Способ получения железохромфосфатного продукта и огнеупорная композиция



 


Владельцы патента RU 2570873:

Маркин Геннадий Хрисанфович (RU)
Крупнов Виталий Николаевич (RU)

Изобретение относится к области получения фосфатных соединений и может найти широкое применение при производстве огнеупорных изделий для получения шлакостойких, чугуностойких, сталестойких материалов, применяемых для изготовления и ремонта огнеупорной футеровки доменных, мартеновских и электросталеплавильных печей и других агрегатов. Способ получения железохромфосфатного продукта включает растворение 60-80 г чугунной стружки и 160-210 г оксида железа в 650-850 г ортофосфорной кислоты концентрации 85%-90%, при этом при замедлении реакции проводят нагрев до 90°С-100°C, после растворения чугунной стружки и оксида железа полученный раствор охлаждают, добавляют 85-115 г оксида хрома и затем полученную пасту железохромфосфатного продукта высушивают и измельчают. Огнеупорная композиция содержит смесь полученного железохромфосфатного продукта, минерального наполнителя и воды. Изобретение позволяет получить железохромфосфатный продукт, стойкий к высоким температурам, который придает огнеупорным композициям высокие клеящие, химстойкие и огнеупорные свойства. 2 н.п. ф-лы, 2 пр.

 

Изобретение относится к области получения фосфатных соединений.

Известен способ получения металлофосфатных связующих, описанный в патенте на изобретение №2160703, опубликованном 20.12.2000 г. Способ получения металлофосфатных связующих включает смешивание ортофосфорной кислоты с оксидами или гидроксидами металлов и органическим восстановителем, нагревание смеси до температуры 95-105°C, выдержку при данной температуре в течение 35-40 мин и последующее охлаждение смеси до температуры окружающей среды. При охлаждении смеси до 80-40°C в нее вводят ультрадисперсный порошок карбонитрида титана в количестве 0,01-0,05 вес.% при постоянном перемешивании до получения гомогенного состояния.

Недостатком данного способа является наличие в технологической схеме стадии восстановления хрома формальдегидом, что приводит к присутствию в конечном продукте органических примесей формальдегида и продуктов его неполного окисления, которые ухудшают его качество, являясь, кроме того, высокотоксичными соединениями.

Известен способ получения кислых фосфатов на основе хрома, раскрытый в описании изобретения к авторскому свидетельству №471300, опубликованном 25.05.1975 г. Способ получения кислых фосфатов на основе хрома осуществляется путем растворения хромсодержащего сырья (гидратированные хромихроматы, гидроокись хрома, средний фосфат хрома) в ортофосфорной кислоте при нагревании до 115°C или 120°C, далее добавляют соединения металла (окись, гидроокись и средние фосфаты алюминия, магния, цинка, никеля). После выдерживания вводят раствор формальдегида для восстановления хрома. Полученный раствор концентрируют и затем высушивают.

Недостатком данного способа является наличие в технологической схеме стадии восстановления хрома формальдегидом, что приводит к присутствию в конечном продукте органических примесей формальдегида и продуктов его неполного окисления, которые ухудшают его качество, являясь, кроме того, высокотоксичными соединениями.

Известен способ получения кислых хромсодержащих фосфатов металлов, взятый за прототип и раскрытый в описании изобретения к авторскому свидетельству №814851, опубликованном 23.03.1981 г. Способ получения кислых хромсодержащих фосфатов металлов осуществляется следующим образом. В ортофосфорной кислоте растворяют хромсодержащие соединения (хромовый ангидрид, гидратированные хроматы хрома, бихромат хрома,) при температуре 180°C-200°C и выдерживают при этой температуре до двух часов. Далее для нейтрализации избытка ортофосфорной кислоты вводят соединения металла (гидроокись алюминия, окись цинка, окись магния).

Недостатком данного способа является то, что в результате осуществления этого энергоемкого и сложного способа получают только алюмохромфосфатное связующее в жидком виде (крайне неудобно при использовании), которое в огнеупорных композициях обладает низкими огнеупорными качествами, и при температуре более 1200°C распадается на окислы алюминия и полифосфаты.

Задачей изобретения является создание энергоэффективного и простого способа получения железохромфосфатного продукта, повышающего свойства огнеупорных композиций.

Поставленная задача решается тем, что способ получения железохромфосфатного продукта включает взаимодействие ортофосфорной кислоты с соединениями металлов, согласно изобретению в 650-850 г ортофосфорной кислоты концентрации 85%-90% растворяют 60-80 г чугунной стружки и 160-210 г оксида железа, при замедлении реакции проводят нагрев до 90°C-100°C, после растворения чугунной стружки и оксида железа полученный раствор охлаждают, затем добавляют 85-115 г оксида хрома, полученную пасту железохромфосфатного продукта высушивают и измельчают. Также огнеупорная композиция, содержащая минеральный наполнитель, согласно изобретению 5-30% железохромфосфатного продукта, полученного по заявляемому способу, смешивают с 95-70% минерального наполнителя и добавляют воды до влажности 8-15%.

Техническим результатом заявляемого изобретения является получение железохромфосфатного продукта, стойкого к высоким температурам, получаемый продукт придает огнеупорным композициям высокие клеящие, химстойкие и огнеупорные свойства.

Изобретение может найти широкое применение при производстве огнеупорных изделий для получения шлакостойких, чугуностойких, сталестойких материалов, применяемых для изготовления и ремонта огнеупорной футеровки доменных, мартеновских и электросталеплавильных печей и других агрегатов.

Изобретение может быть реализовано на простейшем стандартном оборудовании промышленных предприятий.

Способ осуществляется следующим образом. В 650-850 г 85%-90% ортофосфорной кислоты (H3PO4) добавляют и 60-80 г железа (Fe) в виде чугунной стружки. Затем небольшими порциями (по 30-60 г) растворяют постепенно 160-210 г порошкообразного оксида железа (Fe2O3), каждую последующую порцию добавляют после растворения предыдущей порции. В заявленном способе используется восстановление ионов трехвалентного железа в двухвалентное железо за счет иона водорода в данной реакции, причем водород не выделяется в газообразном виде, а сразу вступает в соединения с образованием воды и кислого фосфата железа. Реакционную массу необходимо постоянно перемешивать, реакция идет с выделением тепла, при замедлении реакции реакционную массу дополнительно подогревают до 90°C-100°C (после добавления в реакционную массу всего количества порошкообразного оксида железа). Выдерживают до растворения чугунной стружки (около 1-1,5 часов) и затем охлаждают до комнатной температуры. В результате получают раствор кислого фосфата железа (FeII(H2PO4)2). Для осуществления способа может использоваться порошкообразный оксид железа, улавливаемый фильтрами очистки воздуха при производстве металла на предприятиях черной металлургии.

Далее при перемешивании в полученный раствор кислого фосфата железа добавляют 110-150 г раствора оксида хрома (для получения раствора оксида хрома в 25-35 г воды растворяют 85-115 г оксида хрома (CrO3), в данной реакции шестивалентный хром восстанавливается двухвалентным железом. В результате получается 980-1290 г железохромфосфатного продукта в виде пасты зеленого цвета, содержащей 21,6-19,3% воды и 80-78% железохромфосфатного соединения ( F e 3 I I I C r I I I ( H P O 4 ) 6 ) или ( F e 6 I I I C r 2 I I I ( H P O 4 ) 12 ) или их смеси и 0,4-0,7% примесей.

При необходимости, для получения железохромфосфатного продукта в виде сухого порошка, полученную пасту высушивают, например, в термошкафу при температуре до 100°C, в результате получают железохромфосфатный продукт в виде порошка и мелких кристаллов, который измельчают до тонкодисперсного порошка любым способом.

Для получения огнеупорных композиций 5-30% железохромфосфатного продукта, полученного по заявляемому способу, смешивают с 95-70% наполнителя, в качестве которого используется минеральное сырье, например кварцевые породы, огнеупорные глины, каолин, магнезит, магнезиально-силикатные породы, шамот и др. При использовании углекислотных наполнителей (доломит, мел) возможно образование пористой массы за счет выделения углекислого газа.

Далее массу с небольшой влажностью (от 8% до 15% воды) формуют в изделия на прессах, подсушивают и проводят обжиг при температурах 1400-1450°C для изделий с кремнеземистым наполнителем, 1300-1450°C с алюмосиликатным наполнителем и каолином, 1500-1600°C с магнезитовым наполнителем.

Если применяется многослойная огнеупорная футеровка, то достаточно ввести 15-30% железохромфосфатного продукта, полученного по заявляемому способу, в огнеупорную массу для изготовления слоя огнеупорного изделия, контактирующего непосредственно с расплавом металла.

Пример 1

В 650 г 85% ортофосфорной кислоты (Н3РО4) добавляют и 60 г железа (Fe) в виде чугунной стружки. Затем небольшими порциями (по 30-60 г) растворяют постепенно 160 г порошкообразного оксида железа (Fe2O3) при постоянном перемешивании реакционной массы с дополнительным подогревом ее до 90°C-100°C при замедлении реакции (после добавления в реакционную массу всего количества порошкообразного оксида железа). Выдерживают до растворения чугунной стружки (около 1-1,5 часов) и затем охлаждают до комнатной температуры. В результате получают раствор кислого фосфата железа (FeII(H2PO4)2). Для осуществления способа может использоваться порошкообразный оксид железа, улавливаемый фильтрами очистки воздуха при производстве металла на предприятиях черной металлургии.

Далее при перемешивании в полученный раствор кислого фосфата железа добавляют порциями 110 г раствора оксида хрома (для получения раствора оксида хрома в 25 г воды растворяют 85 г оксида хрома (CrO3), в результате получается 980 г железохромфосфатного продукта в виде пасты зеленого цвета, содержащей 21,6-19,3% воды и 80-78% железохромфосфатного соединения (Fe3IIICIII(HPO4)6) или (Fe6IIICr2III(HPO4)12) или их смеси и 0,4-0,7% примесей.

При необходимости, для получения железохромфосфатного продукта в виде сухого порошка, полученную пасту высушивают, например, в термошкафу при температуре до 100°C, в результате получают железохромфосфатный продукт в виде порошка и мелких кристаллов, который измельчают до тонкодисперсного порошка любым способом.

Для получения огнеупорных композиции 5 г железохромфосфатного продукта, полученного по заявляемому способу, смешивают с 95 г минерального наполнителя (а именно с 95 г динаса, или с 95 г силимонита, или с 95 г шамота, или с 95 г каолина, или с 95 г магнезии, или с 95 г дунита, или с 95 г серпаптинита, или с 95 г обожженого доломита, или с 95 г магнезита), добавляют воду до влажности 15%. Массу формуют в изделия, подсушивают и обжигают.

Далее полученную массу формуют в изделия на прессах, подсушивают и проводят обжиг при температурах 1400-1450°C для изделий с кремнеземистым наполнителем (динас, силимонит, шамот), 1300-1450°C с алюмосиликатным наполнителем и каолином, 1500-1600°C с магнезитовым наполнителем (магнезия, дунит, серпаптинит, обожженный доломит, магнезит).

Пример 2

В 850 г 90% ортофосфорной кислоты (H3PO4) добавляют и 80 г железа (Fe) в виде чугунной стружки. Затем небольшими порциями (по 30-60 г) растворяют постепенно 210 г порошкообразного оксида железа (Fe2O3) при постоянном перемешивании реакционной массы. Реакция идет с выделением теплоты, при замедлении реакции, после добавления в реакционную массу всего количества порошкообразного оксида железа, реакционную массу дополнительно подогревают до 90°C-100°C. Выдерживают до растворения чугунной стружки (около 1-1,5 часов) и затем охлаждают до комнатной температуры. В результате получают раствор кислого фосфата железа (FeII(H2PO4)2). Для осуществления способа может использоваться порошкообразный оксид железа, улавливаемый фильтрами очистки воздуха при производстве металла на предприятиях черной металлургии.

Далее при перемешивании в полученный раствор кислого фосфата железа добавляют порциями 150 г раствора оксида хрома (для получения раствора оксида хрома в 35 г воды растворяют 115 г оксида хрома (CrO3), в результате получается 1290 г железохромфосфатного продукта в виде пасты зеленого цвета, содержащей 21,6-19,3% воды и 80-78% железохромфосфатного соединения (Fe3IIICrIII(HPO4)6) или (Fe6IIICr2III(HPO4)12) или их смеси и 0,4-0,7% примесей.

При необходимости, для получения железохромфосфатного продукта в виде сухого порошка, полученную пасту высушивают, например, в термошкафу при температуре до 100°C, в результате получают железохромфосфатный продукт в виде порошка и мелких кристаллов, который измельчают до тонкодисперсного порошка любым способом.

Для получения огнеупорных композиции 30 г железохромфосфатного продукта, полученного по заявляемому способу, смешивают с 70 г минерального наполнителя (а именно с 70 г динаса, или с 70 г силимонита, или с 70 г шамота, или с 70 г каолина, или с 70 г магнезии, или с 70 г дунита, или с 70 г серпаптинита, или с 70 г обожженого доломита, или с 70 г магнезита), добавляют воду до влажности 8%. Массу формуют в изделия, подсушивают и обжигают.

Далее полученную массу формуют в изделия на прессах, подсушивают и проводят обжиг при температурах 1400-1450°C для изделий с кремнеземистым наполнителем (динас, силимонит, шамот), 1300-1450°C с алюмосиликатным наполнителем и каолином, 1500-1600°C с магнезитовым наполнителем (магнезия, дунит, серпаптинит, обожженный доломит, магнезит).

Возможность получения огнеупорной композиции с высокими клеящими, химстойкими и огнеупорными свойствами объясняется физическими процессами, происходящими при смешивании железохромфосфатного продукта, полученного по заявляемому способу, с огнеупорными наполнителями, благодаря высоким адгезионным свойствам железохромфосфатного продукта к частицам наполнителя. Также и химически фосфатная группа препятствует проникновению атомов из расплава металла в массу огнеупора. Железохромфосфатный продукт, полученный по заявляемому способу, эффективнее и дольше препятствует проникновению атомов (или ионов железа, алюминия и др.) из расплава металла в огнеупорную массу по сравнению с алюмохромфосфатным связующим, из-за присутствия в нем наряду с большим количеством фосфатных групп и ионов железа и хрома, близких по размеру с атомами железа. Тогда как ионы алюминия и магния имеют значительно меньший размер, чем ионы железа и хрома, и поэтому слабо препятствуют проникновению атомов железа из расплавов металла в огнеупорную массу. Следовательно, огнеупорные изделия, содержащие железохромфосфатный продукт, полученный по заявляемому способу, выдерживают более высокие температуры и большее количество плавок металла, чем огнеупорные изделия с другими добавками.

1. Способ получения железохромфосфатного продукта, включающий взаимодействие ортофосфорной кислоты с соединениями металлов, отличающийся тем, что в 650-850 г ортофосфорной кислоты концентрации 85%-90% растворяют 60-80 г чугунной стружки и 160-210 г оксида железа, при замедлении реакции проводят нагрев до 90°C-100°C, после растворения чугунной стружки и оксида железа полученный раствор охлаждают, затем добавляют 85-115 г оксида хрома, полученную пасту железохромфосфатного продукта высушивают и измельчают.

2. Огнеупорная композиция, содержащая минеральный наполнитель, отличающаяся тем, что 5-30% железохромфосфатного продукта, полученного по п.1, смешивают с 95-70% минерального наполнителя и добавляют воды до влажности 8-15%.



 

Похожие патенты:
Изобретение относится к технологии неорганических веществ и может быть использовано при получении железокремниевых флокулянтов-коагулянтов и способу обработки с его помощью сточных вод промышленных предприятий, а также ливневых вод, содержащих нефтепродукты.
Изобретение относится к способу обработки насыщенной тяжелыми металлами отработанной серной кислоты с получением сульфата железа. .
Изобретение относится к способу приготовления сульфата железа (3) (Fe2(SO4)3) путем образования суспензии, которая содержит сульфат железа (2) (FeSO4) и серную кислоту, при этом суспензия содержит двухвалентное железо и в фазе раствора, и в твердой фазе и путем окисления этой суспензии до формы сульфата железа (3).

Изобретение относится к способу получения гептагидрата сульфата железа (П), используемого главным образом в производстве железосодержащих пигментов и в сельском хозяйстве в качестве мелиоранта.

Изобретение относится к способу окисления соединений двухвалентного железа и может быть использовано в гидрометаллургии для выщелачивания редких металлов из руд, в водоочистке, а также для получения соединений трехвалентного железа.

Изобретение относится к технологии электрохимических производств. .

Изобретение относится к способам переработки железосодержащих отходов предприятий черной и цветной металлургии для получения железного купороса. .

Изобретение относится к способам регенерации отработанных растворов, содержащих токсичные соединения хрома, например, кожевенного производства. .

Изобретение относится к способам получения хромового дубителя и может быть использовано в кожевенной и меховой промышленности. .

Изобретение относится к технологии получения хромовых соединений, в частности, нового соединения - гидрососульфата хрома /III/ кальция формулы CA 6CR 2(SO 4) 3(OH) 12 .25H 2O, которое может найти применение в качестве исходного материала для покрытий железокремнистых сплавов /ЖКС/.

Изобретение относится к способам получения хромовых соединений, в частности двойной соли хромсульфата натрия , и может быть использовано, например , в химической промьшшенности для получения квасцов..

Способ получения фосфатов кобальта(II)-аммония относится к промышленной экологии и к химической технологии неорганических веществ. Способ может быть использован для переработки жидких отходов получения гальванических и химических покрытий кобальтом.
Наверх