Устройство измерения расхода реверсируемого многофазного потока



Устройство измерения расхода реверсируемого многофазного потока

 


Владельцы патента RU 2568146:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет имени Д.И. Менделеева (РХТУ им. Д.И. Менделеева)" (RU)

Изобретение относится к измерениям расхода реверсируемого многофазного потока. Устройство измерения расхода многофазного потока состоит из одновинтовой машины, винт которой является движителем для равномерного подвода дозированного количества механической энергии в реверсируемый многофазный поток и одновременно чувствительным элементом устройства измерения. Режим измерения поддерживается двухконтурной системой автоматического управления, внутренний (исполнительный) контур которой в составе электродвигателя, тахометра и частотного преобразователя изменяет направление и скорость вращения винта для синхронизации с объемным расходом многофазного потока. Внешний (задающий) контур в составе датчика дифференциального давления, датчика осевых усилий винта на опорные подшипники, датчиков температуры, контроллера и блока математического моделирования формирует задание по направлению и скорости вращения винта, синхронизированной с направлением и объемным расходом многофазного потока. Регистратор используют для хранения и выдачи по запросу измеренных параметров и рассчитанных в блоке математического моделирования значений объемного и массового расхода многофазного потока, его плотности и направления движения. Технический результат - измерение параметров, расчет, хранение и выдача по запросу объемного и массового расхода, плотности и направления движения реверсируемого многофазного потока, уменьшение погрешности измерения, увеличение метрологически обоснованного интервала измерения, повышение чувствительности, надежности и достоверности результатов измерения и вычисления, а также расширение интервала применения устройства по составу, в том числе фракционному, и физико-механическим свойствам многофазного потока. 1 ил.

 

Предлагаемое устройство измерения расхода реверсируемого многофазного потока может быть использовано для измерения расхода сырья, полуфабрикатов, продуктов и отходов в виде суспензий, эмульсий и их смесей в различных отраслях промышленности, например: нефтедобывающей (эмульсии и суспензии при добыче высоковязких и истощенных пластов с накачкой паровоздушной смесью), горнодобывающей (пульпы минералов), металлургической (рудные пульпы и шламы), строительных материалов (пульпы и шламы от нефтепереработки и металлургии), химической (эмульсии, пульпы и шламы в обогащении сырья, извлечении и производстве продукта, например катализаторов, сорбентов и т.д.), пищевой (эмульсии и суспензии в производстве полупродуктов и сухих концентратов), сельскохозяйственной (эмульсии и суспензии в производстве комбикормов, органических удобрений, макрокапсулированных семян и т.д.), деревоперерабатывающей (эмульсии и суспензии в производстве древопластов), машиностроении (композиционные материалы) и других отраслях.

Известны устройства измерения расхода потоков, в том числе многофазных с использованием измерения динамических характеристик потока, характеризуемые уменьшением энергии потока на долю энергии, затраченной чувствительным элементом для генерирования первичного сигнала о величине расхода, и доля эта зависит от типа расходомера (см. Кремлевский П.П. Измерение расхода многофазных потоков. Л.: Машиностроение, 1982. С. 101).

Недостатками известных устройств измерения расхода является или их полная непригодность для измерения расхода многофазного потока, или значительное увеличение погрешности измерения. Неоднородность состава и физико-механических свойств многофазного потока приводит к нерегулярным скачкообразным изменениям в реакции чувствительных элементов расходомеров, несопоставимыми с действительными показателями расхода.

Известны устройства измерения расхода потоков, в том числе многофазных, основанные на различных физических явлениях: тепловых (см., например, патент РФ RU 2186343 от 27.07.2002 / Позднышев Г.Н., Манырин В.Н., Калугин И.В., Сивакова Т.Г.) электромагнитных (см., например, патент РФ RU 2381457 от 10.02.2010 / Вельт И.Д., Михайлова Ю.В., Терехина Н.В.) оптических, ядерно-магнитных, ионизационных и других (см. Кремлевский П.П. Измерение расхода многофазных потоков. Л.: Машиностроение, 1982), зависящих от расхода и возникающих в результате непрерывного или периодического ввода различного вида энергии в транспортируемый многофазный поток.

Недостатками известных устройств являются значительное увеличение погрешности измерения в области малых и больших расходов, скачкообразное и существенное искажение тепловых, электрических, магнитных и других полей в зоне измерения расхода из-за контакта с твердыми и газовыми включениями многофазного потока.

Известны одновинтовые машины, винт которых может быть аналогом чувствительного элемента предлагаемого устройства измерения расхода многофазного потока, например, одновинтовые конвейеры, питатели и дозаторы (авт. св. СССР: SU 128775, SU 195238, SU 222781, SU 555289, SU 964458; Маликов С.П. и др. Весы и дозаторы весовые. М.: Машиностроение, 1981, с.94), патенты РФ: RU 2012527, RU 2046296, RU 2047103, RU 2312807, RU 2340532, RU 2406978.

Недостатком перечисленных устройств является непригодность их для измерения расхода многофазного потока.

Наиболее близким по технической сущности к заявляемому устройству измерения расхода многофазного потока является устройство, выбранное в качестве прототипа RU 2517764 (опубл. 27.05.2014, кл. G01F 1/58, приоритет 17.10.2012), которое включает одновинтовую машину, содержащую корпус с загрузочным и разгрузочным патрубками и расположенный в корпусе вал с винтом, соединенный с приводом. Винт является движителем для равномерного подвода дозированного количества механической энергии в многофазный поток и одновременно служит чувствительным элементом устройства измерения. Режим измерения поддерживается двухконтурной системой автоматического управления, внутренний (исполнительный) контур которой в составе электродвигателя, тахометра и частотного преобразователя изменяет скорость вращения винта для синхронизации с объемным расходом многофазного потока. Внешний (задающий) контур в составе датчика дифференциального давления, датчиков температуры, контроллера и блока математического моделирования формирует задание по скорости вращения винта, синхронизированной с объемным расходом многофазного потока. Регистратор используют для хранения и выдачи по запросу измеренных параметров и рассчитанных в блоке математического моделирования значений объемного и массового расхода многофазного потока и его плотности.

Техническим результатом, на достижение которого направлено предлагаемое устройство, является возможность измерения расхода реверсируемого многофазного потока, расширение интервала применения способа измерения по составу и свойствам многофазного потока, увеличение чувствительности, надежности и достоверности результатов измерения, расширение метрологически обоснованного интервала измерения и уменьшение погрешности измерения в этом интервале, без существенного увеличения погрешности на границах этого интервала.

Для достижения указанного технического результата предлагаемое устройство измерения расхода реверсируемого многофазного потока позволяет изменять направление вращения винта в зависимости от направления потока. Кроме того, для повышения чувствительности, надежности и достоверности измерения, а также определения направления потока внешний задающий контур управления дополняют любым датчиком осевых усилий винта на опорные подшипники, например, на основе тензометрических датчиков.

Отличие предлагаемого устройства измерения расхода от известных аналогов заключается в том, что винтом в поток вводится от независимого источника дозированное количество механической энергии, а первичным сигналом являются направление и скорость вращения винта, как чувствительного элемента, синхронизированная с объемным расходом реверсируемого многофазного потока. При этом однородность механической энергии потока и механической энергии, равномерно подводимой всем фазам потока (газовой, жидкой и твердой) от независимого источника (одновинтовой машины), уменьшает влияние состава, в том числе фракционного и физико-механических свойств многофазного потока на погрешность измерения расхода, как интегральной суммы линейных скоростей отдельных частиц потока. Таким образом, предлагаемое устройство измерения расхода реверсируемого многофазного потока включает одновинтовую машину, винт которой является реверсируемым движителем и одновременно чувствительным элементом устройства измерения, оснащенного двухконтурной системой автоматического управления скоростью вращения винта, которая в совокупности с регистратором образуют автоматическую систему измерения, вычисления и регистрации объемного и массового расхода многофазного потока, его плотности и направления движения.

Одновинтовая машина в качестве движителя и одновременно чувствительного элемента измерительного устройства через силовой привод от независимого источника вносит в поток винтом такое дозированное количество механической энергии, при котором направление и скорость вращения винта синхронизируются с направлением и объемным расходом многофазного потока. Эта синхронная скорость вращения винта является первичным сигналом устройства измерения для вычисления и регистрации объемного и массового расхода транспортируемой среды, ее плотности и направления движения. Определяющим условием дозирования энергии является компенсация потери энергии потока на измерительном участке трубопровода по месту установки одновинтовой машины, поэтому в режиме измерения значение перепада давления на входе и выходе участка измерения пренебрежимо мало в соответствии с калибровочной характеристикой расходомера.

Для повышения чувствительности, надежности и достоверности измерения, а также определения направления потока внешний задающий контур управления дополняют любым датчиком осевых усилий винта на опорные подшипники, например, на основе тензометрических датчиков. В этом случае определяющим условием режима измерения может быть близость к нулю осевых усилий винта на опорные подшипники. Возможна также комбинация обоих условий выхода на режим измерений.

Конструкция предлагаемого устройства измерения расхода многофазного потока и принцип его работы поясняются фиг.1. Устройство измерения расхода реверсируемого многофазного потока включает встроенную в трубопровод с транспортируемой средой одновинтовую машину, состоящую из корпуса 1 загрузочного и разгрузочного патрубков реверсируемых 2, 3, однозаходного винта 4, вращаемого электродвигателем 5 через редуктор 6 с опорой на подшипниковый узел 7.

Число заходов винта, его длина и другие конструктивные, технические и технологические параметры предлагаемого устройства измерения многофазного потока зависят от состава, в том числе фракционного, физико-механических свойств и расхода многофазного потока и выбираются индивидуально.

Измерение расхода реверсируемого многофазного потока обеспечивают следующие элементы двухуровневой системы автоматического управления в составе предлагаемого устройства измерения расхода многофазного потока (фиг. 1): электродвигатель 5, тахометр 8, частотный преобразователь 9, составляющие внутренний контур регулирования скорости вращения винта, задаваемой внешним (задающим) контуром управления направлением и скоростью вращения винта в составе: датчик дифференциального давления 12, датчик осевых усилий винта на опорные подшипники 15, датчики температуры 13, контроллер 10, блок математического моделирования 14. Внутренний контур управления направлением и скоростью вращения винта и внешний (задающий) контур в совокупности с регистратором 11 образуют автоматическую систему измерения, вычисления и регистрации всех измеренных параметров, а также рассчитанных значений расхода и плотности реверсируемого многофазного потока.

Предлагаемое устройство работает следующим образом: при выключенном электродвигателе 5 транспортируемая среда свободно течет по каналам неподвижного винта 4 за счет внешнего источника транспортирования при соответствующем максимальном гидравлическом сопротивлении и соответствующем перепаде давления на винте и, следовательно, с максимальной потерей энергии многофазного потока на участке измерения. При запуске электродвигателя по мере увеличения скорости вращения винта уменьшаются гидравлическое сопротивление, перепад давления и потери энергии многофазного потока на участке измерения. В определенный момент времени при разгоне винта достигается режим измерения, при котором перепад давления на винте и/или осевые усилия винта на опорные подшипники не превышают заданной погрешности с учетом калибровочной характеристики устройства измерения. При этом направление и скорость вращения винта, синхронизированная с направлением и объемным расходом многофазного потока, транспортируемого внешним источником, используется в блоке математического моделирования 14 (фиг. 1) для расчета объемного и массового расхода транспортируемой среды, ее плотности и направления движения. С периодичностью, задаваемой блоком математического моделирования 14, в зависимости от динамических характеристик реверсируемого многофазного потока, измеренные параметры и рассчитанные значения объемного и массового расхода многофазного потока, его плотности и направления движения передаются в регистратор 11 (фиг.1 ) для хранения и выдачи по запросу.

Режим измерения расхода многофазного потока постоянно поддерживается двухконтурной системой автоматического управления с целью непрерывного измерения разности давлений и температур на участке измерения, осевых усилий винта на опорные подшипники, направления и скорости вращения винта, а также вычисления и регистрации объемного и массового расходов многофазного потока его плотности и направления движения.

Расчет искомых параметров многофазного потока выполняется в блоке математического моделирования (14) с использованием выбранной математической модели:

где ρ - средняя плотность многофазного потока, Q - объемный расход многофазного потока, М - массовый расход многофазного потока, Np - скорость вращения винта в режиме измерения, P - вектор параметров многофазного потока, определяющий его физико-механические свойства: компрессионные, реологические, когезионные и адгезионные.

Для расчета может быть использована простейшая линеаризованная форма моделей (1):

где k(Р) - расходный коэффициент, определяющий зависимость объемного расхода от вектора параметров многофазного потока (Р).

Массовый расход и плотность многофазного потока рассчитываются аналогично (1). Выбор математической модели (1) или (2) зависит от состава, в том числе фракционного и физико-механических свойств многофазного потока, требуемой погрешности измерения расхода и технических возможностей блока математического моделирования при реализации модели и других элементов устройства.

Определяющим условием режима измерения является близость к нулю значения перепада давления на входе и выходе участка измерения и/или осевых усилий винта на опорные подшипники с учетом калибровочной характеристики расходомера.

Предлагаемое изобретение предоставляет возможность измерения расхода реверсируемого многофазного потока, уменьшает погрешность измерения, увеличивает метрологически обоснованный интервал измерения расхода транспортируемой среды без существенного увеличения погрешности на границах этого интервала, расширяет интервал применения устройства измерения по составу и физико-механическим свойствам многофазного потока, увеличивает чувствительность надежность и достоверность результатов измерения.

Предлагаемое устройство измерения расхода реверсируемого многофазного потока может быть использовано в различных отраслях промышленности, например: нефте- и горнодобывающей, металлургической, строительных материалов, химической, пищевой, сельскохозяйственной и других.

Устройство измерения расхода многофазного потока, включающее одновинтовую машину, содержащую корпус с загрузочным и разгрузочным патрубками и расположенный в корпусе вал с винтом, соединенный с приводом, винт является движителем для равномерного подвода дозированного количества механической энергии в многофазный поток и одновременно служит чувствительным элементом устройства измерения, причем внутренний контур регулирования скорости вращения винта для синхронизации с объемным расходом транспортируемой среды состоит из двигателя, тахометра и частотного преобразователя, а внешний задающий контур управления в составе датчика дифференциального давления, датчиков температуры, контроллера и блока математического моделирования используют для управления скоростью вращения винта, а также расчета объемного и массового расхода многофазного потока и его плотности, регистратор используют для хранения и выдачи по запросу измеренных и рассчитанных параметров многофазного потока, отличающееся тем, что с целью уменьшения погрешности, повышения чувствительности, надежности и достоверности измерения расхода, а также изменения направления вращения винта в зависимости от направления реверсируемого многофазного потока внешний задающий контур системы автоматического управления устройством дополняют любым датчиком осевых усилий винта на опорные подшипники.



 

Похожие патенты:

Электромагнитный расходомер жидких металлов, имеющий цилиндрическую трубу, выполненную из немагнитного материала, два измерительных электрода, приваренных к внешней поверхности трубы, индуктор, имеющий индукционную катушку и магнитопровод, имеющий две полюсные пластины, соединенные скобой, причем полюсные пластины находятся на одной стороне трубы таким образом, что оси каждой полюсной пластины проходят через центр канала перпендикулярно оси канала и образуют между собой угол, меньший 180°, а измерительные электроды находятся диаметрально противоположно на линии, проходящей через центр канала трубы, индукционная катушка расположена на скобе таким образом, что линия, соединяющая измерительные электроды, является осью симметрии катушки.

Изобретение относится к устройствам для измерения скорости течения среды. Измерительное устройство (1) имеет средства для создания ортогонального к направлению течения (v) среды (5) постоянного магнитного поля (B), а также, по меньшей мере, две области (7, 7') отбора, которые расположены в лежащей ортогонально к направлению течения (v) среды (5) плоскости (E) на стенках (9) измерительной трубы (3), при этом каждая область (7, 7') отбора имеет электрод (13, 13'), который на обращенной к среде (5) стороне имеет неметаллический пористый слой (11), и измерительный прибор (19) для регистрации сигнала измерения.

Изобретение относится к области приборостроения, в частности к тепло- и расходометрии, и позволяет измерять расходы электропроводной жидкости и теплоносителя в напорных трубопроводах.

Изобретение относится к приборостроению, в частности к электромагнитным устройствам для измерения расхода (расходомерам) электропроводящих сред. Способ контроля измерений расхода текучих сред заключается в том, что дополнительно к измерению величины расхода жидкости при преобразовании в микроконтроллере измеренной измерительным АЦП напряжения, пропорционального скорости измеряемой среды в измерительном канале, измеряют напряжения, пропорциональные току через индуктор, и напряжению на индукторе и определяют величину отклонения текущих значений активного и индуктивного сопротивлений, определенных в микроконтроллере программно-аппаратным образом по указанным значениям напряжений на индукторе от предустановленных в памяти их эталонных значений.

Изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью электромагнитного способа, т.е. способа, основанного на взаимодействии движущейся жидкости с магнитным полем.

Изобретение относится к области приборостроения, а именно к технике измерения расхода жидкого металла с помощью безэлектродных электромагнитных расходомеров. Безэлектродный электромагнитный расходомер, состоит из трубы, трех индукционных катушек и магнитопровода.

Электромагнитный способ измерения расхода электропроводной жидкости, протекающей в магнитном поле через немагнитную трубу, в которой установлены два электрода, магнитное поле создается с помощью электромагнита, имеющего индукционную катушку, через которую пропускается электрический ток, причем расход жидкости определяется в результате измерения тока, протекающего через индукционную катушку, и разности потенциалов между электродами, отличающийся тем, что дополнительно измеряют напряжение на клеммах индукционной катушки, а величину расхода вычисляют по формуле Q = k U I [ 1 − λ ρ k ( U k I − R k ) ] где Q - расход измеряемой среды, k - градуировочный коэффициент, U - разность потенциалов между электродами, I - ток, протекающий через индукционную катушку, Uk - напряжение на клеммах индукционной катушки, Rk - электрическое сопротивление индукционной катушки при градуировочной температуре измеряемой среды, λ - температурная погрешность расходомера [1/°С], ρk - изменение электрического сопротивления индукционной катушки при изменении температуры измеряемой среды на градус Цельсия.

Способ измерения расхода многофазного потока основан на том, что в поток транспортируемой среды движителем вносят дозированное количество механической энергии, компенсирующее потери энергии потока на участке измерения, при этом поступательная, вращательная или любая другая скорость движителя, синхронизированная с объемным расходом транспортируемой среды, является первичным сигналом при измерении расхода.

Предлагаемое изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью способа, основанного на взаимодействии движущейся жидкости с магнитным полем.

Изобретение относится к области приборостроения, в частности к тепло- и расходометрии, и позволяет измерять расходы электропроводной жидкости и теплоносителя в напорных трубопроводах.

Изобретение относится к технике измерения уровня потока жидкости, протекающего по открытому каналу. Техническим результатом является повышение надежности измерения уровня. Устройство состоит из первичного преобразователя, имеющего участок канала, по которому протекает поток жидкости, и измерительного блока, имеющего источник переменного напряжения низкой частоты, причем первичный преобразователь имеет кран, выполненный из электропроводного материала и подключенный к водопроводной сети, и два электрода, из которых один расположен по линии траектории струи, приблизительно на ее середине, а другой расположен в потоке на дне канала, причем кран и электрод, расположенный на дне канала, подключены к источнику переменного напряжения низкой частоты, а электрод, расположенный приблизительно на середине струи, и электрод, расположенный на дне канала, подключены ко входу измерительного блока, и отличается тем, что первичный преобразователь имеет лоток, выполненный из неэлектропроводного материала и расположенный между краном и электродом, находящимся на дне канала, под углом α<π/2 к поверхности раздела сред «воздух - жидкость», а электрод, расположенный по линии траектории струи приблизительно на ее середине, закреплен в полости лотка. 1 ил.

Изобретение относится к способу изготовления магнитно-индуктивного расходомера, содержащего по меньшей мере одну измерительную трубу для протекания электрически проводящей среды, по меньшей мере одно устройство для создания магнитного поля, проходящего, по меньшей мере, также перпендикулярно продольной оси измерительной трубы, и по меньшей мере два измерительных электрода. Измерительная труба (2) имеет металлическую основную часть, которая, по меньшей мере на внутренней стороне измерительной трубы, снабжена термопластичным покровным слоем, а виртуальная соединительная линия между двумя измерительными электродами проходит, по меньшей мере по существу, перпендикулярно направлению пронизывающего измерительную трубу перпендикулярно продольной оси измерительной трубы магнитного поля. Существенным отличием способа изготовления расходомера является то, что сначала в основной части (7) измерительной трубы (2) выполняют, предпочтительно посредством сверления, места (10) проникновения, служащие для ввода измерительных электродов (5, 6) в измерительную трубу (2). Затем основную часть (7) в области каждого из мест (10) проникновения снабжают термопластичным покровным слоем (8), после чего измерительные электроды (5, 6) посредством нагрева термопластичного покровного слоя (8) в области мест (10) проникновения непроницаемо для жидкости соединяют с измерительной трубой (2). Технический результат - упрощение способа изготовления магнитно-индуктивного расходомера, повышение его технологичности и снижение затрат энергии. 2 з.п. ф-лы, 5 ил.

Предлагаемое изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью способа, основанного на взаимодействии движущейся жидкости с магнитным полем. У электромагнитного расходомера имеются две пары электродов, из которых одна пара электродов контактирует с внешней стенкой трубы, а вторая пара электродов введена внутрь трубопровода до контакта с пограничным слоем жидкого металла изолированно от стенки трубопровода. Измерительное устройство имеет два измерительных канала, подключенных к соответствующим парам электродов. Технический результат - возможность измерения расхода жидких металлов: свинец (Pb), сплав свинца и висмута (Pb44,5%Bi55,5%) и др., обладающих плохой смачиваемостью со стенкой трубы и, следовательно, нестабильным электрическим контактом со стенкой канала. 1 з.п. ф-лы, 1 ил.

Изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью способа, основанного на взаимодействии движущейся жидкости с магнитным полем. Магнитный расходомер жидкого металла состоит из трубы, двух бескаркасных седлообразной формы индукционных катушек, имеющих вид огибающих трубу эллипсов, магнитопровода, выполненного в виде полого цилиндра, и восьми пар электродов, закрепленных к наружной поверхности трубы. Электроды расположены попарно диаметрально противоположно друг к другу по линии, перпендикулярной оси канала в плоскости, перпендикулярной оси индуктора, причем координаты линий, соединяющих пары электродов, отсчитываемые от точки пересечения оси индуктора с осью трубы, имеют следующие значения: , , , , , , , где a - расстояние от оси индуктора до начала рабочего участка трубы, b - расстояние от оси индуктора до конца рабочего участка трубы. Технический результат - повышение точности измерения расхода жидкого металла. 1 з.п. ф-лы, 2 ил.
Наверх