Корпус жидкостных каналов двигателя внутреннего сгорания

Изобретение относится к двигателестроению, в частности к корпусам водяных насосов систем жидкостного охлаждения двигателей внутреннего сгорания. Корпус жидкостных каналов двигателя внутреннего сгорания представляет собой цельнолитое изделие, состоящее из термостатной коробки (1), улитки (8), для расположения центробежного насоса, входной полости (4) для подвода охлаждающей жидкости к рабочему колесу центробежного насоса, канала (3) для подвода охлаждающей жидкости непосредственно из термостатной коробки (1) во входную полость (4) и канала (2) для подвода охлаждающей жидкости из термостатной коробки (1) через радиатор (на фигуре не показан) во входную полость (4) с противоположной стороны. В корпусе термостатной коробки (1) имеются отверстия (5) и (6) для подвода охлаждающей жидкости от блока двигателя внутреннего сгорания и канал (7) для подвода нагретой жидкости от маслоохладителя, так же имеются отверстия (12), (13) для выхода охлаждающей жидкости. В улитке (8), где располагается рабочее колесо центробежного насоса, имеются три спиральных отводящих канала, два из которых (10) и (11) для соединения с блоком двигателя внутреннего сгорания, а канал 9 для соединения с маслоохладителем. Каналы (2) и (3), подводящие охлаждающую жидкость во входную полость (4) рабочего колеса центробежного насоса с противоположных сторон, обеспечивают равномерное поле скоростей перед рабочим колесом центробежного насоса с минимальными потерями. Каналы (9), (10), (11) расположены в одной плоскости и под одинаковым углом между собой и имеют равные выходные сечения. Изобретение обеспечивает равномерное распределение потоков охлаждающей жидкости в блоке двигателя внутреннего сгорания и оптимальный температурный режим в рубашке охлаждения. 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к двигателестроению, в частности к корпусам водяных насосов систем жидкостного охлаждения двигателей внутреннего сгорания, предназначенным для стабильного поддержания нормального состояния двигателя, для равномерного охлаждения двигателя, для повышения гидродинамических характеристик корпуса водяных каналов, для улучшения экономичности и надежности насоса.

Известен насос системы жидкостного охлаждения двигателя внутреннего сгорания с корпусом, крышкой насоса, валом, термостатной коробкой, подводящими и отводящими каналами. Изобретение имеет простую и компактную конструкцию (Патент Россия №2083853, МПК F01P 5/10, опубликовано 10.07.1997). Однако данная конструкция корпуса насоса не пригодна для больших расходов охлаждающей жидкости и, соответственно, не пригодна для эксплуатации в автомобилях с большой мощностью. Термостатная коробка размещена в крышке насоса, что приводит к усложнению процесса сборки и разборки. Жидкостный насос имеет только один канал на выходе, а значит, не обеспечивается равномерное распределение расходов и давлений на входе в рубашку охлаждения двигателя внутреннего сгорания и маслоохладителя.

Известен корпус водяных каналов с центробежным насосом и термостатной коробкой, наиболее близкий к заявленной полезной модели и принятый за прототип (Руководство по эксплуатации двигателей КамАЗ экологических классов Евро-2 и Евро-3. Двигатели КамАЗ 740.35-400, 740.37-400, 740.38-360, 740.60-360, 740.61-320, 740.62-280, 740.63-400, 740.65-240. Система охлаждения двигателя http://www.remkarti.ru/red60-4), который представляет собой цельнолитое металлическое изделие, прямоугольной формы, в противоположных углах которого по диагонали расположены термостатная коробка и водяной насос. В термостатную коробку жидкость поступает по каналу, в котором имеются отверстия для подвода нагретой жидкости из блока двигателя внутреннего сгорания. В термостатной коробке жидкость может направляться в центробежный насос двумя путями. Если жидкость не нагрелась до определенной высокой температуры, то она отправляется в малый круг системы охлаждения, напрямую по каналу в центробежный насос. При достижении заданной температуры, жидкость отправляется в большой круг системы охлаждения, охлаждается в радиаторе и поступает в центробежный насос через другой канал. Насос имеет спиральный отвод, подающий жидкость в канал. В канале имеется три отверстия для распределения потока жидкости в блок двигателя внутреннего сгорания и маслоохладителя. Однако известный корпус водяных каналов не обеспечивает равномерное поступление жидкости в каналы рубашки охлаждения двигателя внутреннего сгорания. Большое количество сужений и расширений в каналах, резкие повороты и лишние карманы создают большие потери давления и серьезно возмущают поток. В корпусе центробежного насоса наблюдаются сильные вибрации, шумы и биение. При таком расположении центробежного насоса корпус водяных каналов получается достаточно громоздким. Отверстия входов и выходов имеют разные диаметры, что негативно сказывается на общих гидравлических потерях.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в повышении надежности и экономичности двигателя внутреннего сгорания, за счет ликвидации вибраций, шума, биения, уменьшения гидравлических потерь, обеспечения равномерности давлений, расходов и скоростей, и направлено на уменьшение габаритных размеров и массы.

Технический результат достигается тем, что в корпусе жидкостных каналов двигателя внутреннего сгорания, выполненном в виде цельнолитого изделия, состоящего из термостатной коробки, улитки с входной полостью для расположения рабочего колеса центробежного насоса, сообщенных каналом для подвода охлаждающей жидкости непосредственно из термостатной коробки во входную полость рабочего колеса центробежного насоса, и имеющего канал для подвода охлаждающей жидкости из термостатной коробки во входную полость рабочего колеса центробежного насоса с противоположной стороны, новым является то, что в термостатной коробке имеются отверстия для подвода охлаждающей жидкости от блока двигателя внутреннего сгорания и маслоохладителя, а улитка для расположения центробежного насоса имеет три спиральных отводящих канала, два из которых для соединения с блоком двигателя внутреннего сгорания и один для соединения с маслоохладителем.

Спиральные отводящие каналы расположены в одной плоскости и под одинаковым углом между собой и имеют равные выходные сечения.

На фигуре 1 представлен общий вид сзади корпуса жидкостных каналов двигателя внутреннего сгорания.

На фигуре 2 представлен общий вид спереди корпуса жидкостных каналов двигателя внутреннего сгорания.

На фигуре 3 представлено характерное сечение корпуса центробежного насоса с тремя спиральными отводящими каналами, причем каналы отводов обрезаны до места постоянства их сходства.

Здесь: 1 - корпус термостатной коробки; 2 - канал для подвода охлаждающей жидкости из термостатной коробки 1 во входную полость рабочего колеса центробежного насоса с противоположной стороны; 3 - канал внутри цельнолитого корпуса для подвода охлаждающей жидкости непосредственно из термостатной коробки 1 во входную полость рабочего колеса центробежного насоса; 4 - входная полость для подвода охлаждающей жидкости к рабочему колесу центробежного насоса; 5, 6 - отверстия для подвода нагретой жидкости из блока двигателя внутреннего сгорания в термостатную коробку 1; 7 - отверстие для подвода нагретой жидкости из маслоохладителя в термостатную коробку 1; 8 - улитка для расположения рабочего колеса центробежного насоса; 9 - спиральный отводящий канал для подачи охлажденной жидкости в маслоохладитель; 10, 11 - спиральные отводящие каналы для подачи охлажденной жидкости в блок двигателя внутреннего сгорания по полублокам; 12, 13 - отверстия для выхода нагретой жидкости из термостатной коробки 1.

Корпус жидкостных каналов двигателя внутреннего сгорания представляет собой цельнолитое изделие и включает термостатную коробку 1, улитку 8 для размещения центробежного насоса с входной полостью 4 для подвода охлаждающей жидкости к рабочему колесу центробежного насоса, канал 3, подводящий охлаждающую жидкость непосредственно из термостатной коробки 1 во входную полость 4 и канал 2 для подвода охлаждающей жидкости из термостатной коробки 1 через радиатор (на фигуре не показан) во входную полость 4 с противоположной стороны. В термостатной коробке 1 имеются отверстия 5 и 6 для подвода охлаждающей жидкости от блока двигателя внутреннего сгорания и канал 7 для подвода охлаждающей жидкости от маслоохладителя, так же имеются отверстия 12, 13 для выхода нагретой жидкости. В улитке 8, где располагается рабочее колесо центробежного насоса, имеются, по меньшей мере, три спиральных отводящих канала, два из которых 10 и 11 для соединения с блоком двигателя внутреннего сгорания, а канал 9 для соединения с маслоохладителем. Два канала 2 и 3, подводящих охлаждающую жидкость во входную полость рабочего колеса центробежного насоса с противоположных сторон, обеспечивают равномерное поле скоростей перед рабочим колесом центробежного насоса с минимальными потерями. Входная полость 4 для подвода охлаждающей жидкости к рабочему колесу центробежного насоса образована с одной стороны подводящими каналами 2, 3, с другой стороны спиральными отводящими каналами 9, 10, 11. Эта полость имеет отверстие со стороны отводящих каналов, позволяющее монтировать в корпус рабочее колесо. Каналы 9, 10, 11 расположены в одной плоскости и под одинаковым углом между собой и имеют равные выходные сечения, что обеспечивает равномерное распределение потоков охлаждающей жидкости в блоке двигателя внутреннего сгорания и оптимальный температурный режим в рубашке охлаждения.

Система жидкостных каналов работает следующим образом.

Охлаждающая жидкость из блока двигателя внутреннего сгорания через отверстия 5, 6 поступает в термостатную коробку 1, а из маслоохладителя - через отверстие 7. В термостатной коробке 1 жидкость при температуре до 80°С направляется только в подводящий канал 3, при температуре от 80 до 90-95 жидкость поступает в канал 3 и через отверстия 12 и 13 подается в радиатор (на фигурах не указан), а далее в подводящий канал 2. При температуре 90-95°С охлаждающая жидкость поступает только в радиатор (на фигурах не указан) через отверстия 12 и 13, откуда, охладившись, подается в подводящий канал 2. Поток жидкости через подводящие каналы 2 и 3 поступает во входную полость 4 рабочего колеса центробежного насоса. Под действием центробежных сил в рабочем колесе центробежного насоса жидкость собирается в улитку 8 с тремя спиральными отводящими каналами 9, 10 и 11. Характерное сечение улитки 8 со спиральными отводящими каналами представлено на фиг. 3. Спиральные отводящие каналы 10 и 11 подводят охлажденную жидкость в блок двигателя внутреннего сгорания, а спиральный отводящий канал 9 - в маслоохладитель. Результаты проведенного численного моделирования подтвердили равномерность распределения давлений, расходов и скоростей на выходе из спиральных отводящих каналов корпуса жидкостных каналов двигателя внутреннего сгорания.

Таким образом, на основании численных исследований гидравлические потери снизились на 25-30% по сравнению с прототипом. Обеспечивается независимое перекачивание жидкости через охлаждаемые узлы двигателя внутреннего сгорания. Два подводящих канала в центробежный насос обеспечивают равномерное поле скоростей перед рабочим колесом и подводят поток на входе в рабочее колесо с минимальными потерями, при этом рабочее колесо центробежного насоса не испытывает неравномерных усилий, что увеличивает срок службы устройства. Обеспечивается равномерное распределение потоков охлаждающей жидкости в блоке по полублокам двигателя внутреннего сгорания, что обеспечивает поддержание оптимального температурного режима в рубашке охлаждения.

1. Корпус жидкостных каналов двигателя внутреннего сгорания, выполненный в виде цельнолитого изделия, состоящий из термостатной коробки, улитки с входной полостью для расположения рабочего колеса центробежного насоса, сообщенных каналом для подвода охлаждающей жидкости непосредственно из термостатной коробки во входную полость рабочего колеса центробежного насоса, и имеющий канал для подвода охлаждающей жидкости из термостатной коробки во входную полость рабочего колеса центробежного насоса с противоположной стороны, отличающийся тем, что в термостатной коробке имеются отверстия для подвода охлаждающей жидкости от блока двигателя внутреннего сгорания и маслоохладителя, а улитка для расположения центробежного насоса имеет три спиральных отводящих канала, два из которых для соединения с блоком двигателя внутреннего сгорания и один для соединения с маслоохладителем.

2. Корпус жидкостных каналов по п. 1, отличающийся тем, что спиральные отводящие каналы расположены в одной плоскости и под одинаковым углом между собой.

3. Корпус жидкостных каналов по п. 1, отличающийся тем, что спиральные отводящие каналы имеют равные выходные сечения.



 

Похожие патенты:

Закрывающий нижний колпак 1 для электрического насоса 100, в частности центробежного циркуляционного насоса для принудительной циркуляции в котле, имеющий интегрированную систему удаления внутреннего конденсата, чрезвычайно простой в изготовлении и сборке и содержащий: крышку 2 двигателя, которая имеет чашеобразную форму, имеет соединительное отверстие 21 и приспособлена для ее присоединения к концу коробчатого корпуса электрического насоса с закрытием этого конца корпуса; и удерживающую крышку 3 для вмещения электрических разъемов, которая выполнена с возможностью присоединения в собранном состоянии к соединительному отверстию 21 и содержит фиксирующие средства 30, предназначенные для удержания по меньшей мере одного электрического разъема 300 в заданном положении для присоединения к электрическому насосу 100.

Изобретение относится к коллектору, в частности коллектору спирального типа для размещения кожуха рабочего колеса вентилятора, особенно для коробов вытяжной вентиляции, и позволяет при его использовании быстро соединить коллектор с соответствующей рамой короба вытяжной вентиляции при сборке коллектора.

Изобретение относится к спиральному патрубку, который предназначен образовывать кожух крыльчатки вентилятора и обеспечивает при его использовании возможность легко и быстро соединять и разъединять патрубок и конструкцию короба, на которой он крепится, и получить доступ к агрегату двигателя/крыльчатки легче и быстрее, с упрощением работ по монтажу/демонтажу.

Изобретение относится к компрессоростроению, а именно к конструкциям корпусов центробежных компрессоров, работающих при высоких давлениях и больших расходах перекачиваемого газа.

Изобретение относится к вентиляторостроению, а точнее, к способам и устройствам для улучшения защиты и термической стойкости корпуса вентилятора в газотурбинном реактивном двигателе.

Изобретение относится к конструкциям входных устройств центробежных, шнекоцентробежных и осевых насосов и может быть использовано в специальном насосостроении. .

Изобретение относится к корпусу насоса, имеющего элементы крепления насоса на установочной поверхности. .

Изобретение относится к способу охлаждения электронных систем в механических устройствах, особенно в коробках передач. Способ основан на охлаждении электронного блока (20), помещенного в аппаратной камере (11), находящейся внутри корпуса коробки (1), посредством протекающей через водяную рубашку охлаждения охлаждающей жидкости.

Изобретение относится к космической технике, а именно к снаряжению космонавта для выхода в космос. .

Изобретение относится к области транспортных средств, в частности к системам охлаждения двигателей внутреннего сгорания с жидкостным охлаждением. .

Изобретение относится к области транспортных средств, в частности к системам охлаждения двигателей внутреннего сгорания с жидкостным охлаждением. .

Изобретение относится к системам дополнительного нагрева для транспортного средства, в частности для автомобиля с дизельным двигателем. .

Изобретение относится к области транспортных средств, в частности к охлаждающим устройствам двигателей внутреннего сгорания тепловозов и других транспортных машин.

Изобретение относится к двигателестроению и касается водяного насоса, работающего в составе систем жидкостного охлаждения двигателей внутреннего сгорания, преимущественно автомобильных.

Изобретение относится к насосам, перекачивающим охлаждающие жидкости при низких температурах в автомобилях. .

Изобретение относится к корпусам насосов, обеспечивающих тепловой обмен ДВС. .

Компрессор газотурбинного двигателя содержит первый картер (28а), образующий держатель инжекторов, второй картер (28b), расположенный вокруг первого картера, образуя вместе с ним кольцевое пространство (40); и множество воздушных инжекторов (38, 38'), установленных, каждый, в гнездах. Каждый воздушный инжектор содержит, по меньшей мере, один внутренний канал (48) нагнетания воздуха, выходящий, с одной стороны, в газовоздушный тракт (26) и, с другой стороны, в кольцевое пространство, образованное между картерами. Инжектор содержит на входном конце входной бортик (52), внутренняя сторона (52a) которого опирается в радиальном направлении на входной бортик (44) соответствующего гнезда первого картера и наружная сторона (52b) которого опирается в радиальном направлении на внутреннюю сторону второго картера. Средства зажатия входного бортика воздушных инжекторов между картерами обеспечивают удержание воздушных инжекторов в гнездах первого картера. Достигается возможность удержания всех воздушных инжекторов в их соответствующих гнездах за счет простого механического зажатия инжекторов между двумя картерами. Отсутствие плотных посадок в соединении дает возможность заменять воздушные инжекторы без риска повреждения картеров, что упрощает техническое обслуживание. 2 н. и 5 з.п. ф-лы, 5 ил.
Наверх