Способ повышения контрастности поверхностных свойств сульфидных минералов золотосодержащих руд



Способ повышения контрастности поверхностных свойств сульфидных минералов золотосодержащих руд
Способ повышения контрастности поверхностных свойств сульфидных минералов золотосодержащих руд

 


Владельцы патента RU 2542072:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" (RU)

Изобретение относится к области обогащения руд флотацией, в частности к флотации золотосодержащих руд, и может быть использовано в горно-обогатительной промышленности. Способ повышения контрастности поверхностных свойств сульфидных минералов золотосодержащих руд включает предварительное измельчение с введением окислителя и последующую флотацию. Предварительную подготовку пульпы проводят посредством измельчения материала с добавлением перманганата калия и последующего выделения класса крупности - 0,074+0 мм, кондиционирование пульпы с добавлением бутилового ксантогената калия и в качестве окислителя перманганата калия осуществляют в ультразвуковой ванне с частотой 20-60 кГц. Процесс флотации проводят в две стадии - основной и перечистной с использованием бутилового ксантогената калия БКК + вспенивателя ПМ2. Технический результат - повышение извлечения золота из труднообогатимого минерального сырья. 2 ил., 1 табл., 3 пр.

 

Изобретение относится к области обогащения руд флотацией, в частности к флотации золотосодержащих руд, и может быть использовано в горно-обогатительной промышленности.

Известен способ коллективной флотации для первичной концентрации золота в концентрат (Абрамов А.А. Флотационные методы обогащения. Учебник для вузов. М.: Недра, 1984, 383 с. (стр.249)), в котором извлечение золота в концентрат достигает 90-93% за счет первичной концентрации золота методом флотации. В этом способе флотация измельченной руды до 65-85% класса - 0,074 мм осуществляется с применением смеси ксантогената и дитиофосфата или смеси ксантогенатов с различной длиной углеводородной цепи при общем расходе 100-200 г/т.

Недостатками данного способа являются одновременное наличие пирита и арсенопирита во флотационном концентрате и отсутствие методов их селекции, что сдерживает возможность применения такой флотационной схемы из-за жестких требований к флотационному концентрату по содержанию мышьяка и практически исключает пирометаллургию пиритных концентратов. Так же не обеспечивается кондиционное (<2%) содержание As в золотоносном пиритном концентрате.

Известен способ извлечения золота из сульфидных руд и концентратов (патент RU №2307181, опубл. 27.09.2007), который включает смешивание руд и концентратов с карбонатом кальция при расходе CaCO3 100-120% от стехиометрически необходимого для полного связывания серы в гипс, нагревание до температуры 550-650°C и последующее извлечение золота из огарка. Для извлечения золота из огарка в него добавляют исходный концентрат в количестве 1-5% от массы огарка и подвергают флотации.

Недостатком этого способа является недостаточно высокое извлечение золота, а также наличие в огарке мелкодисперсного сульфата кальция (гипса), что обусловливает уплотнение структуры осадков при фильтровании. Плохая фильтруемость кеков приводит, в свою очередь, к потерям неотмытого при фильтровании золота.

Также известен способ обогащения сульфидных полиметаллических золотосодержащих руд и продуктов извлечения ценных компонентов из золотосодержащих сульфидных руд (патент RU №2314165, опубл. 10.01.2008), который включает коллективную сульфидную флотацию в щелочной среде в присутствии ксантогената и вспенивателя с получением коллективного концентрата и хвостов, последующую селективную флотацию коллективного концентрата с получением товарных концентратов и пиритного продукта. Хвосты коллективной сульфидной флотации и/или пиритный продукт селективной флотации классифицируют в трехпродуктовом гидроциклоне с доизмельчением песков гидроциклона и осуществляют в присутствии ксантогената при pH 5,4-5,6 флотацию доизмельченных песков и среднего слива гидроциклона при концентрации ксантогената до 6 мг/л, при этом полученный в результате флотации пенный продукт направляют на переработку для извлечения из него золота.

Недостатком этого способа являются большие потери золота с отвальными хвостами, содержащими пирит с повышенным содержанием золота. Также не обеспечивается кондиционное (<2%) содержание As в золотоносном пиритном концентрате.

Также известен способ извлечения ценных компонентов из золотосодержащих сульфидных руд (патент RU №2339455, опубл. 27.11.2008), который включает предварительное мокрое измельчение и последующую флотацию с введением бутилового ксантогената калия и вспенивателя Т-80. После введения бутилового ксантогената калия добавляется в качестве активатора процесса гидрофобизации ценного компонента 3,4дигидро, 2,5,7,8тетрамитил-2[4,8,12триметил тридецил]2H-1бензопиран-6-ола-ацетат с добавками фосфолипидов в соотношении 3,3:1, затем подается вспениватель Т-80.

Недостатком этого способа является низкая селективность процесса, при котором происходит гидрофобизация и пирита и арсенопирита.

Известен способ разделения пирита и ареснопирита (патент RU №2397025, опубл. 20.08.2010), принятый за прототип. Этот способ включает кондиционирование измельченной пульпы с сульфгидрильным собирателем, введение модификатора поверхности, депрессора и вспенивателя и выделение пиритного концентрата в пенный продукт флотации. В качестве модификатора поверхности используют 2-оксипропиловый эфир диэтилдитиокарбаминовой кислоты, а в качестве депрессора используют экстракт коры дуба.

Недостатком прототипа является применение нестойкого органического депрессора, который подвергается гидролитической деструкции. Применение 2-оксипропилового эфира диэтилдитиокарбаминовой кислоты модифицирует поверхность арсенопирита в недостаточной степени, что не позволяет достичь требуемое содержание мышьяка в пиритном концентрате.

Техническим результатом изобретения является повышение извлечения золота из труднообогатимого минерального сырья.

Технический результат достигается тем, что предварительную подготовку пульпы проводят посредством измельчения материала с добавлением перманганата калия и последующего выделения класса крупности - 0,074+0 мм, кондиционирование пульпы с добавлением бутилового ксантогената калия и в качестве окислителя перманганата калия осуществляют в ультразвуковой ванне с частотой от 20 до 60 кГц и процесс флотации проводят в две стадии, основной и перечистной с использованием бутилового ксантогената калия ББК и вспенивателя ПМ2.

На основе оценки кристаллической структуры, строения молекулярных орбиталей и ионности связи пирита и арсенопирита установлено, что более высокая способность пирита к окислению кислородом в условиях флотации обусловлена расположением атомов серы на гранях и ребрах ячеек кристаллической решетки, в арсенопирите атомы серы экранированы атомами железа и мышьяка. С точки зрения заполнения электронных подуровней октаэдрических комплексов атомов железа, в отличие от арсенопирита, молекулярные орбитали железа в пирите характеризуются незавершенным 3dz подуровнем. Полярность двухэлектронной связи Fe-S в пирите выше, чем в арсенопирите, т.е. характеризуется большим смещением электронов к анионному остову.

Электрофизические свойства пирита изменяются в большем интервале значений, чем у арсенопирита и существенно зависят от нестехиометричности состава и изоморфных примесей. Донорные примеси в пирите представлены Со, Ni, Cu, в то время как As является наиболее частой акцепторной примесью. В арсенопирите дефицит мышьяка обусловливает проводимость n-типа, а для образцов, обогащенных As, наблюдается переход к p-типу. Подвижность носителей в пирите в 3-5 раза превышает значения для арсенопирита.

В оценке свойств пирита существенную роль играет фактор нестехиометричности (S/Fe 1,94-2,01). Степень отклонения от кратности связи железо-сера оказывает влияние на тип проводимости и величину электрохимического потенциала: пириты с недостатком серы (анионной части), как правило, имеют электронную проводимость и проявляют более основные свойства, чем образцы с дефицитом катионной части.

Реализация способа осуществляется следующим образом (фиг. 1) и рассмотрена в следующих примерах.

Предварительное измельчение материала в течение 10 минут с добавлением перманганата калия 100 г/т с последующим выделением класса крупности - 0,074+0 мм. Кондиционирование пульпы с добавлением бутилового ксантогената калия (БКК) 100 г/т и 50 г/т перманганата калия в качестве окислителя осуществляют в ультразвуковой ванне с частотой в диапазоне 20-60 КГц в течение 15 минут. Процесс флотации проводят с в две стадии (основная и перечистная) с использованием на основной флотации 100 г/т БКК + 40 г/т вспенивателя ГГМ2 (ПМ2 - смесь алифатических спиртов нормального и изостроения, по своим флотационным свойствам близок к метилизобутилкарбинолу) (Рябой В.И. Разработка новых флотореагентов в России: // "Горное дело", 2009, №4 URL: pdf. (Дата обращения: 13.10.2014)), и на перечистной флотации 50 г/т БКК + 20 г/т ПΜ2.

Пример 1. Золотосодержащую руду измельчают в шаровой мельнице в течении 10 минут с добавлением перманганата калия 100 г/т. Продукт разгрузки мельницы подвергают классификации в гидроциклоне, пески возвращаются на доизмельчение в мельницу, а слив поступает на кондиционирование. Кондиционирование пульпы осуществляют с добавлением бутилового ксантогената калия 100 г/т и в качестве окислителя перманганата калия 50 г/т в ультразвуковой ванне при частоте 20 кГц в течение 15 минут. И затем проводят флотацию в две стадии, основную и

перечистную, с использованием на основной флотации 100 г/т БКК + 40 г/т вспенивателя ПМ2, и на перечистной флотации 50 г/т БКК + 20 г/т ПМ2. Извлечение золота в концентрат перечистной флотации равно 18,5%, при содержании - 59,3%.

Пример 2. Отличается тем, что при извлечении золота в концентрат по предлагаемому способу варьировали частотой ультразвуковой обработки, которая равна 40 кГц. Извлечение золота в концентрат перечистной флотации равно 11,86%, при содержании - 51,4%.

Пример 3. Отличается тем, что при извлечении золота в концентрат по предлагаемому способу варьировали частотой ультразвуковой обработки, которая равна 60 кГц. Извлечение золота в концентрат перечистной флотации равно 9,5%, при содержании - 49,4%.

В таблице приведены усредненные данные серии проведенных экспериментов (фиг. 2).

По совокупности указанных различий можно заключить, что в процессах измельчения и флотации пирит более активно вступает в реакции окисления и взаимодействия с флотационными реагентами, чем арсенопирит, и его реакционная способность в большей степени, чем у арсенопирита зависит от изоморфных примесей.

Разработанный способ позволяет повысить эффективность извлечения золота в концентрат, при одновременном снижении мышьяка. Экономический эффект от внедрения предлагаемого способа за счет более полного и селективного выделения ценных компонентов составит 5-7% в год.

Способ повышения контрастности поверхностных свойств сульфидных минералов золотосодержащих руд, включающий предварительное измельчение с введением окислителя и последующую флотацию, отличающийся тем, что предварительную подготовку пульпы проводят посредством измельчения материала с добавлением перманганата калия и последующего выделения класса крупности - 0,074+0 мм, кондиционирование пульпы с добавлением бутилового ксантогената калия и в качестве окислителя перманганата калия осуществляют в ультразвуковой ванне с частотой 20-60 кГц и процесс флотации проводят в две стадии - основной и перечистной с использованием бутилового ксантогената калия БКК + вспенивателя ПМ2.



 

Похожие патенты:

Изобретение относится к области обогащения полезных ископаемых, в частности к флотационному выделению благородных металлов и сульфидных минералов с ассоциированными благородными металлами из измельченного сырья, и может быть использовано при исследовании новых флотационных реагентов, предназначенных для обогащения платиносодержащих руд и продуктов обогащения, содержащих благородные металлы.

Изобретение относится к способу обогащения медно-молибденовых руд. Способ включает основную флотацию с несколькими перечистками сульфгидрильными и аполярными собирателями с получением коллективного медно-молибденового концентрата.

Изобретение относится к флотации природных солей калия и, в частности, к собирателю (или коллектору) и способу обогащения пены нерастворимых компонентов сильвинита.

Изобретение относится к флотации необогащенных калийных солей и, в частности, к пенообразователю и способу пенной сепарации нерастворимых компонентов сильвинита.
Изобретение относится к области обогащения полезных ископаемых, в частности к выбору флотационных реагентов для флотации руд. Способ флотационного извлечения металлов платиновой группы из руд или кеков выщелачивания пирротина с использованием смеси флотореагентов - собирателей.
Предложенная группа изобретений относится к технологиям обогащения. Более конкретно, настоящее изобретение относится к композициям для обогащения и к способам их применения.

Изобретение относится к области обогащения полезных ископаемых, в частности к флотационному выделению сульфидных минералов из концентратов, и может быть использовано при флотационном обогащении сульфидных медно-цинковых пирит и пирротинсодержащих, а также полиметаллических руд.

Изобретение может быть использовано для извлечения наночастиц диоксида кремния и углерода из шламов газоочистки электротеримического производства кремния флотацией.
Изобретение относится к области обогащения пиритных золотосодержащих медных, медно-цинковых, свинцово-цинковых и других техногенных продуктов цветных и благородных металлов.

Изобретение относится к области обогащения полезных ископаемых, а более конкретно, к флотационному обогащению цинксодержащих руд цветных металлов. В качестве модифицированного реагента для флотации цинксодержащих руд цветных металлов применен полиметиленнафталинсульфонат.

Изобретение относится к области обогащения полезных ископаемых и может быть использовано при флотации цветных, черных, редких и благородных металлов, а также неметаллических полезных ископаемых. Устройство для перекачки пенного продукта флотационного передела содержит зумпф и насос, зумпф снабжен патрубками для ввода пенного продукта и для соединения с насосом. Зумпф выполнен в виде конической емкости с радиальными пластинчатыми сетчатыми отбойниками и с тангенциальными подводом пенного продукта и отводом пульпы в насос. Дном конической емкости является ее меньшее основание. В центре дна емкости расположен усеченный конус, установленный меньшим основанием вверх. Нижняя сторона пластинчатого сетчатого отбойника расположена на уровне верхнего основания усеченного конуса. Патрубок для ввода пенного продукта установлен в боковой стенке емкости на высоте от дна 0,1÷0,7H, где H - высота зумпфа, а патрубок для соединения с насосом расположен в нижней части конической емкости по ходу потока пульпы, ниже верхнего основания усеченного конуса. Внутренний диаметр патрубка для соединения с насосом равен внутреннему диаметру патрубка для ввода пенного продукта. Диаметр нижнего основания усеченного конуса составляет 0,3÷0,5 диаметра меньшего основания конической емкости. Технический результат - повышение эффективности, производительности работы устройства для перекачки пенного продукта флотационного передела и снижение энергозатрат. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области обогащения полезных ископаемых и может быть использовано при флотации цветных, черных, редких и благородных металлов, а также неметаллических полезных ископаемых. Устройство для перекачки пенного продукта флотационного передела содержит зумпф и насос. Зумпф выполнен в виде конической емкости с тангенциальными подводом пенного продукта и отводом пульпы в насос и снабжен патрубками для ввода пенного продукта и для соединения с насосом. Дном конической емкости является ее меньшее основание. В центе дна емкости расположен усеченный конус, установленный меньшим основанием вверх. На внутренней боковой поверхности конической емкости размещена футеровка с выступами, выполненная из износостойкого материала. Нижняя сторона футеровки расположена на уровне верхнего основания усеченного конуса, расположенного в центре дна зумпфа, а по центру зумпфа, на расстоянии от дна, равном 0,5÷0,7 высоты зумпфа, установлено открытое лопастное колесо с верхним и нижним расположением лопаток. Направление вращения лопастного колеса совпадает с направлением вращения потока пульпы. Патрубок для ввода пенного продукта расположен выше нижних кромок лопаток колеса. Выступы имеют переменную ширину по высоте боковой поверхности конической емкости зумпфа, при этом ширина выступа в верхней части в 3÷5 раз больше ширины в его нижней части. Технический результат - повышение эффективности, производительности работы устройства для перекачки пенного продукта флотационного передела и снижение энергозатрат. 1 з.п. ф-лы, 3 ил.

Изобретение относится к способу извлечения катионов европия (III) из бедного или техногенного сырья с помощью жидкостной экстракции. Способ извлечения катионов европия (III) включает жидкостную экстракцию из водно-солевых растворов с использованием в качестве экстрагента изооктилового спирта. Перед экстракцией в водно-солевой раствор добавляют ПАВ анионного типа, в качестве которого используют додецилсульфат натрия, с образованием сольвата додецилсульфата европия для транспортирования его через водную в органическую фазу. При этом додецилсульфат натрия добавляют в раствор в концентрации, соответствующей стехиометрии реакции: Eu+3+3C12H25OSO3Na=Eu[C12H25OSO3]3+3Na+, где Eu+3 - катион европия, C12H25OSO3Na - додецилсульфат натрия, Eu[C12H25OSO3]3 - сольват. Жидкостную экстракцию осуществляют при pH=3,0-6,0. Техническим результатом является увеличение степени извлечения европия за счет образования прочных сольватов европия и 90%-ного извлечения катионов европия (III) из водных растворов его солей. 1 ил.

Изобретение относится к способу извлечения самария (III) из бедного или техногенного сырья, в частности флотоэкстракцией из водных фаз. В процессе флотоэкстракции самария (III) в качестве органической фазы используют изооктиловый спирт, а в качестве собирателя - ПАВ анионного типа додецилсульфат натрия в концентрации, соответствующей стехиометрии реакции: Sm+3+3NaDS=Sm(DS)3+3Na+,где Sm+3 - катион самария (III), DS- - додецилсульфат-ион. При этом флотоэкстракцию осуществляют при рН=7,5-8,5 и соотношении органической и водной фаз 1/20-1/40. Техническим результатом является увеличение степени извлечения самария (III) за счет образования прочных комплексов катионов самария (III) с додецилсульфатом натрия, переходящих в органическую фазу. 1 ил., 1 пр.
Изобретение относится к переработке электрохимических элементов и батарей. Способ разделения материалов в ломе батарей включает измельчение батареи, удаление материалов корпуса, суспендирование получаемой суспензии батареи в воде в резервуаре пенной флотации, добавление агента пенной флотации к данной суспензии, барботирование данного резервуара воздухом с образованием пены, вследствие чего гидрофобные материалы захватываются пузырьками воздуха, и позволяют захваченным материалам всплывать вверх в резервуаре и снимают захваченные материалы из резервуара. Соединения Pb (IV) отделяют от соединений Pb (II) в суспензии батареи в резервуаре пенной флотации. Способ разделения материалов в ломе свинцово-кислотных батарей включает извлечение пасты из отработанной батареи, суспендирование извлеченной пасты в воде, добавление агента пенной флотации к данной суспензии, содержащей пасту и воду, барботирование резервуара пенной флотации газом с образованием пены, отделение диоксида свинца (PbO2) от других свинецсодержащих соединений суспензии в резервуаре пенной флотации. Технический результат - повышение эффективности разделения материалов лома батарей. 2 н. и 12 з.п. ф-лы, 6 табл., 10 пр.

Изобретение относится к обогащению сульфидных серебросодержащих бедных и забалансовых руд и хвостов обогащения, содержащих сурьмяные сульфиды серебра. Способ включает измельчение исходного материала до крупности 95% класса минус 0,071 мм. Затем ведут активацию измельченного материала смесью сульфата меди и азотнокислого свинца при их соотношении от 1:1 до 1:2. После активации проводят флотацию сульфидов серебра смесью ксантогената калия и диалкилдитиофосфата калия при их соотношении от 1:0,8 до 1:1,2. Техническим результатом является повышение извлечения серебра в концентрат за счет обеспечения условий, способствующих наиболее полному раскрытию серебросодержащих минералов. 2 табл., 1 пр.

Изобретение может быть использовано в горнодобывающей промышленности при выделении минеральных компонентов из руд для улучшения эффективности процессов разделения пенной флотацией. Способ предусматривает добавление к исходной суспензии эффективного количества фосфорорганического соединения, выбранного из группы, состоящей из полиаминополиэфирметиленфосфонат - ПАПЭМФ, в форме кислоты или соли; триалканоламинтри(эфир фосфорной кислоты), в форме кислоты или соли. Затем осуществляют селективную флотацию продукта в виде частиц путем барботирования суспензии до формирования концентрата и жидкого раствора. Способ обеспечивает повышение степени извлечения целевого продукта в виде частиц из тонко измельченной сульфидной минеральной руды, а также приводит к уменьшению энергетических затрат и увеличению эффективности других стадий обработки и очистки, что помогает в охране окружающей среды. 14 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к технологии флотационного обогащения руд и может быть использовано для повышения эффективности процесса флотационного обесшламливания калийных руд или других видов полезных ископаемых. Способ флотационного обогащения руд включает измельчение, флотационное обесшламливание руды и флотацию сильвина. Флокулянт и собиратель шламов подают в питание флотации шламов в виде совместного раствора, получаемого путем предварительного смешения растворов полиакриламидного флокулянта и оксиэтилированного собирателя шламов (оксиэтилированных аминов, или оксиэтилированных жирных кислот, или оксиэтилированных фенолов, или оксиэтилированных спиртов), содержащего в составе углеводородного радикала не менее 19 и не более 65 молей (групп) окиси этилена. Совместный раствор флокулянта и собирателя шламов получают путем совместного растворения в воде полиакриламида и собирателя шламов. Совместный раствор флокулянта и собирателя шламов получают путем растворения полиакриламида в предварительно приготовленном растворе собирателя шламов. Технический результат - повышение флотируемости шламов из калийных руд, уменьшение шламов в питании последующей сильвиновой флотации и улучшение ее показателей. 2 з.п. ф-лы, 3 табл., 4 пр.

Предложенное изобретение относится к обогащению полезных ископаемых и может быть использовано на предприятиях горнодобывающей промышленности при переработке флюоритовых руд или других неметаллических полезных ископаемых. Способ флотации флюоритовых руд включает измельчение руды, стабилизацию энергетического состояния флотационной дисперсной системы по Eh, флотацию с использованием в качестве реагента-собирателя N-ацил-саркозин и в качестве реагента-депрессора жидкое стекло. Осуществляют модифицирование жидкого стекла путем ввода в его состав сульфата цинка при соотношении сульфат цинка:жидкое стекло, равном (0,05÷0,53):1, а весовое соотношение депрессора к собирателю равно 1,25÷2,5. Технический результат - повышение качества флюоритовых концентратов, улучшение селекции флюорита и карбонатных породообразующих комплексов в условиях пониженных температур. 2 табл.

Изобретение относится к области обогащения полезных ископаемых, в частности к выбору флотационных реагентов для руд. Способ флотации руд с использованием смеси собирателей включает предварительный подбор флотореагентов, для которого используют компьютерную химическую программу. С помощью программы предварительно виртуально прикрепляют смеси реагентов к атому металла модели флотируемого минерала, определяют для полученного комплекса компьютерные параметры и с учетом содержания металлов в руде определяют мольность металла во флотируемой руде, при этом для используемых реагентов должно быть - диполь/дипольное взаимодействие в пределах от -2.7717 до 0.4956, 1/4 ван-дер-ваальсово взаимодействие в пределах от 2.2390 до 8.8701, не 1/4 ван-дер-ваальсово взаимодействие от -0.3746 до 1.7483, изгиб валентных углов от 2.4600 до 3.1866, растяжением валентных связей от 0.2580 до 0.7430 и рассчитывают величину стерической энергии с учетом вычисленной мольности извлекаемого металла от 6.1198 до 8.6639 ккал/моль. Технический результат - повышение эффективности подбора флотационных реагентов для максимального извлечения ценных компонентов. 1 з.п. ф-лы, 2 ил., 3 табл., 3 пр.
Наверх