Управляемая пуля

Изобретение относится к боеприпасам, в частности к управляемым пулям. Управляемая пуля выполнена по двухступенчатой бикалиберной схеме. Пуля содержит маршевую ступень, состоящую из боевой части и блока управления, кормовая часть которой вдвинута в центральную трубку, переходный обтекатель и газодинамическое устройство управления с пороховым аккумулятором давления. Трубка размещена в отделяемом стартовом двигателе конической формы, имеющем тандемное заднее расположение. Сопла аккумулятора перпендикулярны продольной оси управляемой пули. Газодинамическое устройство управления размещено в кормовой части управляемой пули и закреплено на заднем днище отделяемого стартового двигателя. Пороховой аккумулятор давления размещен в задней части центральной трубки отделяемого стартового двигателя. Сопла газодинамического устройства управления расположены между соплами отделяемого стартового двигателя. Достигается уменьшение габаритов и массы управляемой пули. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к области ракетной техники и может быть использовано в малогабаритных ракетных комплексах.

Известна управляемая пуля [патент RU 2512047 C1], являющаяся наиболее близким техническим решением к предлагаемому изобретению и выбранная авторами в качестве прототипа. Известная управляемая пуля выполнена по двухступенчатой бикалиберной схеме и содержит боевую часть, стартовый двигатель, блок управления и газодинамическое устройство управления. Она снабжена переходным обтекателем, в котором вокруг хвостовой части маршевой ступени размещено газодинамическое устройство управления, выполненное в виде газодинамического рулевого привода с пороховым аккумулятором давления торообразной формы, реализующее моментное управление путем создания поперечной тяги. Сопла газодинамического устройства управления выведены наружу переходного обтекателя в радиальном направлении. Стартовый двигатель выполнен отделяемым. Корпус стартового двигателя выполнен коническим. Боевая часть размещена в носовой части маршевой ступени. Блок управления размещен в хвостовой части маршевой ступени, которая вдвинута в центральную трубку, выполненную в стартовом двигателе.

Достоинствами прототипа являются рациональное использование свободного объема переходного обтекателя и возможность моментного управления как неоперенными, так и оперенными летательными аппаратами на начальном участке траектории, когда скорость полета недостаточна для реализации аэродинамического управления.

Недостатки прототипа заключаются в следующем:

- переднее расположение газодинамического устройства управления приводит к малому плечу управляющей силы относительно центра масс управляемой пули, что требует большого секундного расхода рабочего тела и, следовательно, ведет к увеличению габаритов и массы управляемой пули;

- переднее расположение газодинамического устройства управления смещает вперед центр масс управляемой пули, что негативно сказывается на ее аэродинамической устойчивости и уменьшает плечо управляющей силы относительно центра масс;

- в процессе работы стартового двигателя центр масс управляемой пули смещается вперед, что приводит к уменьшению плеча управляющей силы газодинамического устройства управления и в совокупности с увеличением степени статической устойчивости требует значительного увеличения секундного расхода рабочего тела.

Технической задачей изобретения является уменьшение габаритов и массы управляемой пули при увеличении точности и расширении номенклатуры поражаемых целей.

Задача изобретения решается следующим образом.

В управляемой пуле, выполненной по двухступенчатой бикалиберной схеме, содержащей маршевую ступень, состоящую из боевой части и блока управления, кормовая часть которой вдвинута в центральную трубку, размещенную в отделяемом стартовом двигателе конической формы, имеющем тандемное заднее расположение и больший калибр, переходный обтекатель и газодинамическое устройство управления с пороховым аккумулятором давления, сопла которого перпендикулярны продольной оси управляемой пули, новым является то, что газодинамическое устройство управления размещено в кормовой части управляемой пули и закреплено на заднем днище отделяемого стартового двигателя, а пороховой аккумулятор давления размещен в задней части центральной трубки отделяемого стартового двигателя. Сопла газодинамического устройства управления расположены между соплами отделяемого стартового двигателя.

В частном случае:

- в управляемой пуле на заднем торце газодинамического устройства управления размещено фотоприемное устройство, при этом сопла отделяемого стартового двигателя установлены под углом 15-25° к продольной оси управляемой пули;

- в управляемой пуле отделяемый стартовый двигатель содержит не менее четырех сопел;

- в управляемой пуле газодинамическое устройство управления содержит не менее двух сопел.

Размещение газодинамического устройства управления в кормовой части управляемой пули позволяет максимально удалить координаты его сопел от центра масс боеприпаса, то есть получить максимально возможное плечо управляющей силы. Таким образом, при сохранении прежнего стабилизирующего момента, действующего на управляемую пулю в полете, а следовательно, при сохранении потребной величины управляющего момента, потребная величина управляющей силы, развиваемой газодинамическим устройством управления оказывается меньшей.

Возникающее при работе стартового двигателя смещение центра масс управляемой пули вперед по направлению движения в таком случае не приводит к необходимости увеличения секундного расхода рабочего тела, поскольку вместе с увеличением степени статической устойчивости боеприпаса увеличивается и плечо действия управляющей силы.

Указанные преимущества кормового размещения газодинамического устройства управления позволяют уменьшить габариты и массу как его исполнительных устройств, так и порохового аккумулятора давления, поскольку потребный запас рабочего тела газодинамического устройства управления оказывается меньше. Это, в свою очередь, позволяет уменьшить габариты и массу управляемой пули.

Размещение фотоприемного устройства на заднем торце газодинамического устройства управления позволяет реализовать моментное управление боеприпасом на стартовом участке траектории по лучу лазера, что приводит к увеличению точности управляемой пули и расширению номенклатуры поражаемых целей.

Выполнение соплового блока стартового двигателя многосопловым с количеством сопел не менее четырех позволяет уменьшить длину управляемой пули и обеспечить достаточный объем для размещения газодинамического устройства управления.

Газодинамическое устройство управления может содержать два или более сопел, которые размещены между соплами отделяемого стартового двигателя. Применение газодинамического устройства управления, оснащенного двумя соплами, позволяет минимизировать его габариты и массу, а также предельно упростить конструкцию, однако в таком случае требуется предварительное закручивание управляемой пули относительно продольной оси с частотой 10-50 Гц, например, вышибным двигателем при ее запуске из пускового контейнера или стартовым двигателем, в случае выполнения его сопел косопоставленными.

Сущность изобретения поясняется графическим материалом.

На фиг.1 представлен общий вид управляемой пули.

На фиг.2 приведено увеличенное изображение газодинамического устройства управления (вид А на фиг.1).

На фиг. представлен вид Б на фиг.1.

Боевая часть 1 выполнена в виде бронебойного стержня, размещена в носовой части маршевой ступени и предназначена для кинетического поражения цели. Газодинамическое устройство управления 2 выполнено в виде газодинамического привода поперечной тяги и размещено в кормовой части управляемой пули. Газодинамическое устройство управления 2 предназначено для управления пулей до момента разделения. Блок управления 3 расположен в хвостовой части маршевой ступени, состоит из электронной аппаратуры и исполнительных устройств, обеспечивающих полет маршевой ступени после отделения стартового двигателя 4, и вдвинут в центральную трубку 5, размещенную в стартовом двигателе. Отделяемый стартовый двигатель 4 предназначен для разгона управляемой пули, имеет тандемное заднее расположение относительно маршевой ступени и больший калибр. Его обечайка имеет коническую форму для увеличения степени статической устойчивости управляемой пули. В отделяемом стартовом двигателе 4 соосно размещена центральная трубка 5, предназначенная для размещения в ней хвостовой части маршевой ступени и элементов газодинамического устройства управления 2, а также для их электрической связи. Переходный обтекатель 6 предназначен для снижения аэродинамического сопротивления управляемой пули и размещен вокруг маршевой ступени перед отделяемым стартовым двигателем 4. Сопла 7 газодинамического устройства управления 2 размещены между сопел 8 отделяемого стартового двигателя 4 и перпендикулярны продольной оси управляемой пули. Сопла 7 предназначены для истечения через них продуктов сгорания твердого топлива, размещенного в пороховом аккумуляторе давления 9 газодинамического устройства управления 2. Сопла 8 отделяемого стартового двигателя 4 предназначены для создания тяги и размещены под углом 15-25° к продольной оси управляемой пули в задней части стартового двигателя. Пороховой аккумулятор давления 9 выполнен в виде цилиндра, размещен в центральной трубке 5 отделяемого стартового двигателя 4 и предназначен для создания рабочего тела газодинамического устройства управления 2. Фотоприемное устройство 10 размещено на заднем торце газодинамического устройства управления 2 и предназначено для приема лазерного излучения с наземного пункта управления, его преобразования и передачи сигнала в блок управления 3.

Изобретение работает следующим образом. В процессе старта управляемой пуле придают вращение с частотой 10-50 Гц относительно продольной оси. Отделяемый стартовый двигатель 4 создает реактивную тягу с помощью сопел 8 и разгоняет управляемую пулю до требуемого значения скорости. Требуемая аэродинамическая устойчивость управляемой пули на участке разгона обеспечивается за счет конической формы обечайки стартового двигателя 4. Переходный обтекатель 6 снижает аэродинамическое сопротивление управляемой пули на участке разгона за счет своей формы. По команде с блока управления 3 воспламеняется заряд твердого топлива в пороховом аккумуляторе давления 9, продукты сгорания которого служат в качестве рабочего тела для газодинамического устройства управления 2. Фотоприемное устройство 10 принимает лазерное излучение с наземного пункта управления, обрабатывает его и передает сигнал в блок управления 3, который, в свою очередь, обрабатывает полученный сигнал и выдает команды газодинамическому устройству управления 2. В соответствии с полученными командами газодинамическое устройство управления 2 перекрывает одно из сопел 7, в результате чего, за счет истечения рабочего тела из противоположного сопла, создается управляющая сила P. Управляющая сила P создает относительно центра масс пули управляющий момент, который придает управляемой пуле пространственный угол атаки. При движении управляемой пули с пространственным углом атаки на ее планере создается аэродинамическая сила, за счет которой реализуется перемещение центра масс пули в плоскости, перпендикулярной ее продольной оси, в соответствии с командами, передаваемыми лазерным излучением с наземного пункта управления. По окончании разгона стартовый двигатель 4 отделяется вместе с переходным обтекателем 6 и газодинамическим устройством управления 2, смещаясь по хвостовой части маршевой ступени назад по направлению движения за счет аэродинамических сил или под воздействием пиротехнических устройств, обеспечивающих разделение. После отделения стартового двигателя 4 маршевая ступень продолжает полет к цели, при этом управление ее полетом осуществляет блок управления 3 за счет собственных исполнительных устройств.

Реализация изобретения позволяет уменьшить габариты и массу управляемой пули при увеличении ее точности и расширении номенклатуры поражаемых целей.

1. Управляемая пуля, выполненная по двухступенчатой бикалиберной схеме, содержащая маршевую ступень, состоящую из боевой части и блока управления, кормовая часть которой вдвинута в центральную трубку, размещенную в отделяемом стартовом двигателе конической формы, имеющем тандемное заднее расположение и больший калибр, переходный обтекатель и газодинамическое устройство управления с пороховым аккумулятором давления, сопла которого перпендикулярны продольной оси управляемой пули, отличающаяся тем, что газодинамическое устройство управления размещено в кормовой части управляемой пули и закреплено на заднем днище отделяемого стартового двигателя, а пороховой аккумулятор давления размещен в задней части центральной трубки отделяемого стартового двигателя, при этом сопла газодинамического устройства управления расположены между соплами отделяемого стартового двигателя.

2. Управляемая пуля по п.1, отличающаяся тем, что на заднем торце газодинамического устройства управления размещено фотоприемное устройство, при этом сопла отделяемого стартового двигателя установлены под углом 15-25° к продольной оси управляемой пули.

3. Управляемая пуля по п.1 или 2, отличающаяся тем, что количество сопел отделяемого стартового двигателя составляет не менее четырех.

4. Управляемая пуля по п.1 или 2, отличающаяся тем, что газодинамическое устройство управления содержит не менее двух сопел.



 

Похожие патенты:

Изобретение относится к боеприпасам и способам их применения, к гранатам и выстрелам для автоматических гранатометов, а также к способам стрельбы из автоматических гранатометов такими боеприпасами.

Изобретение относится к ракетной технике и может быть использовано в системах наведения управляемых ракет. Задают методы совмещения трех точек, спрямления траектории наведения и пропорционального сближения наведения ракеты, ранжируют методы наведения ракеты по убывающему приоритету, формируют и сравнивают прогнозируемые и пороговые значения показателей угла места цели в момент пуска ракеты, угла пуска ракеты в вертикальной плоскости, дальности полета ракеты, скорости полета ракеты, угла пеленга ракеты, располагаемой перегрузки ракеты, угла встречи ракеты с целью, определяют границу зоны поражения ракеты, назначают выбранный метод наведения ракеты, сопровождают и измеряют координаты цели, прогнозируют показатели условия встречи ракеты с целью, выбирают метод наведения ракеты, определяют момент пуска и углы пуска ракеты, запускают ракету, наводят ракету на цель.

Изобретение относится к ракетной технике и может быть использовано для управления полетом ракеты при летных испытаниях. Постоянно обследуют в течение всего отрезка времени от установки ракеты в пусковую установку до ее пуска с помощью бортового радиолокационного комплекса дистанционного зондирования Земли штатное и прогнозируемое места уничтожения ракеты в результате возможного нештатного изменения траектории полета, регистрируют в обоих местах появление несанкционированных объектов, существование которых подвергается опасности при самоликвидации ракеты, фиксируют, выявляют и идентифицируют несанкционированные объекты, одновременно вводят в программную систему управления полетом команду отсрочки момента самоликвидации, включают команду отсрочки самоликвидации ракеты или отвода ее в безопасное место, если к моменту пуска ракеты несанкционированные объекты все еще будут находиться в одном из мест ликвидации ракеты, запускают ракету, определяют текущие координаты и параметры движения ракеты, рассчитывают вероятную траекторию, формируют и передают на ракету команды на изменение траектории полета, постоянно передают на командный пункт данные о состоянии окружающей среды на трассе летных испытаний, прогнозируют возможные нештатные изменения траектории полета, приводящие к загрязнению поверхности земли, водоемов и воздуха, передают на ракету команды либо на продолжение полета к цели, либо на отклонение от траектории и уничтожение ракеты в районе с минимальным ущербом для окружающей среды.

Группа изобретений относится к способам и системам управления летательными аппаратами. В способе формирования линеаризованного сигнала на вращающейся по углу крена ракете разбивают период вращения ракеты на временные интервалы, измеряют и запоминают их длительности определенным образом.

Изобретение относится к области радиолокации, в частности к юстировочным щитам. Юстировочный щит моделирует прямые и зеркально отраженные от земли радиосигналы, идущие от ракеты и цели на конечном участке наведения.

Изобретение относится к области боеприпасов и ракетной техники, в частности к контейнерам бакового типа боевых частей ракет и боеприпасов. Контейнер бакового типа боевой части содержит обтекатель, тонкостенный корпус-бак, переднее и заднее донья, устройство для разброса и воспламенения наполнителя.

Изобретение относится к военной технике и может быть использовано в крылатых ракетах (КР). Разгоняют вращающуюся ракету до маршевой скорости с помощью твердотопливного отделяемого стартового ускорителя, поддерживают маршевую скорость тягой малогабаритного одноразового турбореактивного двигателя, закручивают и поддерживают режим вращения вокруг оси крена с помощью скошенных относительно продольной оси хвостовых стабилизаторов и/или газодинамической насадки на турбореактивном двигателе, формируют аэродинамическую подъемную силу в режиме вращения с помощью n-пар малогабаритных складывающихся крыльев.

Изобретение относится к области огнестрельного гладкоствольного оружия, в частности к снарядам с газовым подвесом. Снаряд с газовым подвесом содержит гладкую цилиндрическую часть, в которой выполнена полость питания, соединенная с наружной цилиндрической поверхностью через питающие устройства.

Изобретение относится к ракетному вооружению, в частности к области малогабаритных управляемых снарядов. Управляемый снаряд выполнен по аэродинамической схеме «утка».

Изобретение относится к боеприпасам, в частности к блокам системы управления для реактивных снарядов. Блок системы управления реактивного снаряда содержит корпус с оживальной частью, раскладывающиеся в полете аэродинамические рули с приводами и блоком управления, смонтированные на оживальной части.

Изобретение относится к военной технике и может быть использовано в сверхзвуковых крылатых ракетах. Сверхзвуковая крылатая ракета содержит планер, приборный отсек с блоками бортовой аппаратуры системы управления, сменную головку самонаведения, основное боевое снаряжение фугасного, проникающего, осколочно-фугасного типа, дополнительное боевое снаряжение с идентичными с головкой самонаведения массово-центровочными характеристиками. Формируют полетное задание с точкой прицеливания, параметрами траектории ракеты и типах поражаемых целей, выбирают ракету со сменной головкой самонаведения или взаимозаменяемой головкой самонаведения с дополнительным боевым снаряжением, вносят изменения в циклограмму полета в зависимости от типа цели, запускают и обеспечивают полет ракеты с участками пикирования в зависимости от типа цели в точку с заданными координатами в области расположения цели, подрывают боевое снаряжение с запрограммированным недолетом до геометрического центра области расположения площадной цели или по достижении цели. Изобретение позволяет повысить эффективность поражения цели. 2 н. и 3 з.п. ф-лы, 8 ил.

Изобретение относится к боеприпасам, в частности к кассетным боевым частям боеприпасов. Кассетная боевая часть содержит корпус с зарядом взрывчатого вещества, парашют, источник питания, координатор цели, автономную систему наведения и устройство перемещения. Устройство перемещения обеспечивает управляемое перемещение в горизонтальной и вертикальной плоскостях, режим зависания в воздухе. Автономная система наведения соединена с координатором цели и включает соединенные между собой контроллер управления перемещением, навигационную систему и приемник навигационной системы. Координатор цели содержит модуль хранения параметров цели, оптический инфракрасный датчик цели и магнитометрический датчик цели. Достигается повышение эффективности боеприпаса с кассетной боевой частью. 11 з.п. ф-лы, 3 ил.

Изобретение относится к военной технике и может быть использовано в высокоточном вооружении. Боевая часть (БЧ) с координатором цели содержит корпус с зарядом взрывчатого вещества кумулятивно-осколочного типа, парашют, источник питания, координатор цели с модулем хранения параметров цели, оптическим инфракрасным датчиком цели, магнитометрическим датчиком цели, устройством распознавания цели, устройство перемещения, автономную систему наведения с контроллером управления перемещением, навигационной системой, приемником навигационной системы, защитный кожух с тормозным устройством с парашютом и вытяжным фалом, механизм расстыковки парашюта с корпусом БЧ с координатором цели, пиропатрон. Устройство перемещения содержит электроприводы с валами со втулками и воздушными винтами, стопорные элементы, трансформируемые консоли для размещения электроприводов и стопорных элементов. Изобретение позволяет повысить боевую эффективность БЧ. 11 з.п. ф-лы, 3 ил.

Изобретение относится к ракетной технике и может быть использовано в управлении полётом ракеты. Изменяют направление потоконаправляющих поверхностей наклоном головной, хвостовой частей ракеты. Изобретение позволяет повысить аэродинамические качества ракеты. 1 з.п. ф-лы, 5 ил.

Заявленное изобретение относится к способам определения угла крена бесплатформенной инерциальной навигационной системы вращающегося по крену артиллерийского снаряда. Для определения угла крена измеряют угловые скорости снаряда в связанной со снарядом вращающейся по крену системе координат, демодулируют угловые скорости, перпендикулярные продольной оси снаряда, углом крена с поправкой. Поправку определяют как предварительное и последующее корректируемое значение. Предварительное значение определяют по фазе между средними сглаженными значениями интегралов демодулированных угловых скоростей. Последующее значение определяют по интегралу угловой скорости разворота снаряда по рысканию с определенным коэффициентом. Обеспечивается повышение точности определения угла крена, тангажа и рыскания снаряда. 1 з.п. ф-лы, 10 ил.

Изобретение относится к способам наведения вращающегося по крену снаряда. Для инерциального наведения вращающегося по крену снаряда измеряют рассогласование между положением продольной оси снаряда и положением оси инерциального гироскопа, измеряют угловые скорости снаряда в связанной со снарядом вращающейся по крену системе координат относительно двух взаимно ортогональных поперечных осей снаряда, формируют сигнал управления рулевым приводом при превышении порогового значения рассогласования. Формируют дополнительные сигналы управления по угловой скорости на баллистическом участке траектории до начала инерциального наведения при превышении угловой скорости снаряда пороговых значений, определенных из условия обеспечения требуемой амплитуды колебания снаряда по углам атаки и скольжения. Обеспечивается угловая стабилизация снаряда. 2 з.п. ф-лы, 6 ил.

Изобретение относится к системам навигации и может быть использовано в ракетной технике. Авиационная ракета (АР) с инерциальной системой навигации с возможностью совершать вращение содержит гиродатчик угловой скорости тангажа, автоматическую систему управления со средствами автоматического управления. Автоматически вращают АР вокруг своей продольной оси, после каждого поворота АР вокруг своей оси меняют направление вращения, устраняют влияния масштабного коэффициента гиродатчика угловой скорости тангажа, корректируют дрейфы. Изобретение позволяет заменить гироскоп гиродатчиком угловой скорости тангажа в инерциальных системах навигации. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к военной технике, преимущественно к тактическим и оперативно-тактическим комплексам управляемого ракетного оружия (УРО) с баллистическими (аэробаллистическими) и высотными крылатыми ракетами. В состав оптико-электронной корреляционно-экстремальной СН ракеты дополнительно вводят лазерный высотомер (ЛВ). Функционирование СН начинают на удалении от цели и при высоте полета ракеты 1…20 км, при этом, в случае приема ЛВ отраженных подстилающей поверхностью сигналов выше порогового уровня, производят корреляционно-экстремальную привязку к подстилающей поверхности и коррекцию пикирующей траектории ракеты вплоть до окончания полета. В случае приема ЛВ отраженных сигналов ниже порогового уровня, осуществляют программный маневр ракеты в плоскости стрельбы с выходом на участок пологого планирования на высоте 100…500 м за 0,5…15,0 км от цели, производят корреляционно-экстремальную привязку к подстилающей поверхности и коррекцию планирующей траектории ракеты, с пикирующим конечным участком за 0,1…2,0 км от цели, вплоть до окончания полета. Изобретение позволяет расширить погодный диапазон применения ракет. 2 ил.

Изобретение относится к оборонной технике и может использоваться в комплексах управляемого вооружения для поражения неподвижных целей, расположенных в глубине боевых порядков противника. В систему наведения высокоточного оружия, содержащую наземную аппаратуру радиотелеметрического управления командного пункта и систему воздушного целеуказания, введен микропроцессорный оптимизатор ситуаций, соединенный с оборудованием, расположенным на ракете. До старта оптимизатор ситуаций соединен с первым входом дешифратора команд управления. После старта на начальном и промежуточном участках траектории движения осуществляется связь в режиме радиотелеуправления - по радиоканалу с радиоприемником и радиоответчиком ракеты. Выход радиоприемника соединен со вторым входом дешифратора команд управления, первый выход которого соединен с первым входом переключателя команд, его выход соединен с входом аппаратуры управления, ее первый выход соединен с входом рулевого привода, а второй выход - с входом радиоответчика. На ракете введен автономный симулятор линейки, состоящий из генератора автономного времени, симулятора высоты, нониусного симулятора, контроллера траектории движения. Второй выход дешифратора команд управления соединен с входом генератора автономного времени. Выход генератора автономного времени соединен с входом симулятора высоты, выход которого соединен с входом нониусного симулятора, его выход соединен с первым входом контроллера траектории движения, второй вход которого соединен с выходом генератора автономного времени. Выход контроллера траектории движения соединен со вторым входом переключателя команд, третий вход которого соединен с выходом генератора автономного времени. Технический результат - улучшение тактических возможностей наземной аппаратуры радиотелеметрического управления командного пункта и исключение возможности воздействия активными помехами при переходе ракеты в автономный режим подлета к цели. 1 ил.

Предложен способ самонаведения движущегося объекта по информации о факте визирования цели при условии совпадения направления оси локатора с направлением вектора скорости объекта. При этом траекторию объекта формируют в виде циклически повторяющихся дугообразных отрезков, по которым объект движется с заданной (максимальной) угловой скоростью, одинаковой по модулю, но противоположной по знаку. Каждые два отрезка объединяют в цикл, который начинается и заканчивается фактом совпадения направления вектора скорости объекта с линией визирования цели, а смену знака угловой скорости внутри цикла производят по факту совпадения углов наклона относительно инерциальной системы координат линий, соединяющих объект и цель в начале цикла и в данный момент. Также предложены устройства, реализующие указанный выше способ. 4 н.п. ф-лы, 4 ил.
Наверх