Устройство для измерения переходного сопротивления, износостойкости и антифрикционных свойств гальванических покрытий



Устройство для измерения переходного сопротивления, износостойкости и антифрикционных свойств гальванических покрытий
Устройство для измерения переходного сопротивления, износостойкости и антифрикционных свойств гальванических покрытий
Устройство для измерения переходного сопротивления, износостойкости и антифрикционных свойств гальванических покрытий

 


Владельцы патента RU 2558711:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет") (RU)

Устройство для измерения переходного сопротивления, износостойкости и антифрикционных свойств гальванических покрытий, выполненное в одном блоке с комплектом сменных принадлежностей, позволяет проводить исследования вышеперечисленных свойств в соответствии с требованиями ГОСТ 9.302-88. Техническим результатом реализации предлагаемого устройства является возможность на одном приборе проводить исследования переходного электросопротивления, износостойкости и антифрикционных свойств гальванических покрытий. Устройство для исследования свойств гальванических покрытий состоит из основания, на котором закрепляется коромысло с противовесом и индентором, двигатель и граммометр. При этом на валу двигателя закреплен шкив с кривошипом, вставленный в направляющую планку, прикрепленную к нижней поверхности горизонтальной платформы, расположенной в направляющих стойках. 3 ил.

 

Изобретение относится к устройствам для измерения основных физико-механических свойств гальванических покрытий металлами и сплавами.

Физико-механические и химические свойства гальванических покрытий (коррозионная стойкость, микротвердость, паяемость, переходное электрическое сопротивление, пористость и др.) являются важной характеристикой качества и обуславливают область их применения. Развитие техники требует необходимости разработки гальванических покрытий, обладающих высокой износостойкостью и антифрикционными свойствами.

В [1, 2] приведены методика и кинематические схемы для определения износостойкости и антифрикционных свойств покрытий (фиг. 1). В данных схемах нагрузка (N) прикладывается к индентору (1), который совершает либо возвратно-поступательные (фиг. 1а) по поверхности образца с покрытием (2), либо вращательные движения (фиг. 1б).

Реализация кинематической схемы (фиг.1, а) по определению износостойкости осуществлена на установке, описанной в [3].

На основании закреплены двигатель типа РД-09 (78 об/мин) и платформа с исследуемым образцом, совершающая возвратно-поступательные движения при помощи шкива с эксцентрично закрепленной планкой. На образец с покрытием помещается индентор, имеющий наконечник в виде цилиндра диаметром 1 мм, который прикручивается к стержню. Стержень располагается в сепараторе, который обеспечивает плавное перемещение его в строго вертикальном направлении. На верхнюю часть стержня можно помещать разновесы.

Измеряемым показателем является число двойных возвратно-поступательных движений образца с покрытием, которое затрачивается до обнаружения основы металла и пересчитанное к толщине покрытия равному 1 мкм.

В качестве недостатков данной установки можно перечислить следующие:

1) конструкция установки обеспечивает плавное изменение нагрузки на индентор, начиная с 1 Н;

2) данная установка позволяет исследовать только одно свойство - износостойкость гальванических покрытий.

Для измерения переходного электросопротивления в [4] предлагается приспособление, простое в изготовлении и удовлетворяющее требованиям [1] в части обеспечения силы нажатия на контакт (0,1 до 1,0 Н), в основу которого положен принцип работы весов.

На основании закреплена стойка, в которой на подшипнике установлено коромысло с эталонным контактом (полусфера различного радиуса из свежеполированной латуни или покрытая золотом) и противовесом. Сила нажатия эталонного контакта на образец с покрытием создается с помощью разновесов. Подвод токоведущего и потенциального проводов осуществляется через ось подшипника. Измерение переходного электросопротивления проводят по четырехпроводной схеме, которая позволяет минимизировать погрешности, связанные с собственным электрическим сопротивлением проводов, которое часто сопоставимо со значением переходного электросопротивления некоторых покрытий.

Недостатком данной установки также является то, что он позволяет определять только переходное сопротивление гальванических покрытий металлами и сплавами.

Реализация кинематической схемы (фиг.1, б) по определению антифрикционных свойств осуществлена на установке [5], которая наиболее близка по технической сущности к предлагаемому устройству и выбрана авторами в качестве прототипа.

Антифрикционные свойства металлов и сплавов, как правило, оцениваются по следующим параметрам: прирабатываемость, коэффициент и сила трения [6].

На основании закрепляется двигатель типа РД-09, на валу которого закрепляется шкив. На шкиве размещается образец с покрытием, представляющий собой круг диаметром 40 мм с отверстиями для крепления. На образец помещается индентор, имеющий в качестве наконечника цилиндр диаметром 1 мм, закрепленный на коромысле. Коромысло с прикрепленным индентором уравновешивается с помощью противовеса, а регулировочным винтом по индикатору устанавливается параллельное положение коромысла относительно основания прибора. Данное положение коромысла необходимо для перпендикулярности действия нагрузки, которая обеспечивается разновесами. Индентор с наконечником граммометра соединяется с помощью тонкого металлического поводка. С помощью регулировочных винтов крепления граммометра устанавливается «0». Затем включается двигатель, образец с покрытием совершает вращательные движения, а индентор отклоняется в зависимости от силы трения на определенное расстояние от своего первоначального положения. Сила трения (F) определяется при помощи граммометра. Прирабатываемость покрытия определяется по времени (t) образования ровной гладкой дорожки на покрытии. Коэффициент трения (f) рассчитывается по уравнению f = F N (где N - нагрузка на индентор).

Достоинством приведенной установки является возможность плавного изменения нагрузки от 0 Н. Недостатком - можно исследовать только антифрикционные свойства гальванических покрытий (коэффициент, силу трения и прирабатываемость).

Техническим результатом реализации предлагаемого устройства является возможность на одном приборе проводить исследования таких важных свойств покрытий как:

1) переходное сопротивление;

2) износостойкость;

3) антифрикционные свойства (сила трения, коэффициент трения, время прирабатывания).

Это достигается тем, что в устройстве для исследования свойств гальванических покрытий, состоящем из основания, на котором закрепляется коромысло с противовесом и индентором, двигатель и граммометр, отличающемся тем, что на валу двигателя закреплен шкив с кривошипом, который обеспечивает возвратно-поступательное движение горизонтальной платформы, ограниченное с помощью направляющего устройства, включающего в себя направляющие стойки, прикрепленные к основанию и направляющую планку, прикрепленную к горизонтальной платформе.

На фиг. 2 приведен чертеж предлагаемого устройства, на фиг. 3 приведен местный вид горизонтальной платформы, соединенной с кривошипом. На основании (1) закреплены двигатель типа РД-09 (2) и коромысло (3) с противовесом (4), индентором (5) и осью (6) для разновесов (7). Также на основании закреплены граммометр (8) и направляющие стойки (9) в которых расположена горизонтальная платформа (10), к нижней поверхности которой прикреплена направляющая планка (11) для кривошипа (12), закрепленного на валу двигателя. На верхней поверхности горизонтальной платформы фиксируется с помощью прижимных планок (13) образец с покрытием (14). Для фиксации коромысла и предотвращения случайного соскальзывания индентора с поверхности образца концевик коромысла размещается в контрольной стойке (15). Горизонтальное положение коромысла устанавливается с помощью регулировочного винта (16) и пружины (17). Значение граммометра перед измерением силы трения на «0» устанавливается с помощью специального крепления граммометра (18), которое обеспечивает перемещение последнего и фиксацию с помощью крепежных винтов (19). Для присоединения проводов от омметра на основании закреплены клеммы (20), электрически соединенные с индентором через ось подшипника (21).

Не выявлены решения, имеющие признаки заявляемого способа.

Исследование переходного электросопротивления покрытий осуществляется следующим образом: к коромыслу прикручивается контакт в виде цилиндра с полусферой различного диаметра на конце. С помощью противовеса уравновешиваются плечи коромысла (устанавливается нагрузка на контактную пару 0 Н). Индентор помещается на образец с покрытием, находящийся на горизонтальном столике и закрепленный с помощью планок, при необходимости, вращая регулировочный винт, устанавливают строго горизонтальное положение коромысла, для обеспечения перпендикулярности действия нагрузки. На ось индентора помещается разновес необходимой массы. К образцу с покрытием и индентору подключаются контакты от омметра и производится измерение величины переходного электросопротивления покрытия по четырехпроводной схеме.

Для исследования износостойкости покрытия необходимо контакт для измерения переходного сопротивления заменить на индентор для измерения износостойкости, который имеет в качестве наконечника цилиндр диаметром 1 мм. С помощью противовеса уравновесить коромысло и установить его строго горизонтально. На ось индентора поместить разновес определенной массы. Включить привод двигателя и засечь время, за которое индентор протрет покрытие до основы. Зная частоту вращения и толщину покрытия, рассчитать число возвратно-поступательных движений индентора на 1 мкм покрытия.

Для исследования антифрикционных свойств гальванических покрытий необходимо заменить горизонтальную платформу на шкив-платформу, на которой будет закреплен образец с покрытием. Коромысло с индентором для измерения антифрикционных свойств (цилиндр диаметром 1 мм) уравновешивают с помощью противовеса, выставляют строго горизонтально. Индентор помещается на покрытие, нагружается с помощью разновесов. К индентору от наконечника граммометра прикрепляется тонкий металлический поводок. Устанавливается начальное показание граммометра на «0». Включается привод двигателя и с помощью граммометра измеряется сила трения, а также с помощью секундомера измеряется время прирабатывания. Полученные результаты позволяют рассчитать коэффициент трения.

Литература

1. ГОСТ 9.302-88. Покрытия металлические и неметаллические неорганические. Методы контроля. - М.: Изд-во стандартов, 1988. - С. 65.

2. Кутьков А.А. Износостойкие антифрикционные покрытия. - М.: Машиностроение, 1976. - 152 с.

3. Виноградов С.Н., Шумилина Н.И. Электроосаждение сплава палладий-кадмий из аммиачно-трилонатного электролита // Защита металлов. - 1976. - Т. 12. - №4. - С. 482-484.

4. Перелыгин Ю.П. Усовершенствование методов измерения переходного электросопротивления и толщины гальванических покрытий // Гальванотехника и обработка поверхности. 1993. Т. 2. №4. - С. 65-66.

5. Перелыгин Ю.П., Виноградов С.Н., Киреев С.Ю. Износостойкость и антифрикционные свойства гальванических покрытий. Методы определения // Гальванотехника и обработка поверхности. 2012. №3, с 53-56.

6. Гаркунов Д.Н. Триботехника. - М.: Машиностроение, 1985 - С. 424.

Устройство для исследования свойств гальванических покрытий, состоящее из основания, на котором закреплено коромысло с противовесом и индентором, двигатель и граммометр, отличающееся тем, что на валу двигателя закреплен шкив с кривошипом, вставленный в направляющую планку, прикрепленную к нижней поверхности горизонтальной платформы, расположенной в направляющих стойках.



 

Похожие патенты:

Изобретение относится к области сельского хозяйства и может быть использовано для исследования физико-механических свойств корнеклубнеплодов. Устройство для исследования физико-механических свойств корнеклубнеплодов содержит раму (1) с прикрепленными к ней электродвигателем (2), на валу которого установлен сменный диск (3) с исследуемой поверхностью, и направляющей (4), на которой установлена подвижная тележка (5).

Изобретение относится к области механических испытаний материалов, в частности к определению динамического коэффициента трения при взаимном перемещении образцов.

Изобретение относится к способам для определения коэффициента сцепления на искусственных поверхностях, преимущественно взлетно-посадочных полос аэродромов, а также дорожных покрытий.

Группа изобретений относится к обработке металлов давлением, а именно к оценке силы и коэффициента трения при холодной обработке металлов давлением. Представлен способ оценки параметров трения при холодной обработке металлов давлением, по которому протягивают через валки с заданным обжатием образцов с коническим участком с одного конца, длина которого позволяет обеспечивать прирост степени обжатия при протягивании образцов, визуально определяют место образования задиров на образцах, составляют для всех образцов график зависимости сила деформирования - перемещение, с помощью которого для места образования задиров определяют степень обжатия и напряжение сдвига второго образца и образцов с нанесенными смазочными материалами или покрытиями при их протягивании через жестко закрепленные валки, при этом определяют момент сопротивления вращению валков при их торможении и нормальную силу, действующую на валки со стороны образцов при их деформировании, посредством датчиков силы и устройства торможения валков, а из этих, фиксируемых датчиками силы, величин определяют силу трения по формуле: Tтр.=Pдат.×L/R, где Ттр.

Изобретение относится к области механических испытаний материалов. Для определения статического и динамического коэффициентов внешнего трения используют два образца: базовый и подвижный.

Изобретение относится к устройствам определения физико-механических свойств транспортируемых грузов. Устройство для определения величины коэффициента трения сыпучего груза о грузонесущий орган транспортной машины содержит размещенную на опорной раме съемную пластину из материала грузонесущего органа транспортной машины с размещенной на пластине пробой транспортируемого груза.

Предлагаемое изобретение относится к области испытаний конструкционных материалов на трение и износ в узлах трения щетка-коллектор электродвигателя или электрогенератора, а также в узлах токосъемная вставка-троллей, вставка-токоподводящая шина, башмак-рельс, т.е.

Изобретение относится к измерительной и испытательной технике и предназначено для использования при исследовании сил трения в металлургическом производстве, а именно при прокатке металлов.

Изобретение относится к области измерительной техники, в частности к определению коэффициента трения покоя. Способ определения коэффициента трения покоя поверхностного слоя электропроводящего материала включает установку образца с возможностью поступательного перемещения в горизонтальной плоскости.

Изобретение относится к измерительным приборам. Прибор для определения коэффициента силы трения покоя содержит опорную платформу 1.

Изобретение относится к области метрологии и может быть использовано при определения физико-механических свойств материалов и, в частности, коэффициента гистерезисных потерь материала. По коэффициентам гистерезисных потерь и радиусам пятен контакта шаровых опор маятникового трибометра с испытуемыми образцами рассчитываются коэффициенты трения качения. Способ определения гистерезисных потерь маятниковым трибометром заключается в том, что после обезжиривания поверхностей контактирующих тел сопрягают плоскую рабочую поверхность образцов с шаровыми опорами физического маятника, которому задают начальную амплитуду колебаний и регистрируют амплитуды затухающих колебаний маятника. Причем начальную амплитуду колебаний маятника γ0 выбирают из условия γ0≤0.4a/R, где а - радиус пятна контакта, R - радиус шаровых опор маятника, совмещают центр тяжести маятника с его опорами, по амплитудам колебаний маятника определяют добротность системы Q=πn/ln(γ0/γn), где γn - амплитуда после n полных колебаний, и коэффициент гистерезисных потерь материала образцов C=π/Q. Технический результат - уменьшение погрешности измерений за счет исключения вязкого трения о воздух и адгезионного взаимодействия контактирующих тел. 1 табл., 1 ил.

Изобретение относится к способам измерения и используется для оценки состояния поверхности взлетно-посадочной полосы аэродрома. В способе определения коэффициента сцепления аэродромного покрытия, включающем измерение динамических характеристик колес самолета при его движении по аэродромному покрытию, осуществляют формирование ведущего (переднего) и ведомого (заднего) колес шасси, ведомое (заднее) колесо формируют путем создания постоянного динамического торможения колесу шасси, колесо без динамического торможения считается ведущим, при этом динамическое торможение формируется с помощью тормозной системы колеса шасси, которое может отключаться при разбеге самолета, измеряют частоты вращения ведущего (переднего) и ведомого (заднего) колес шасси, устанавливают зависимость разницы вращения ведущего (переднего) и ведомого (заднего) колес от сцепных качеств аэродромного покрытия, а сцепные качества аэродромного покрытия определяют по установленной зависимости после проезда по нему самолета и измерения частот вращения ведущего (переднего) и ведомого (заднего) колес шасси. Устройство определения коэффициента сцепления аэродромного покрытия содержит переднее (ведущее) 1 и заднее (ведомое) 2 колеса шасси самолета, датчик 3 числа оборотов переднего (ведущего) колеса, датчик 4 числа оборотов заднего (ведомого) колеса, тормозную систему 10 заднего (ведомого) колеса и блок 6 оценки, содержащий первый 7 ключ, вход которого соединен с выходом датчика 3 числа оборотов переднего (ведущего) колеса, а выход - с входом сдвига «вправо» сдвигового регистра 5, второй 8 ключ, вход которого соединен с выходом датчика 4 числа оборотов заднего (ведомого) колеса, а выход - с входом сдвига «влево» сдвигового регистра 5, третий и большие выходы сдвигового регистра 5 соединены со входами элемента 9 ИЛИ, выход которого является выходом блока 6 оценки, управляющие входы первого 7 и второго 8 ключей и вход тормозной системы 10 заднего (ведомого) колеса, соединены с выходом датчика нагрузки. Технический результат - создание способа и устройства позволяющего осуществлять измерение коэффициента сцепления непосредственно на борту самолета при его посадке. 2 н.п. ф-лы, 1 ил.

Использование относится к области механических испытаний материалов, в частности к определению динамического коэффициента трения. Способ определения динамического коэффициента внешнего трения заключатся в том, что используют два образца, верхний из которых помещают на плоской рабочей поверхности нижнего. Образцам обеспечивают возможность совместного наклона относительно горизонтальной плоскости. В исходном положении верхний образец прикрепляют к находящемуся в разгруженном состоянии упругому элементу, обладающему постоянной жесткостью в направлении соскальзывания верхнего образца по наклонной поверхности нижнего. Для определения динамического коэффициента внешнего трения образцы наклоняют до соскальзывания верхнего из них по уклону, измеряют угол наклона φ образцов в момент соскальзывания и путь l. пройденный верхним образцом по рабочей поверхности нижнего относительно исходного положения. Динамический коэффициент внешнего трения рассчитывают по формуле m д и н = t g ϕ − l 2 L ⋅ cos ϕ , где L - определяемая в калибровочном опыте деформация вертикально расположенного упругого элемента при свободном подвешивании к нему верхнего образца. Техническим результатом изобретения является простота определения динамического коэффициента внешнего трения, сводящегося только к экспериментальному установлению геометрических параметров без измерения усилий. 3 ил.

Изобретение относится к экспериментально-теоретическому определению фрикционных характеристик пары трения, а именно установлению в паре трения соотношения между коэффициентами трения покоя и трения скольжения. Способ экспериментально-теоретического определения соотношения между коэффициентами fmpП трения покоя и fmpСK трения скольжения заключается в том, что брус прямоугольного сечения, изготовленный из материала А, устанавливают на две подвижные опоры, изготовленные из материала Б. С помощью блочно-тросовой системы обеспечивают сближение этих опор, предварительно на одной из них искусственно вызывают срыв контакта с брусом и переход в состояние скольжения, в то время как на второй опоре сохраняется неподвижная связь между контактирующими поверхностями, и данная опора совместно с брусом как единая система перемещается относительно первой опоры. При этом сближение опор приводит к изменению величины сил реакции на опорах, а следовательно, и возникающих на них сил трения. Причем на первой опоре сила трения скольжения по мере движения системы растет, в то время как на второй опоре сила трения покоя пропорционально уменьшается. Как только величина обеих сил сравняется, движение бруса относительно первой опоры прекращается. В этот момент систему останавливают и фиксируют величину перемещения бруса относительно данной опоры. Затем вычисляют величину реакции на опорах и определяют искомое соотношение между коэффициентами трения покоя и трения скольжения. Техническим результатом является установление соотношения С коэффициентов трения фрикционной пары, состоящей из материалов А и Б, в процессе одного эксперимента. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к области механических испытаний материалов, в частности к определению динамического коэффициента трения при взаимном перемещении образцов. В способе для определения динамического коэффициента внешнего трения используются два образца. Нижний образец выполняют с выпуклой сферической поверхностью и приводят во вращение вокруг вертикально расположенной оси этой поверхности. Верхний образец выполняют тонкостенным, в виде правильной геометрической фигуры, с рабочей поверхностью вогнутой формы, чтобы обеспечить контакт с нижним образцом по всему периметру верхнего. Верхний образец при помощи шарнирной связи, имеющей возможность поворота в любом угловом направлении, соединяют с опорой, имеющей возможность перемещения в любом направлении. Для определения динамического коэффициента внешнего трения изменением координат опоры или длины шарнирной связи приводят верхний образец в положение, при котором линия, проходящая через центр сферической поверхности и центр площадки контакта верхнего образца с нижним, перпендикулярна шарнирной связи. Затем выявляют плоскость, касательную к сферической поверхности в центре контакта верхнего образца с нижним, определяют линию наибольшего ската в этой плоскости, находят угол ее откоса φ относительно горизонта, определяют угол β между линией наибольшего ската и направлением шарнирной связи, после чего динамический коэффициент внешнего трения определяют по формуле m д и н = t g ϕ c t g β . Технический результат − возможность определения динамического коэффициента внешнего трения на деталях со сферическими поверхностями в ответственных узлах длительного пользования, простота реализации и возможность ограничиться определением только геометрических параметров. 2 ил.

Группа изобретений относится к области оперативного контроля коэффициента сцепления колеса с дорожным покрытием. Способ определения коэффициента сцепления колеса с дорожным покрытием заключается в определении величины силового вращающего момента, приложенного к ступице или к диску тестируемого колеса. После чего дважды меняют вертикальную силовую нагрузку, действующую на тестируемое колесо, за счет поддомкрачивания автомобиля, и вновь определяют вращающий силовой момент. По разности измеренных в экспериментах силовых вращающих моментов для различных случаев поддомкрачивания судят о коэффициенте сцепления колеса с дорогой. Устройство для определения коэффициента сцепления колеса с дорожным покрытием, содержащее систему нагружения колеса вертикальной нагрузкой и крутящим моментом. Устройство содержит станину, домкрат для поддомкрачивания автомобиля, имеющий датчик усилия, воспринимаемый домкратом. Достигается повышение точности определения коэффициента сцепления отдельного колеса с полотном дороги и расширение диапазона использования способа для тестирования колес большого диаметра. 2 н.п. ф-лы, 3 ил.
Изобретение относится к способу предотвращения задиров в парах трения. Перед работой к образцу и контробразцу из материалов пары прикладывают точечную нагрузку Р при использовании смазочной композиции без антифрикционных добавок и определяют силу трения Fтр при возникновении задира, затем в смазочную композицию добавляют антифрикционные добавки и измеряют нагрузку Рд, при которой происходит задир, после чего рассчитывают коэффициент трения по формуле Fтр/Рд, где Fтр - сила трения при задире с использованием смазочной композиции без добавок, и пару трения перед работой смазывают композициями при значениях этого коэффициента не более 0,05. Технический результат - снижение трудозатрат и сокращение времени выбора составов смазочных композиций с антифрикционными добавками более чем в 10 раз.

Изобретение относится к испытательной технике для трибологических исследований. Прибор для одновременной оценки оптических и трибологических характеристик смазочного материала позволяет измерить их при заданных значениях скорости сдвига и толщины смазочного слоя. Пару трения образуют два стеклянных плоскопараллельных оптических окна круглой формы, образующие зазор между их плоскими поверхностями. Нижнее окно закреплено неподвижно, верхнее - приводится во вращение электроприводом, обеспечивающим бесступенчатое регулирование угловой скорости пары трения. Рабочий зазор, толщина которого устанавливается микрометрическим устройством для регулирования зазора между плоскопараллельными оптическими окнами, заполняется исследуемым смазочным материалом. Момент силы сдвига, возникающей при трении, регистрируют измерительной схемой, совмещенной с электроприводом вращения. Оптический сигнал, отражающий надмолекулярную самоорганизацию смазочного материала, получают с помощью лазера, луч которого в процессе трения проходит через поперечное сечение смазочного слоя и дополнительный поляризатор. При возникновении в смазочном слое (при наличии мезогенных присадок и определенного режима трения) явлений надмолекулярного упорядочивания смазочного материала происходит изменение интенсивности оптического сигнала лазерной системы. Технический результат - обеспечение количественной оценки внутренней структуры смазочного слоя. 2 ил.

Изобретение относится к области трибологии и триботехники и может использоваться для качественной оценки фрикционного взаимодействия при изучении трибологических свойств свитых изделий типа стальных канатов, тросов и других подобных изделий. В частности, способ полезен при выборе смазочных материалов, используемых для обработки («пропитки») стальных канатов. Задачей изобретения является повышение точности и достоверности экспериментального анализа фрикционного взаимодействия элементов свитых изделий. Способ оценки фрикционного взаимодействия элементов свитых изделий, заключающийся в том, что одним концом изделие закрепляют неподвижно, а со стороны свободного конца воздействуют осевым усилием, которое прикладывают одновременно ко всем элементам изделия, последовательно испытывают эталонное и контролируемое изделия равной между собой и превышающей шаг свивки длины, при этом прикладывают дополнительное силовое воздействие в виде крутящего момента и поворачивают изделия вокруг вертикальной оси в направлении свивки на одинаковый угол, обеспечивающий режим трения скольжения между элементами, после чего снимают воздействие, фиксируют свободные возвратно-крутильные колебания, определяют логарифмические декременты затухания в обоих случаях, по соотношению которых оценивают фрикционное взаимодействие между элементами сравниваемых свитых изделий. Технический результат заключается в качественной оценке фрикционного взаимодействия элементов свитых изделий, при обеспечении высокой точности и достоверности исследования. 1 табл.

Изобретение относится к мясной промышленности, к устройствам для определения коэффициента трения мясного и рыбного сырья. Устройство состоит из диска, закрепленного на вертикальной оси, шкалы, расположенной по радиусу диска. Вращение диска осуществляется от электромотора с преобразователем частоты через ременную передачу. Определение коэффициента трения К выполняется по формуле К=4π2n2R/g, где n - число оборотов диска, R - радиус вращения образца в момент сброса, g - ускорение свободного падения. Техническим результатом является снижение трудоемкости измерений коэффициента трения. 1 ил.
Наверх