Способ получения ультрадисперсных порошков различных оксидов с узким разделением частиц по размерам

Изобретение относится к области порошковой металлургии. Мезопористый SiO2 используют в качестве пористой среды, которую пропитывают реакционным раствором, содержащим нитраты металлов и растворимые в воде органические соединения, например глицин. Для регулировки температуры синтеза используют нитрат аммония. После каждого шага пропитки выполняют сушку на воздухе или в вакууме. Затем пропитанный SiO2 прессуют до компактного образца и инициируют химическую реакцию в образце при помощи вольфрамовой спирали, после чего охлаждают и измельчают до мелких частиц, затем выщелачивают в концентрированном растворе гидроксида натрия при 80°C 12 часов. Полученный оксид, состоящий из ультрадисперсных частиц размером порядка 3 нм, затем извлекают путем фильтрации и промывки. Изобретение позволяет получить наночастицы с узким распределением по размерам и высокой удельной поверхностью порядка 132 м2/г. 3 з.п. ф-лы, 2 ил., 3 пр.

 

Изобретение относится к области порошковой металлургии, в частности к способам получения ультрадисперсных порошков оксидов металлов с размерами частиц меньше 10 нм. Известно, что наноразмерные порошки оксидов металлов имеют нетрадиционные механические, физические и химические свойства, отличные от порошков микронных размеров, что позволяет использовать их в катализе, электронике, медицине, а также в различных других областях науки и технологий. Так, например, в случае катализаторов применение ультрадисперсных порошков оксидов металлов позволяет увеличить площадь поверхности катализатора.

Известно несколько способов получения тонкодисперсных оксидов и материалов на их основе: плазмохимическое разложение солей; соосаждение и последующее прокаливание гидроксидов или сушка осадка оксидов, механическое измельчение, окисление металлических порошков, электрический взрыв металлических проволок в окислительной среде, распылительный термолиз органических или водно-органических растворов металлсодержащих соединений.

Так, например, известен метод синтеза сложных оксидных соединений редкоземельных металлов, при котором берут смесь соответствующих гидратированных или дегидратированных нитратов металлов, гидратированных или дегидратированных нитратов лантана (La(NO3)3 или (La(NO3)3·9H2O) и вводят в смесь дополнительно полностью выгорающую энергетическую добавку - тетраформил триазина (C4H16N6O2). Данная добавка в процессе синтеза разлагается с выделением энергии и большого объема газов (CO, NO и др.) и предварительно синтезируется в результате реакции формальдегида с гидразином гидратом при Т=0°C с постоянным перемешиванием. Смесь нитрата лантана, нитрата соответствующего металла и энергетической добавки в стехиометрических соотношениях растворяют в сосуде с водой объемом 300 см3. Растворенную смесь помещают в муфельную печь, где прогревают при 500°C. Гидратированные смеси полностью дегидратируются и, после нагревания, самовоспламеняются, превращаясь в пенообразную массу в объеме сосуда. Температура пламени при горении смесей достигает Т=1100°C±100°C. Весь процесс протекает в течение 5 мин. В ряде случаев после протекания процесса горения в системе формируется рентгеноаморфный продукт, который при последующем нагреве до 800°C и выдержке в течение 1 ч кристаллизуется в однофазное соединение LnMO3 (S. Sundar Manoharan, K.C. Patil, Combustion route to fine particle perovskite oxides, Journal of Solid State Chemistry, 1993, v. 102, pp. 267-276).

Недостатком данного способа является многостадийность процесса, необходимость проведения высокотемпературного нагрева смесей до температуры их воспламенения и, в ряде случаев, осуществления дополнительной длительной высокотемпературной обработки продуктов горения.

Прототипом предложенного изобретения является способ получения тонкодисперсных порошков оксидов металлов (RU 2318723 С2, опубл. 10.03.2008), включающий приготовление смеси, содержащей водный раствор, расплав или водную суспензию соли по меньшей мере одного металла, проявляющей окислительные свойства, и органический восстановитель. Полученную смесь гомогенизируют и нагревают путем ее непрерывной подачи на горячую поверхность вращающегося нагревателя, при этом происходит ее упаривание и воспламенение. Выделяющиеся газообразные вещества и образующийся твердый готовый продукт непрерывно удаляют с поверхности нагревателя. Изобретение позволяет получить тонкодисперсные порошки оксидов металлов со средним размером частиц 100 нм и удельной поверхностью 50 м2/г.

Недостатком данного метода является широкое распределение частиц по размерам (0,028-0,175 мкм), а также получение конечного продукта с относительно низкой удельной поверхностью.

В предложенном изобретении достигается следующий технический результат:

- формирование кристаллических наноматериалов происходит без дополнительного кальцинирования;

- образование наночастиц с узким распределением по размерам;

- конечный продукт имеет высокую удельную поверхность порядка 132 м2/г;

- удаление органических примесей без образования кокса.

Технический результат достигается следующим образом.

Способ получения ультрадисперсных порошков оксидов переходных металлов (Ni, Cu, Fe), заключающийся в том, что мезопористый SiO2 пропитывают реакционным раствором, содержащим нитраты металлов и растворимые в воде органические соединения, после чего осуществляют сушку пропитанного мезопористого SiO2 при комнатной температуре, затем пропитанный мезопористый SiO2 прессуют до компактного образца и инициируют химическую реакцию в образце при помощи вольфрамовой спирали, после чего полученный порошок охлаждают, измельчают и затем подвергают выщелачиванию в концентрированном одномолярном растворе гидроксида натрия при температуре 60-80°C в течение 8-12 часов, затем полученный порошок оксида металла фильтруют и промывают. В качестве нитратов металлов используют нитрат железа, и/или нитрат никеля, и/или нитрат меди. В качестве растворимых в воде органических соединений используют глицин, и/или гидразин, и/или мочевину. Сушку пропитанного мезопористого SiO2 проводят на воздухе или в вакууме.

Изобретение поясняется чертежом, где на фиг. 1 представлена микроструктура полученного оксида железа, а на фиг. 2 приводится распределение частиц по размерам. Из приведенных изображений видно, что примерно 95% частиц оксида железа меньше 5 нм со средним размером 3,5 нм.

Способ осуществляется следующим образом.

Так называемый метод горения реакционных пористых сред был разработан для производства нанооксидов переходных металлов с узким распределением частиц по размерам. В этом методе мезопористый SiO2 (SBA-15) используется в качестве пористой среды (средний диаметр пор 7 нм), который может быть синтезирован в соответствии с литературными данными (D. Zhao, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, SCIENCE 279 (1998) 548-552). Типичный процесс синтеза заключается в пропитке SBA-15 реакционным раствором, содержащим нитраты металлов и растворимые в воде органические соединения, например глицин, гидразин, мочевина (топливо). В некоторых случаях для регулировки температуры синтеза используется нитрат аммония. В зависимости от конкретного материала используются различные методы пропитки, например пропитка по влагоемкости.

Для достижения равномерного распределения реакционного раствора внутри пористой структуры требуется постадийная пропитка SBA-15. После каждого шага пропитки SBA-15 выполняется его сушка на воздухе или в вакууме. Затем пропитанный SBA-15 прессуется до компактного образца с размерами: d=25 мм и h=3 мм и кратковременно инициируется при помощи вольфрамовой спирали. После инициирования химическая реакция, в виде фронта волны горения, быстро распространяется через образец. После охлаждения продукт измельчается до мелких частиц и затем подвергается выщелачиванию в концентрированном одномолярном растворе гидроксида натрия при температуре 60-80°C в течение 8-12 часов. Полученный оксид затем извлекают путем фильтрации и промывки.

Данный метод позволяет производить различные ультрадисперсные порошки оксидов переходных металлов со среднем размером частиц ~3 нм. Наноразмеры продуктов горения и их высокая удельная поверхность обусловлены несколькими причинами:

- смешение реагентов в растворе происходит на молекулярном уровне, что обеспечивает очень малый масштаб гетерогенности исходной реакционной смеси;

- максимальная температура реакции около 1000°C. Такая высокая температура способствует формированию кристаллических материалов без дополнительного кальцинирования;

- большое количество газофазных продуктов, интенсивное выделение которых препятствует агломерации твердофазных продуктов;

- образование твердофазного продукта в виде тонких слоев или взвесей, что обуславливает высокую скорость остывания продукта, т.е. малую продолжительность высокотемпературной зоны за волной горения, что, в свою очередь, способствует образованию наночастиц с узким распределением по размеру;

- процесс синтеза эффективно удаляет органические примеси без образования кокса.

Пример 1.

Синтез ультрадисперсного порошка Fe2O3 состоит из следующих стадий:

Импрегнирование реакционного раствора, содержащего: 1,1 г Fe(NO3)3·6H2O; 0,35 г C2H5NO2 и 3,5 г NH4NO3 в 0,5 г SBA-15. SBA-15 пропитывается постепенно за 6 раз. За каждый шаг добавляется по 0,5 мл реакционного раствора. После очередного шага пропитки осуществляется вакуумная сушка SBA-15 при комнатной температуре. После окончания импрегнирования, полученный порошок прессуется в компактный цилиндрический образец с размерами: d=25 мм и h=3 мм. Образец инициируется на воздухе при помощи вольфрамовой спирали. После инициирования химическая реакция, в виде фронта волны горения, быстро распространяется через образец. После охлаждения продукт измельчается до мелких частиц и затем подвергается выщелачиванию в концентрированном одномолярном растворе гидроксида натрия при температуре 80°C в течение 12 часов, затем полученный оксид железа извлекают путем фильтрации и промывки при комнатной температуре. Готовый продукт имеет высокую удельную поверхность 132 м2/г, средний размер частиц 3,5 нм.

Пример 2.

Для получения ультрадисперсного порошка NiO реакционная смесь, содержащая 3,89 г нитрата никеля, 1,4 г глицина и 1,4 г нитрата аммония растворяется в 6 мл дистиллированной воды и тщательно перемешивается. Полученный после смешения водный раствор импрегнируется в 2 г SBA-15 за три шага. На первом шаге 6 г раствора добавляется в SBA-15, затем полученная смесь перемешивается и сушится при 70°C в течение 2 ч. Этот процесс повторяется еще два раза, но с добавлением 1,5 г раствора. Высушенный материал прессуется в цилиндрический образец d=25 мм и инициируется локальным внешним нагревом вольфрамовой проволокой. После охлаждения продукта следует измельчение, выщелачивание и фильтрация как описано в примере 1. Удельная поверхность материала составляет 155 м2/г.

Пример 3.

Процедура синтеза ультрадисперсного порошка CuO следующая. Раствор, содержащий 2,36 г нитрата меди и 2,25 г мочевины добавляется в 2 г SBA-15. Импрегнирование SBA-15 осуществляется постепенно за 6 раз методом пропитки по влагоемкости. Дальнейшая процедура соответствует примеру 1. Полученный продукт имеет удельную поверхность порядка 140 м2/г.

1. Способ получения ультрадисперсных порошков оксидов металлов, заключающийся в том, что мезопористый SiO2 пропитывают реакционным раствором, содержащим нитраты металлов и растворимые в воде органические соединения, после чего осуществляют сушку пропитанного мезопористого SiO2 при комнатной температуре, затем пропитанный мезопористый SiO2 прессуют до компактного образца и инициируют химическую реакцию в образце при помощи вольфрамовой спирали, после чего полученный порошок охлаждают, измельчают и затем подвергают выщелачиванию в концентрированном одномолярном растворе гидроксида натрия при температуре 60-80°C в течение 8-12 часов, затем полученный порошок оксида металла фильтруют и промывают.

2. Способ по п. 1, отличающийся тем, что в качестве нитратов металлов используют нитрат железа, и/или нитрат никеля, и/или нитрат меди.

3. Способ по п. 1, отличающийся тем, что в качестве растворимых в воде органических соединений используют глицин, и/или гидразин, и/или мочевину.

4. Способ по п. 1, отличающийся тем, что сушку пропитанного мезопористого SiO2 проводят на воздухе или в вакууме.



 

Похожие патенты:

Изобретение может быть использовано в химической, горнодобывающей промышленности. Способ разложения карбонатов включает измельчение исходного сырья, разложение карбонатов за счет подвода внешней энергии, отвод конверсионного газа, охлаждение целевого продукта.

Изобретение относится к технологии получения высокопористых покрытий на основе систем двойных оксидов, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных, декоративных, фильтрующих и перераспределяющих излучение покрытий.
Изобретение относится к химической промышленности, в частности к способам получения тонкодисперсных порошков на основе оксида циркония, который может быть использован для производства плотной износостойкой керамики, материалов для имплантологии, твердых электролитов.

Изобретение относится к области получения оксидов со структурой перовскита и может быть использовано в технологиях получения материалов для высокотемпературных электродов, нагревательных элементов, кислородных мембран, а также активных и термостабильных каталитических систем в процессах газоочистки.

Изобретение относится к области гидрометаллургии металлов и может быть использовано для получения оксидов металлов. .

Изобретение относится к химической промышленности, а именно к производству магнитострикционных материалов на основе сложных оксидов металлов, в частности ферритов.

Изобретение относится к области получения пленок на основе простых и сложных оксидов, которые могут быть использованы в различных областях техники в качестве пленочных катализаторов, магниторезисторов, топливных элементов, материалов для создания головок магнитной записи и надежного хранения информации, датчиков содержания различных газов и т.д.
Изобретение относится к химической технологии получения оксидов металлов, а также их смесей и твердых растворов и может быть использовано для получения высококачественных керамических оксидных порошков.

Группа изобретений относится к слоистому двойному гидроксиду со структурой гидроталькита и способу его получения. Слоистый двойной гидрокисд описывается общей формулой Mg(1-x)Al3+ (x-y)Ni3+ y(OH)2(Ann-)x/n·mH2O, где в качестве трехзарядных катионов металла выступают одновременно катионы алюминия и никеля, y принимает значения от 0,0025 до 0,0625, x=0,25.

Изобретение относится к химической промышленности и может быть использовано для получения композитов, которые применяются в фотокаталитических процессах, в качестве катализаторов олигомеризации олефинов и полимеризации этилена.

Изобретение может быть использовано в химической промышленности. Наноразмерные оксиды металлов получают химической реакцией окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, в качестве которого используют импульсный электронный пучок энергией электронов 100÷500 кэВ, длительностью 10÷100 нс и с полным током пучка 1-10 кА.
Изобретение может быть использовано в химической промышленности. Состав для получения тонкой пленки сложных оксидов циркония, фосфора и кальция содержит этиловый спирт, предварительно перегнанный и осушенный до 96 мас.%, оксохлорид циркония, хлорид кальция и ортофосфорную кислоту при следующем соотношении компонентов, мас.%: Оксохлорид циркония - 4,7-6,8 Хлорид кальция - 2,6-4,4 Ортофосфорная кислота - 0,5 Этиловый спирт - остальное. Предложенное изобретение позволяет получить тонкие пленки, обладающие высокими показателями преломления.

Изобретение относится к технологии получения высокопористых покрытий на основе систем двойных оксидов, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных, декоративных, фильтрующих и перераспределяющих излучение покрытий.

Изобретение относится к способу и аппарату для получения металлооксидных материалов, включая гидраты оксидов металлов и/или оксиды металлов и катализаторы. .

Изобретение относится к технологии получения нанодисперсных материалов и может использоваться в химической промышленности, электронике, порошковой металлургии. .

Изобретение относится к области высокотемпературной электрохимии, в частности к электролитическому получению нановискерных структур оксида меди, и может быть использовано в технологии катализаторов.
Изобретение относится к получению нанокристаллических порошков оксидов металлов. .

Изобретение относится к способам получения активного гидроксида алюминия, пригодного для получения эффективного коагулянта - гидроксохлорида алюминия, а также катализаторов, осушителей и сорбентов. Способ включает смешение кристаллических солей алюминия и карбоната натрия в твердом виде при расходе карбоната натрия 4-6 моль на 1 моль Al2O3. В качестве соли алюминия берут его нитрат Al(NO3)3·9H2O или хлорид AlCl3·6H2O. Полученную реакционную массу выщелачивают водой при температуре не выше 50°C с образованием суспензии, из которой выделяют алюминийсодержащий осадок. Осадок промывают водой при температуре 60-80°C до величины pH промывной воды не более 7,5 и сушат. Технический результат - получение химически активного по отношению к соляной кислоте гидроксида алюминия, снижение количества жидких отходов, повышение экологичности способа. 3 з.п. ф-лы, 3 пр.

Изобретение относится к области порошковой металлургии. Мезопористый SiO2 используют в качестве пористой среды, которую пропитывают реакционным раствором, содержащим нитраты металлов и растворимые в воде органические соединения, например глицин. Для регулировки температуры синтеза используют нитрат аммония. После каждого шага пропитки выполняют сушку на воздухе или в вакууме. Затем пропитанный SiO2 прессуют до компактного образца и инициируют химическую реакцию в образце при помощи вольфрамовой спирали, после чего охлаждают и измельчают до мелких частиц, затем выщелачивают в концентрированном растворе гидроксида натрия при 80°C 12 часов. Полученный оксид, состоящий из ультрадисперсных частиц размером порядка 3 нм, затем извлекают путем фильтрации и промывки. Изобретение позволяет получить наночастицы с узким распределением по размерам и высокой удельной поверхностью порядка 132 м2г. 3 з.п. ф-лы, 2 ил., 3 пр.

Наверх