Способ удаления накипно-коррозионных отложений



Способ удаления накипно-коррозионных отложений
Способ удаления накипно-коррозионных отложений
Способ удаления накипно-коррозионных отложений
Способ удаления накипно-коррозионных отложений
Способ удаления накипно-коррозионных отложений
Способ удаления накипно-коррозионных отложений

 


Владельцы патента RU 2551723:

Кожеуров Александр Владимирович (RU)
Кузмак Александр Евсеевич (RU)
Лаврухин Константин Александрович (RU)

Изобретение относится к очистке поверхности теплообменного оборудования от накипно-коррозионных отложений. В способе используют жидкий очищающий состав, содержащий аскорбиновую кислоту, комплексообразователь, воду и, возможно, вспомогательные добавки, который заливают или прокачивают через теплообменное оборудование. Подачу очищающего состава в теплообменное оборудование осуществляют из расширительного бака кавитационно-теплового генератора, обеспечивающего гидродинамический нагрев жидкого очищающего состава до температуры 70÷130°C и создание вихревого потока жидкости в очищаемом оборудовании за счет гидродинамической кавитации, причем перед использованием упомянутого состава теплообменное оборудование заполняют водой, которую нагревают с помощью кавитационно-теплового генератора до 50÷70°C. Изобретение обеспечивает повышение энергоэффективности процесса, снижение расхода очищающего средства, повышение экологической безопасности процесса, повышение производительности процесса удаления накипно-коррозионных отложений различной плотности и состава. 3 з.п. ф-лы, 6 табл., 1 пр.

 

Изобретение относится к способам очистки с использованием химических средств, применяемых для очистки изделий из металлов, пластмасс и различных типов подложек с покрытием от накипных отложений и продуктов коррозии, например, при очистке энергетического оборудования (паровых котлов, водонагревателей, турбин и т.д.).

Существуют различные механические способы очистки металлов и металлических изделий от ржавчины: металлическими щетками, скребками, наждачными шкурками, галтовкой, гидроабразивной обработкой. Применяют также газопламенную очистку с дополнительной обработкой металлическими щетками. Для удаления ржавчины с металла используют химико-термическую обработку, расплавы щелочей, солей, а также специальные моющие составы на основе синтетических поверхностно-активных веществ. Одним из эффективных способов удаления продуктов коррозии с поверхности металлических изделий является травление с помощью водных растворов кислот, кислых солей или щелочей (А.А. Михайлова и др. Противокоррозионная защита сельскохозяйственной техники. Справочник, - М.: Россельхозиздат, 1981 г., с. 100-118). Все перечисленные способы не лишены недостатков, т.к. требуют больших затрат, трудоемки, недостаточно эффективны и экологически вредны, а также не исключат склонности к повторному ржавлению. Кроме того, эти способы нежелательны особенно при очистке специфических поверхностей.

Одним из путей уменьшения агрессивного воздействия моющих растворов на металл при удалении накипи и других отложений является использование в них комплексонов (комплексообразователей, связывающих катионы металлов, входящих в состав накипи и других отложений), таких как этилендиаминтетрауксусная кислота и ее соли (Т.Х. Маргулова. Применение комплексонов в теплоэнергетике, - М.: Энергия, 1973, с. 263).

Известен способ очистки различных поверхностей изделий из черных и цветных металлов, пластмасс от накипи, продуктов коррозии, например, при очистке энергетического оборудования (паровые и водогрейные котлы, водонагреватели, теплообменники, турбины и т.д.) с использованием состава, содержащего (г/л): аскорбиновую кислоту 1.0÷3.0, комплексон (например, этилендиаминтетрауксусную кислоту-ЭДТА) 24.0÷26.0, воду - остальное. Воду нагревают от 60°C и выше и вводят в нее аскорбиновую кислоту и комплексон. Получают прозрачный раствор без осадка. Растворение отложений осуществляют путем отмывки поверхностей нагретой композицией (более 60°).

Процесс очистки проводят при 60°C и выше, т.к. верхний предел температуры определяется термостабильностью материала оборудования (сталь, латунь, пластмасса и т.д.).

Скорость очистки, удаления отложений (накипи) зависит от плотности отложений и составляет 0.5÷0.6 г/см2·ч. Расход состава 1÷2 г на 1 г удаляемых отложений. Скорость коррозии очищаемых металлических подложек не превышает 10-8, 10-9 г/см2·ч (RU 2114215, 27.06.98).

Упомянутый способ позволяет эффективно удалять накипно-коррозионные отложения различной плотности с минимальным коррозионным воздействием на очищаемый металл, однако при большой плотности отложений сопровождается значительным расходом моющего вещества и недостаточной скоростью удаления отложений.

Из RU 2206034, 10.06.2003 известен другой способ химической очистки поверхностей изделий от накипно-коррозионных отложений с использованием жидкого очищающего состава, включающего аскорбиновую кислоту, комплексообразующее соединение и воду, в качестве комплексообразующего соединения содержит однозамещенный лимоннокислый аммоний, дополнительно - винную кислоту и промотор растворения при следующем соотношении компонентов (г/л):

Аскорбиновая кислота 12.0÷24.0
Комплексообразующее соединение - однозамещенный лимоннокислый аммоний 12.0÷24.0
Винная кислота 4.5÷9.0
Промотор растворения 1.5÷3.0
Вода остальное

Способ позволяет удалять отложения плотностью более 2500 кг/м3 с высокой скоростью растворения при малом расходе очищающего состава (0.4÷0.95) кг на 1 кг удаляемых отложений.

Из RU 2201572, 27.03.2003 известен способ очистки внутренней поверхности отопительных радиаторов внутридомовых тепловодосетей, включающий отсоединение их от отопительной системы и заполнение водой с воздушной подушкой и создание гидроударов, создающих согласно изобретению зоны гидроударов, и формируют их сжатым воздухом в каждой секции нижней части в двух направлениях в сторону вертикальных полостей, и улавливают водовоздушную жидкость с разрушенными отложениями через верхнюю часть радиатора, после чего отделяют от отложений и возвращают жидкость в нижнюю часть радиатора, причем импульсы сжатого воздуха подают после обработки предыдущей секции поочередно в последующую секцию и координируют зоны гидроударов под вертикальными полостями каждой секции. Достигаемый технический результат находится в причинно-следственной связи с сущностью способа и заключается в интенсификации теплообмена после очистки внутренней поверхности радиатора.

Однако данный способ предназначен для чистки и предотвращения загрязнений, внутренних и внешних теплообменных или теплопередающих каналов, но не используется для удаления накипно-коррозионных отложений.

Из уровня техники известно применение генераторов кавитации в системах смешения жидких сред для получения гомогенных дисперсных систем, например, водотопливных эмульсий (RU 83296 U1. 21.05.2009) или для смешения, например, двух потоков многокомпонентных растворов, диспергирования их твердой фазы, гомогенизации буровых и/или тампонажных растворов, активации тяжелых элементов (RU 116068 U1, 20/05/2012).

В патенте RU 2422733 С1, 27.06.2011 описан тепловой кавитационный генератор для работы в замкнутых системах теплоснабжения.

Технической задачей заявленного изобретения является повышение производительности процесса удаления накипно-коррозионных отложений различной плотности и состава, повышение энергоэффективности процесса, снижение расхода очищающего средства, повышение экологической безопасности процесса.

Поставленная техническая задача и получаемый технический результат достигаются заявленным в изобретении способом удаления накипно-коррозионных отложений с поверхностей системы теплообменного (энергетического) оборудования путем заливки в него или прокачки через него жидкого очищающего состава, содержащего аскорбиновую кислоту, комплексообразователь, воду и, возможно, вспомогательные добавки, причем подачу состава осуществляют из расширительного бака установки, представляющей собой кавитационно-тепловой генератор, в режиме подсоединенной к очищаемому оборудованию, при этом кавитационно-тепловой генератор обеспечивает гидродинамический тепловой нагрев жидкого очищающего состава до температуры 70°÷130°C и создание вихревого движения потока жидкости в очищаемом оборудовании за счет гидродинамической кавитации, при этом перед заливкой в оборудование или прокачкой через него жидкого очищающего состава в систему теплообменного (очищаемого) оборудования заливают воду и осуществляют нагревание системы с помощью кавитационно-теплового генератора до 50÷70°C.

Жидкий очищающий состав в зависимости от вида очищаемого оборудования и типа отложений (их плотности) дополнительно содержит винную кислоту и промотор растворения, например, карбонат натрия, бикарбонат натрия и др. В качестве комплексообразующей добавки жидкий очищающий состав содержит, например, такие известные комплексоны, как этилендиаминтетрауксусную, диэтилентетраминпентауксусную, 2-оксиэтилиминодиуксусную, оксиэтилендифосфоновую кислоты, однозамещенный лимоннокислый аммоний. Использованная в заявленном составе L-аскорбиновая кислота (V-лактон, 2,3-дегидрогулоновой кислоты) растворима в воде, не растворяется в органических растворителях. Входит в состав витамина С (Химический словарь - М.: Сов. Энциклопедия, 1983, с. 102).

Жидкий охлаждающий состав, используемый в заявленном способе, может дополнительно содержать в качестве активной добавки натриевые соли сульфосалициловой кислоты. Жидкие очищающие составы, используемые в заявленном способе, являются известными, описанными в патентах RU 2114215, 27.06.1998; RU 2296934, 10.06.2003; RU 2154109, 10.08.2000 и созданы при участии авторов заявленного изобретения.

В таблицах 1÷6 приведены примеры жидких очищающих составов как реагентов, используемых в заявленном способе очистки (удаления) от накипно-коррозионных отложений (НКО) с поверхностей теплообменного (энергетического) оборудования.

В качестве установки, применяемой для осуществления заявленного способа, используют установку, которая содержит расширительный бак, заполненный жидким очищающим составом (химическим реагентом), и работающую по принципу кавитационно-теплового генератора, например, описанного в RU 2317503 от 20.02.2008 и созданного авторами настоящего изобретения.

Ниже приведен пример осуществления способа, иллюстрирующий заявленное изобретение, но не ограничивающее его.

Пример

При температуре Т=10°÷30°C жидкий очищающий препарат растворяют в отдельной емкости и заливают в расширительный бак установки, которую подключают к очищаемой системе (теплообменник, водовод, котел и др.). Систему заполняют водой и прогревают до нужной температуры (например, до 75°C) с помощью установки. Систему заполняют водой, удаляют воздух и включают установку в рабочий режим.

В качестве очищающего препарата (жидкого очищающего состава) используют один из составов, приведенных в таблицах №№1, 3, 5.

В заявленном способе использована установка для химической очистки систем отопления, описанная в RU 2317503 от 20.02.09, в основе которой лежит принцип кавитационно-теплового генератора, под рабочим режимом которого понимается создание гидродинамических условий за счет конструкции водовода, изменяющей скорости потока жидкого очищающего состава для образования кавитационного (вихревого) движения при следующих параметрах процесса*) (*) Все режимы экспериментально подобраны для осуществления данного способа.):

1. Объем перекачки жидкого очищающего препарата V=3÷200 м3/час.

2. Рабочее давление в системе р=1÷10 атм.

3. Температура Т=4°÷150°C.

Кавитационный нагрев позволяет усилить физико-химическое воздействие жидкого очищающего состава на структуру накипно-коррозионных отложений, приводя:

- к уменьшению расхода жидкого очищающего состава;

- к повышению работоспособности способа в широком диапазоне температур окружающей среды;

- к сокращению времени удаления накипно-коррозионных отложений с очищаемых поверхностей;

- повышению класса энергоэффективности технологии по заявляемому способу.

1. Способ очистки поверхности теплообменного оборудования от накипно-коррозионных отложений, включающий использование жидкого очищающего состава, содержащего аскорбиновую кислоту, комплексообразователь, воду и, возможно, вспомогательные добавки, который заливают или прокачивают через теплообменное оборудование, при этом подачу упомянутого состава в теплообменное оборудование осуществляют из расширительного бака кавитационно-теплового генератора, обеспечивающего гидродинамический нагрев жидкого очищающего состава до температуры 70÷130°C и создание вихревого потока жидкости в очищаемом оборудовании за счет гидродинамической кавитации, причем перед использованием упомянутого состава теплообменное оборудование заполняют водой, которую нагревают с помощью кавитационно-теплового генератора до 50÷70°C.

2. Способ по п.1, в котором используют очищающий состав, содержащий винную кислоту и промотор растворения.

3. Способ по п.1, в котором используют очищающий состав, содержащий в качестве комплексообразователя однозамещенный лимоннокислый аммоний.

4. Способ по п.1, в котором отработанный жидкий очищающий состав сливают в промышленную канализацию.



 

Похожие патенты:

Изобретение относится к технологии безразборной химической очистки теплообменного оборудования, а именно к очистке теплообменной системы дизеля тепловоза от накипно-коррозионных отложений.

Изобретение относится к технологии химической очистки внутренних полостей теплообменного оборудования (теплообменных контуров) и может быть использовано для очистки систем охлаждения двигателей внутреннего сгорания или других агрегатов от накипно-коррозионных отложений.

Изобретение относится к геотермальной энергетике и может быть использовано для очистки геотермального оборудования от карбонатных отложений. Предложен способ очистки теплообменника от карбонатных отложений, включающий подвод геотермальной воды с концентрацией углекислого газа выше равновесного значения, которое создается путем увеличения общего, соответственно, и парциального давления углекислого газа в очищаемом теплообменнике, при этом, очищаемый теплообменник подключают последовательно к чистому теплообменнику, а из геотермальной воды перед подачей в чистый теплообменник удаляют часть углекислого газа до равновесного значения и подают в геотермальную воду перед подачей в очищаемый теплообменник, парциальное давление углекислого газа в очищаемом теплообменнике поддерживается на уровне выше равновесного значения.

Изобретение относится к области нефтедобычи и может быть использовано при очистке теплообменников на пункте подогрева нефти от парафиновых отложений. Способ очистки теплообменников от парафиновых отложений заключается в том, что очистку производят потоком горячей нефти с выносом нагретого и разжиженного парафина потоком нефти, при этом к теплообменникам подключают линию реверсивной подачи нефти через теплообменники и при увеличении перепада давления между давлением нефти на входе в теплообменники и на их выходе до величины, составляющей от 0,9 до 0,95 от предельно допустимой для данных теплообменников в последние переключают подачу нефти с входа в теплообменники на выход из теплообменников с формированием таким образом реверсивного режима течения нефти, который осуществляют до достижения заданного перепада давления на каждом из теплообменников пункта подготовки нефти, после чего осуществляют переключение подачи нефти на вход теплообменников.
Изобретение относится к области теплоэнергетики и может быть использовано для очистки внутренней поверхности котельных труб тепловых электростанций от отложений и для последующей пассивации этой поверхности.
Группа изобретений относится к области теплоэнергетики и может быть использована для эксплуатационной очистки от отложений внутренних поверхностей котельных труб энергетических котлов: барабанных котлов и котлов-утилизаторов парогазовых установок с последующей пассивацией этих поверхностей.
Изобретение относится к очистке наружной поверхности из алюминия и алюминиевых сплавов аппаратов воздушного охлаждения (далее - АВО). Способ включает обработку поверхности моющим средством и промывку водой, при этом очистку осуществляют в три этапа, на первом и третьем этапах осуществляют струйную промывку поверхности нагретой водой или смесью воды с водяным паром при давлении струи 20-150 бар, а на втором этапе осуществляют струйную обработку поверхности 0,25-1,5% водным раствором кислотного моющего средства, нагретым до температуры 20-60°C с давлением струи 20-150 бар с выдержкой в течение 10-30 минут.

Устройство для проверки герметичности, промывки и определения теплоотдачи автомобильных радиаторов относится к моечному оборудованию и может быть использовано для очистки радиаторов систем охлаждения двигателей внутреннего сгорания.
Изобретение относится к проблеме удаления продуктов коррозии и солевых отложений в трубопроводах и теплообменной аппаратуре ЖКХ с использованием водооборотных систем и может быть использовано в нефтехимической, химической, металлургической промышленности, а также на предприятиях промышленной энергетики.
Изобретение относится к энергетике, в частности к способам очистки теплообменных аппаратов, паровых и водогрейных котлов, парогенераторов от отложений и их последующей пассивации, и может быть использовано в энергетической, машиностроительной и других областях народного хозяйства.
Настоящее изобретение относится к кислотному очищающему средству для очистки поверхностей от минеральных отложений, включающему нитрат мочевины, отличающемуся тем, что содержит ингибиторы коррозии, такие как алкиларилсульфонаты, алкилсульфонаты, алкилсульфаты, алкилфосфаты, алкилфосфонаты, алкилсукцинаты натрия, или соответствующие им кислоты с алкильной группой C6-C14, при следующем соотношении компонентов (мас.%): азотная кислота в перерасчете на 100%-ную - не менее 45%, ингибиторы коррозии - 0,2-5%, вода - 10-15%, мочевина - остальное до 100%.
Изобретение относится к химическим средствам удаления ржавчины, накипи и минеральных отложений с металлических поверхностей и может быть использовано для очистки поверхностей теплообменных аппаратов, нагревательных элементов, трубопроводов, котлов, бойлеров, отопительных систем, а также различных деталей и механизмов.

Изобретение относится к химической обработке металлов и может быть использовано при химической обработке металлических изделий для удаления оксидов и гидроксидов железа различного происхождения, а также для подготовки поверхности изделий к последующим технологическим операциям нанесения лакокрасочных покрытий.
Изобретение относится к химических средствам, используемым для очистки изделий из металлов, пластмасс и других материалов от накипно-коррозионных отложений НКО, например, при очистке энергетического и технологического оборудования водоснабжения - котлов, теплообменников, водонагревателей, холодильников, водоводов, турбин, насосов всех типов и т.д.

Изобретение относится к химическим средствам, используемым для очистки изделий из металлов, пластмасс и различных типов подложек с покрытием от накипи и отложений продуктов коррозии, например при очистке энергетического оборудования (паровых котлов, турбин, водонагревателей и т.д.).

Изобретение относится к обработке поверхности черных и цветных металлов, для очистки от оксидов, солей и жировых загрязнений и может быть использовано в промышленности для подготовки поверхности металлов под окраску, нанесение гальванопокрытий, последующую консервацию, а также в бытовой химии.

Изобретение относится к химическим средствам, используемым для очистки различных поверхностей изделий из черных и цветных металлов, пластмасс, различных поверхностей с покрытиями от отложений накипи, продуктов коррозии, например, при очистке энергетического оборудования (паровых котлов, турбин, водонагревателей и др.

Изобретение относится к подготовке поверхности металлов к гальваническому покрытию, в частности к химическому удалению окалины с поверхности цветных металлов и их сплавов без отрицательного воздействия на окружающую среду, и может быть использовано в областях, где необходимы высококачественные поверхности.

Изобретение относится к химической обработке стальной поверхности, в частности к средствам для одновременного обезжиривания и травления изделий из черных металлов в поточных автоматических линиях, и может быть использовано при подготовке поверхности металлов перед нанесением на них металлических и других защитных покрытий в машиностроительной, металлургической и других отраслях промышленности.

Изобретение относится к области химической очистки металлической поверхности от продуктов коррозии и может быть использовано в машино- и приборостроении и других отраслях промышленности.

Изобретение относится к энергетике, в частности к способам очистки теплообменных аппаратов, паровых и водогрейных котлов, парогенераторов от отложений и их последующей пассивации, и может быть использовано в энергетической, машиностроительной и других областях народного хозяйства. Техническим результатом, достигаемым использованием изобретения, является повышение эффективности очистки и пассивации внутренних поверхностей теплообменных труб за счет проведения процесса в три стадии при последовательном дозировании в поток пара реагента - муравьиной кислоты, разлагающейся при температурах от 200 до 650°C с выделением оксида углерода, в следующей очередности: муравьиная кислота, водород и кислород. Технический результат достигается тем, что в способе парохимической очистки и пассивации поверхностей металлических труб, характеризующемся их продувкой водяным паром с окислителем и активаторами процесса очистки, в поток водяного пара в процессе их продувки поочередно вводят вначале реагент, выделяющий оксид углерода - водный раствор муравьиной кислоты, затем водород и в завершение процесса вводят кислород.
Наверх