определения концентрации примеси (формула 1).

Известны также способы исследования кристаллической структуры монокристаллов путем определения относительного изменения межплоскостных расстояний, основанные на методе рентгеновской интерферометрии, который позволяет измерять Δ d d с точностью 10-7÷10-8. A.C. SU 1249415 A1 [3].

Общим недостатком указанных способов является то, что они не дают информации о распределении примесей в кристалле. Недостатком является также чрезвычайно сложная методика приготовления образцов (необходимость точной ориентации кристаллографических плоскостей относительно поверхности образца, травление поверхности и т.п.). Кроме этого, требуется высокая точность (доли угловой секунды) измерения углов дифракции. При интерферометрических измерениях предъявляются высокие требования к качеству (мозаичности) кристаллов. Кроме того, размер тестируемой области (толщина образца) весьма ограничен из-за большого поглощения рентгеновского излучения.

В настоящее время наиболее точными прямыми способами определения концентрации примесей в полупроводниковых кристаллах являются измерения их электропроводности: Handbook of Semiconductor Silicon Technology, Park Ridge, New Jerssy, U.S.A. (1990) 395 [4], а также применение для определения концентрации примесей масс-спектрометров Р. Джейрам, Масс-спектрометрия. Теория и приложения, пер. с англ., M., 1969 [5]. Но эти способы также не дают полной информации о степени легирования кристаллов примесями, т.к. при их использовании измеряются интегральные (средние) значения характеристик. Кроме того, анализ в ряде случаев связан с разрушением проб.

Наиболее близким к заявляемому по технической сущности является определение концентрации примесей в кристаллах по патенту на изобретение РФ №2394228 [6]: «Способ определения относительного изменения межплоскостных расстояний совершенных кристаллов», который посвящен определению совершенства монокристаллов. Степень совершенства монокристаллов определяется количеством нарушений кристаллической решетки, которые могут быть связаны, в частности, с наличием примесей в кристаллах. Нарушения кристаллической решетки, связанные с введением примесей в монокристалл, приводят к изменению межплоскостных расстояний кристаллографических плоскостей. Такое изменение в зависимости от концентрации примесей описывается формулой 1.

Суть способа заключается в том, что в нейтронном спектрометре обратного рассеяния изменяют температуру эталонного кристалла до момента, когда межплоскостное расстояние эталонного кристалла совпадет с межплоскостным расстоянием исследуемого кристалла, и вычисляют относительное изменение межплоскостного расстояния исследуемого кристалла по формуле Δ d d 0 = ξ Δ T , где ξ - коэффициент теплового расширения эталонного кристалла, ΔT - разность температур эталонного и исследуемого кристаллов в минимуме кривой отражения.

Этот способ позволяет проводить объемные исследования кристаллов размерами до нескольких десятков сантиметров произвольной формы и огранки и не требует специальной предварительной подготовки образца.

Способ заключается в следующем: пучок нейтронов направляют на эталонный монокристалл (анализатор) под углом Брэгга 90°. Для регистрации отраженного от эталонного кристалла пучка используют отражение от кристалла пиролитического графита, коэффициент отражения которого ~50%. Нейтроны, отраженные от пиролитического графита, регистрируются детектором. В пучок помещают исследуемый монокристалл (образец). Поворотом исследуемого кристалла добиваются одновременного выполнения условия Брэгга при θB=90° для обоих кристаллов для пучка нейтронов, отраженных от кристаллографических плоскостей эталонного и исследуемого монокристаллов с межплоскостными расстояниями d0 и d соответственно. При этом исследуемый кристалл экранирует нейтроны, которые могли бы отразиться от эталонного кристалла, и интенсивность отражения падает. Минимальная интенсивность при параллельном расположении кристаллографических плоскостей образца и анализатора будет наблюдаться при равенстве межплоскостных расстояний d0=d. Если эти расстояния отличаются, то минимума интенсивности можно достичь, изменяя межплоскостное расстояние d0 эталонного монокристалла (анализатора), изменив его температуру от исходного значения T0 до T0+ΔT таким образом, чтобы d | T 0 = d 0 | T 0 + Δ T . Указанная разность температур ΔT исследуемого образца и анализатора связана с относительным изменением межплоскостного расстояния соотношением Δ d d 0 = ξ Δ T , где ξ - коэффициент теплового расширения кристалла-анализатора (эталона). Измерив разность ΔT в минимуме кривой отражения анализатора, можно определить Δ d d 0 . Данные о концентрации примеси в кристалле в одной измеренной точке можно получить, используя формулу 1.

Однако, несмотря на высокую точность определения Δ d d (~10-7), а значит, и концентрации примеси, указанный способ не дает информации о распределении концентрации примесей в исследуемом кристалле.

При введении легирующих примесей в кристалл большое влияние на их физические свойства оказывает неоднородность внедрения примесей. Особенно это важно при использовании кристаллов больших размеров, так как возможная неоднородность внедрения примесей может привести к существенному различию характеристик устройств, создающихся на их основе или использующих части этих кристаллов в качестве отдельных элементов.

Поэтому исследование пространственного распределения концентраций этих примесей представляется весьма актуальной задачей, которая и является предметом предлагаемого изобретения.

Поставленная задача решается таким образом, что в известном способе определения концентрации примесей в монокристалле, основанном на измерении относительного изменения межплоскостных расстояний Δ d d 0 исследуемого кристалла относительно эталонного и заключающемся в том, что в нейтронном спектрометре обратного рассеяния изменяют температуру эталонного кристалла до момента, когда межплоскостное расстояние эталонного кристалла совпадет с межплоскостным расстоянием исследуемого кристалла, и вычисляют относительное изменение межплоскостного расстояния исследуемого кристалла по формуле Δ d d 0 = ξ Δ T , где ξ - коэффициент теплового расширения эталонного кристалла, ΔT - разность температур эталонного и исследуемого кристаллов в минимуме кривой отражения, по которому судят о концентрации примеси в измеренной точке, новым является то, что исследуемый кристалл перемещают (сканируют) перпендикулярно относительно узкого пучка нейтронов, измерение величины Δ d d 0 исследуемого кристалла относительно эталонного проводят в нескольких «m» точках, вычисляют среднее значение Δ d d 0 по всем измеренным точкам исследуемого кристалла, определяют изменение пространственного распределения концентрации примесей для каждой точки исследуемого кристалла относительно полученного среднего значения по формуле

Δ n m n 0 n = ( Δ d d 0 ) с р Δ d m d 0 k i m ,     (2)

где n0 - средняя концентрация примеси в исследуемом кристалле;

n - концентрация примеси в измеряемой точке;

( Δ d d 0 ) с р = m Δ d m d 0 m ,

где m - число точек сканирования;

kim - коэффициент влияния конкретной примеси на межплоскостное расстояние (справочная величина).

Реализация способа и принципиальная схема спектрометра обратного рассеяния показана на фиг.1, где 1 - коллимированный пучок нейтронов, 2 - эталонный монокристалл, 3 - детектирующий кристалл, 4 - детектор, 5 - исследуемый монокристалл.

На фиг.2 представлены результаты проведенного сканирования образца кремния, легированного бором. Левая ось - изменение концентрации бора n0-n в различных точках исследуемого образца монокристалла кремния, правая ось - относительное изменение межплоскостного расстояния вследствие легирования.

Способ заключатся в следующем: коллимированный пучок нейтронов 1 направляют на эталонный монокристалл (анализатор) 2 под углом Брэгга 90°. Для регистрации отраженного от анализатора пучка используется отражение от кристалла пиролитического графита 3, коэффициент отражения которого ~50%. Нейтроны, отраженные от пиролитического графита, регистрируются детектором 4. В пучок 1 помещают исследуемый монокристалл (образец) 5. Поворотом кристалла 5 добиваются одновременного выполнения условия Брэгга при θB=90° для обоих кристаллов для пучка нейтронов, отраженных от кристаллографических плоскостей эталонного и исследуемого монокристаллов с межплоскостными расстояниями d0 и d соответственно. При этом исследуемый кристалл экранирует нейтроны, которые могли бы отразиться от эталонного кристалла, и, следовательно, интенсивность отражения падает. Минимальная интенсивность при параллельном расположении кристаллографических плоскостей образца и анализатора будет наблюдаться при равенстве межплоскостных расстояний d0=d. Если эти расстояния отличаются, то минимума интенсивности можно достичь, изменяя межплоскостное расстояние d0 эталона, изменив его температуру от исходного значения T0 до T0+ΔT таким образом, чтобы d | T 0 = d 0 | T 0 + Δ T . Указанная разность температур ΔT: образца и эталона связана с относительным изменением межплоскостного расстояния соотношением Δ d d 0 = ξ Δ T , где ξ - коэффициент теплового расширения кристалла-эталона. Измеряя разность ΔT в минимуме кривой отражения эталонного кристалла, определяют Δ d d 0 . Перемещая образец с помощью сканирующего устройства в следующее положение, указанное измерение повторяют для этой следующей точки. Проведя сканирование подобным образом для «m» точек исследуемого кристалла, получают дифференциальное распределение Δ d d 0 для всей измеряемой области исследуемого образца.

Значения коэффициентов влияния конкретной примеси на межплоскостное расстояние kim берутся из справочной литературы. Например, значения kim для бора и фосфора приведены в работе [1].

Пример конкретной реализации.

Описанным способом в Петербургском институте ядерной физики было проведено исследование изменения распределения концентрации примеси бора в монокристалле кремния ⌀100 мм, длиной 140 мм. Это полупроводник p-типа с электросопротивлением ρ=6ּ10-2 Ом см, что соответствует средней примеси бора n0B=1018 см-3 [4]; kim=-4,8·10-24 [1]. Представленный кристалл был использован в качестве образца в нейтронном спектрометре обратного рассеяния; анализатором (эталоном) служил монокристалл кремния, свободный от примесей. Перемещая исследуемый образец с помощью сканирующего устройства, измерялись значения Δ d d 0 в десяти точках (m=10). При отражении нейтронов использовался рефлекс (220) d=1,92 Å, размер сканирующего пучка 5×50 мм2, шаг сканирования - 10 мм. Результаты проведенного сканирования представлены на фиг.2. Левая ось - изменение концентрации бора n0-n в различных точках исследуемого образца монокристалла кремния, правая ось - относительное изменение межплоскостного расстояния вследствие легирования. Видно, что концентрация бора в представленном образце существенно отличается для различных точек. В середине кристалла она меньше средней, а к краям - больше. Абсолютная разность величин концентраций ~4ּ1017 см-3 или ±20% относительно среднего значения n0≈1,2ּ1018 см-3, соответствующего Δ d d 0 = 6 , 1 10 6 , которое хорошо согласуется с ранее указанной величиной n0, полученной из измерения электросопротивления образца.

Важность учета величины изменения концентраций примесей зависит от конкретного применения используемого кристалла, и поэтому диагностика таких изменений представляется необходимой. Более того, учитывая симметрию кристаллов, можно представленным способом получить многомерную картину распределения примесей. Кроме этого, следует отметить, что указанный способ является еще одним неразрушающим способом определения концентраций примесей и их изменений в кристаллах больших размеров.

Литература

1. G. Celotti, D. Nobili, P. Ostoja, Lattice parameter study of siliconuniformly doped with boron and phosphorus, Journal of materials science 9 (1974) 821-828.

2. J.A. Baker, T.N. Tucker, N.E. Moyer, R.C. Buschert, Effect of Carbon on the LatticeParameter of Silicon, Journal of applied physics 39 9 (1968) 4365-4368.

3. Авторское свидетельство СССР SU 1249415.

4. Handbook of Semiconductor Silicon Technology, Park Ridge, New Jerssy, U.S.A. (1990) 395.

5. P. Джейрам, Масс-спектрометрия. Теория и приложения, пер. с англ., М., 1969.

6. Патент РФ на изобретение №2394228 «Способ определения относительного изменения межплоскостных расстояний совершенных кристаллов», 2010, прототип.

Способ определения концентрации примесей в монокристалле, основанный на измерении относительного изменения межплоскостных расстоянии Δ d d 0 исследуемого кристалла относительно эталонного и заключающийся в том, что в нейтронном спектрометре обратного рассеяния изменяют температуру эталонного кристалла до момента, когда межплоскостное расстояние эталонного кристалла совпадет с межплоскостным расстоянием исследуемого кристалла, и вычисляют относительное изменение межплоскостного расстояния исследуемого кристалла по формуле Δ d d 0 = ξ Δ T , где ξ - коэффициент теплового расширения эталонного кристалла, ΔT - разность температур эталонного и исследуемого кристаллов в минимуме кривой отражения, по которому определяют концентрацию примеси в измеренной точке, отличающийся тем, что исследуемый кристалл сканируют перпендикулярно относительно узкого пучка нейтронов, измерение величины Δ d d 0 исследуемого кристалла относительно эталонного проводят в нескольких «m» точках, вычисляют среднее значение Δ d d 0 по всем измеренным точкам исследуемого кристалла, определяют изменение пространственного распределения концентрации примесей для каждой точки исследуемого кристалла относительно полученного среднего значения по формуле
Δ n m n 0 n = ( Δ d d 0 ) с р Δ d m d 0 k i m ,
где n0 - средняя концентрация примеси в исследуемом кристалле;
n - концентрация примеси в измеряемой точке;
( Δ d d 0 ) с р = m Δ d m d 0 m ,
где m - число точек сканирования;
kim - коэффициент влияния конкретной примеси на межплоскостное расстояние, справочная величина.



 

Похожие патенты:

Использование: для регистрации кривых дифракционного отражения. Сущность изобретения заключается в том, что пучок рентгеновского излучения заданного диапазона от источника рентгеновского излучения пропускают через две диафрагмы, а интенсивность рентгеновского излучения, подвергшегося дифракции в исследуемом кристалле, определяют с помощью детектора при последовательном изменении параметров условий снимаемого рентгеновского рефлекса, в котором параметры условий дифракции изменяют модуляцией межплоскостного расстояния снимаемого рентгеновского рефлекса посредством ультразвукового излучения, генерируемого электроакустическим резонатором, при этом исследуемый кристалл размещают за первой диафрагмой по ходу рентгеновских лучей, сканируют условия дифракции путем модуляции межплоскостного расстояния в кристалле-анализаторе, акустически связанном с электроакустическим резонатором, причем исследуемый кристалл размещают в положении брэгговской дифракции выбранного рефлекса, а параметры условий дифракции сканируют с помощью детектора, соединенного с блоком регистрации стоячей волны, на который подают синхроимпульс с генератора, использующегося для возбуждения ультразвуковых колебаний в электроакустическом резонаторе.

Использование: для недеструктивного исследования тела человека. Сущность изобретения заключается в том, что сканирующее устройство для визуализации с обратнорассеянным пучком излучения содержит источник излучения, фиксированную экранирующую плиту и вращающееся экранирующее тело, расположенное между источником излучения и сканируемым объектом соответственно, в котором фиксированная экранирующая плита является стационарной относительно источника излучения, а вращающееся экранирующее тело выполнено с возможностью вращения относительно фиксированной экранирующей плиты.

Изобретение относится к использованию мягкого рентгеновского излучения для исследования сверхгладких оптических поверхностей и многослойных элементов, в частности для аттестации оптических элементов дифракционного качества.

Использование: для определения концентрации элемента в веществе сложного химического состава. Сущность изобретения заключается в том, что выполняют облучение пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, при этом установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения.

Использование: для досмотра людей. Сущность изобретения заключается в том, что система для осуществления сканирования имеет два сканирующих модуля, которые размещены параллельно друг другу, кроме того, в противостоящем положении друг относительно друга.

Использование: для определения термостойкости изделий из сверхтвердой керамики на основе кубического нитрида бора. Сущность изобретения заключается в том, что осуществляют термообработку испытуемых образцов в вакууме или в инертном газе с последующим анализом, при котором определяют степень превращения алмазоподобных форм нитрида бора в графитоподобную фазу с гексагональной структурой и по ней судят о величине термостойкости изделий, при этом перед термической обработкой образцы дробят до величины фракций размером 100÷500 мкм, а анализ образцов производят рентгенофазовым методом.

Изобретение относится к области металлургии и машиностроения. Для предотвращения брака по механическим свойствам непрерывно отожженной металлической заготовки и обеспечения максимального выхода годного осуществляют управление непрерывной термообработкой металлических заготовок, которое включает неразрушающий непрерывный контроль получаемой в результате термообработки характеристики механических свойств, при этом в качестве контрольной характеристики используют значение удельных энергозатрат, проводят сравнение значений текущих энергозатрат со значениями энергозатрат, полученными из предварительно установленных регрессионных зависимостей механических свойств от удельных энергозатрат, обеспечивающими получение необходимых механических свойств, и регулируют режим термообработки заготовки, обеспечивая попадание величины удельных энергозатрат в интервал допустимых значений.

Использование: для определения зарядового состояния атомов в субнанослойных пленках на поверхности металлов и полупроводников. Сущность: заключается в том, что поверхность анализируемого объекта облучают ионами инертных газов низких энергий, регистрируют энергетический спектр отраженных ионов от поверхности, измеряют энергетическое положение и величины пиков адатомов субнанослойной пленки и пиков атомов адсорбента (подложки) в энергетическом спектре отраженных ионов, по энергетическому положению пиков в спектре определяют типы адатомов и атомов подложки, затем такие измерения проводят на тест-объекте с различными концентрациями адатомов в пределах от чистой поверхности адсорбента (подложки) до одного моноатомного слоя, далее определяют зависимости величин пиков тест-подложки и адатомов от концентрации адатомов, по отношениям величин пиков адатомов и подложки анализируемого объекта и тест-объекта соответственно определяют концентрацию адатомов на поверхности анализируемого объекта, затем с использованием спектров для чистых массивных материалов подложки и адатомов по линейной экстраполяции определяют величины пиков для найденных концентраций, затем по отношениям измеренных пиков адатомов и подложки анализируемого объекта к линейно-экстраполированным величинам пиков определяют зарядовое состояние адатомов и атомов подложки (адсорбента).

Использование: для неразрушающего исследуемую поверхность контроля температурных условий эксплуатации и разрушения трубных элементов паровых и водогрейных котлов.

Использование: для формирования изображения в режиме обратного рассеяния. Сущность заключается в том, что сканирующее устройство включает в себя источник излучения, стационарную экранную пластину и вращающееся экранное тело, расположенные соответственно между источником излучения и сканируемым объектом, причем стационарная экранная пластина зафиксирована относительно источника излучения, а вращающееся экранное тело поворачивается относительно стационарной экранной пластины.

Использование: для определения оптимальной температуры пассивации трубных элементов теплоэнергетического оборудования. Сущность изобретения заключается в том, что подготавливают эталон, подвергают его термоциклированию, при проведении которого методом рентгеновской дифракции определяют внутренние структурные напряжения I рода и II рода, строят зависимости внутренних структурных напряжений I и II рода от температуры термоциклирования, по которым определяют область одновременной релаксации внутренних структурных напряжений и соответствующую ей температуру пассивации. Технический результат: обеспечение возможности определения оптимальной температуры пассивации для различных видов сталей на основе оценок напряженного состояния теплонапряженных поверхностей. 2 н.п. ф-лы, 7 ил., 3 табл.

Использование: для испускания лучей и формирования изображений посредством проникающего излучения. Сущность изобретения заключается в том, что устройство для испускания лучей содержит: цилиндр; источник излучения, расположенный в цилиндре, для испускания луча; и коллиматор, расположенный в цилиндре. Коллиматор позволяет испущенному источником излучения лучу формировать секториальные пучки лучей во множестве положений в осевом направлении цилиндра. Цилиндр имеет формирующую узкие пучки часть, расположенную вдоль осевой длины цилиндра, соответствующей упомянутому множеству положений. Секториальные пучки лучей принимают форму узких пучков посредством формирующей узкие пучки части, когда цилиндр поворачивается вокруг оси вращения. Технический результат: обеспечение возможности повышения качества изображения. 2 н. и 10 з.п. ф-лы, 6 ил.

Использование: для рентгеноспектрального определения размеров наночастиц в образце. Сущность изобретения заключается в том, что выполняют последовательное облучение в режиме прохождения и в режиме отражения исследуемой области образца пучками монохроматизированных рентгеновских лучей с энергией, соответствующей их минимальному и максимальному поглощению вблизи К-краев поглощения рентгеновского излучения атомами элементов, входящих в состав исследуемой области образца, регистрацию кривых малоуглового рассеяния рентгеновских лучей в режиме прохождения при первом и втором взаимно перпендикулярных положениях образца и в режиме отражения от исследуемой области образца при вращении образца в плоскости регистрации и при неподвижном кристалле-монохроматоре и определение размеров наночастиц по форме кривых малоуглового рассеяния рентгеновских лучей. Технический результат: обеспечение возможности определения наноразмерных образований в толще материала, в том числе нерегулярных и/или хаотически распределенных наночастиц в образце. 11 ил.

Использование: для классификации материалов относительно их эффективных атомных чисел на основании регистрации проникающего излучения, рассеянного от них в обратном направлении. Сущность изобретения заключается в том, что исследуемый объект сканируют проникающим излучением, характеризуемым некоторым распределением энергий, и проникающее излучение, рассеянное исследуемым объектом, регистрируют путем создания сигнала первого датчика, различающего материалы с высоким и низким эффективным атомным числом при первом наборе условий относительно распределения энергий проникающего излучения, и создания сигнала второго датчика, различающего материалы с высоким и низким эффективным атомным числом при втором наборе условий относительно распределения энергий проникающего излучения. Происходит создание изображения, основанного на функции сигнала первого датчика и сигнала второго датчика, причем также происходит объединение сигнала первого датчика и сигнала второго датчика с созданием разностного изображения, обеспечивающего возможность различения материала с высоким значением Z и материала с низким значением Z. Технический результат: повышение степени разрешения по энергии при обратном рассеянии рентгеновского излучения объектом. 2 н. и 8 з.п. ф-лы, 9 ил.

Использование: для оценки технического состояния деталей посредством рентгеноструктурного контроля. Сущность изобретения заключается в том, что выполняют снятие с детали рентгенограммы, по которой определяют остаточные напряжения сжатия, определение управляющего критерия и сравнение его с предельным значением, при этом при малоцикловой усталости для детали с n количеством концентраторов напряжений в качестве управляющего критерия используют среднее значение параметра напряженного состояния, далее среднее значение параметра напряженного состояния детали с n количеством концентраторов напряжений сравнивают с минимальным и максимальным предельными значениями, деталь возвращают в эксплуатацию, если среднее значение параметра напряженного состояния детали с n количеством концентраторов напряжений больше максимального предельного значения, или деталь снимают с эксплуатации, если среднее значение параметра напряженного состояния меньше минимального предельного значения, так как деталь находится в предельном состоянии на стадии образования дефекта, или деталь направляют на ремонт в случае, если среднее значение параметра напряженного состояния детали находится между минимальным и максимальным предельными значениями или принимает эти значения, то есть если деталь находится в «преддефектном» состоянии. Технический результат: обеспечение возможности оценки технического состояния деталей в концентраторах напряжений или на поверхностях, близких к концентраторам напряжений, расположенных в плоскости вдоль направления распространения предполагаемого дефекта вглубь металла, а также повышение точности получаемых результатов для непосредственных концентраторов напряжений. 3 ил.

Использование: для определения компонентного состава потока многофазной жидкости. Сущность изобретения заключается в том, что устройство для определения компонентного состава потока многофазной жидкости содержит источник рентгеновского излучения и детектор, установленные по разные стороны трубы, по которой протекает поток многофазной жидкости, датчик для измерения давления, подключенный к трубе, датчик контроля и стабилизации интенсивности рентгеновского луча, источник рентгеновского излучения и волнодисперсионный спектрометр закреплены на одной оси, перпендикулярной оси симметрии трубы так, чтобы излучение от источника рентгеновского излучения к волнодисперсионному спектрометру проходило через окна, врезанные в трубу, причем в корпусе волнодисперсионного спектрометра расположен кристаллический монохроматор-анализатор, установленный под углом к лучу от источника рентгеновского излучения так, чтобы выполнялось условие Брэгга для линии излучения из спектра источника рентгеновского излучения, за кристаллическим монохроматором-анализатором по направлению распространения дифрагированного луча установлен сцинтилляционный счетчик ионизирующего излучения, а датчик контроля и стабилизации интенсивности рентгеновского излучения установлен за кристаллическим монохроматором-анализатором на одной оси с источником рентгеновского излучения. Технический результат: повышение точности и скорости анализа компонентного состава потока многофазной жидкости. 2 ил.

Использование: для исследования нанометрических несовершенств монокристаллических полупроводниковых пластин и гетероструктур, а также диэлектрических подложек. Сущность изобретения заключается в том, что осуществляют измерение угла дифракции от исследуемой плоскости с помощью рентгеновской однокристальной дифрактометрии со скользящим квазипараллельным рентгеновским пучком с суммарной расходимостью и сходимостью пучка 12′-24′ асимметричных отражений от кристаллографических плоскостей, расположенных под углом более 10° к базовой плоскости, совпадающей с поверхностью интерфейса гетероструктуры, и поворот гетероструктуры до получения максимального отражения, при этом выбирают новую базовую плоскость, совпадающую с одной из наклоненных к интерфейсу кристаллографических плоскостей, относительно которой проводят экспозиции для асимметричных съемок с углами падения и отражения, соответствующими данной кристаллографической плоскости таким образом, что угол падения на новую базовую плоскость составляет сумму брегговского угла для исследуемой плоскости и угла ее разворота относительно новой базовой плоскости. Технический результат: обеспечение возможности экспонирования плоскостей, не подлежащих экспонированию другими способами. 8 ил.

Использование: для определения структуры молекулярных кристаллов. Сущность изобретения заключается в том, что выполняют подготовку поликристаллического или порошкообразного материала, воздействуют на него монохроматическим рентгеновским излучением, региструют дифракционную картину, определяют угловые положения центров тяжести всех линий, осуществляют индицирование полученной картины, определяют параметры элементарной ячейки и пространственной группы, выполняют разложение полученной дифракционной картины на сумму интегральных интенсивностей, производят поиск структуры путем построения узловой сетки и определяют геометрию молекулы расчетными методами, определяют параметры структуры и выполняют построение теоретической дифракционной картины, сравнивают полученную теоретическую рентгенограмму с экспериментальной и уточняют структуру, при этом определение положения атомов в молекулярном кристалле осуществляется построением узловой сетки и анализом наиболее вероятных точек положения атомов по определенным формулам и дискретным уточнением различных структурных факторов и электронной плотности в каждой точке полученной узловой сетки с оценкой вероятности. Технический результат: обеспечение возможности проведения анализа как молекулярной, так и кристаллической структуры поликристаллических образцов и порошкообразных материалов без проведения сложной операции пробоподготовки и без проведения большого количества теоретических расчетов для определения основных характеристик структуры. 7 ил.

Изобретение относится к медицинской технике, а именно к устройству компьютерной томографии. Устройство содержит канал сканирования, стационарный источник рентгеновского излучения, размещенный вокруг канала сканирования и содержащий множество фокальных пятен излучения и множество стационарных детекторных модулей, размещенных вокруг канала сканирования и расположенных напротив источника рентгеновского излучения. При этом линии удлинения внешних сторон секториальных пучков излучения, излучаемых из двух фокальных пятен излучения, соответственно размещенных на одном конце и другом конце множества фокальных пятен излучения, пересекаются в точке пересечения, и линия, образованная соединением точки пересечения с центральной точкой поверхности приема излучения каждого из детекторных модулей, перпендикулярна поверхности приема излучения каждого из детекторных модулей, при наблюдении в плоскости, пересекающей канал сканирования. Использование изобретения позволяет увеличить скорость анализа данных. 17 з.п. ф-лы, 6 ил.

Использование: для контроля атомно-молекулярного и надмолекулярного строения целлюлозы в исходном состоянии и после различных физико-химических воздействий. Сущность изобретения заключается в том, что образцы целлюлозных объектов изготавливают в форме плоскопараллельных пластинок или прессованных таблеток и устанавливают в держателе так, чтобы в геометрии на отражение оси волокон были параллельны отражающим плоскостям, а в геометрии на просвет - перпендикулярны, что дает возможность определить толщину и длину элементарной фибриллы соответственно. Для определения степени кристалличности выбирают область углов рассеяния, в которой полностью регистрируется максимум, соответствующий рассеянию аморфной составляющей, рентгенограмму в этой области разделяют на пики, соответствующие рассеянию аморфной составляющей и отражениям от кристаллографических плоскостей, попадающим в тот же диапазон углов. По интегральным ширинам отражений устанавливают размеры кристаллитов в заданных кристаллографических направлениях. Для определения периодов и углов элементарной ячейки используют дополнительный держатель, позволяющий осуществлять вращение образца в своей плоскости, дифрактограмму регистрируют во всем интервале углов рассеяния с минимально возможным шагом по углу, а затем анализируют, используя структурные характеристики различных полиморфных модификаций целлюлозы. Технический результат: обеспечение возможности комплексных исследований изменений структуры аморфно-кристаллических целлюлоз, происходящих на атомном, молекулярном и надмолекулярном уровнях при одновременном сокращении времени, затрачиваемого на каждое исследование, и повышение точности определения периодов элементарной ячейки до четвертого знака после запятой. 4 ил., 6 табл.

Использование: для определения концентрации примесей в монокристалле. Сущность изобретения заключается в том, что в нейтронном спектрометре обратного рассеяния изменяют температуру эталонного кристалла до момента, когда межплоскостное расстояние эталонного кристалла совпадет с межплоскостным расстоянием исследуемого кристалла, и вычисляют относительное изменение межплоскостного расстояния исследуемого кристалла в данной точке. Измерение величины межплоскостного расстояния исследуемого кристалла относительно эталонного проводят в нескольких «m» точках, по всем измеренным точкам исследуемого кристалла, вычисляют среднее значение межплоскостного расстояния исследуемого кристалла, определяют изменение пространственного распределения концентрации примесей для каждой точки исследуемого кристалла относительно полученного среднего значения. Технический результат: обеспечение возможности получения многомерной картины распределения примесей. 2 ил.

Наверх