Способ лазерной обработки неметаллических материалов



Способ лазерной обработки неметаллических материалов
Способ лазерной обработки неметаллических материалов
Способ лазерной обработки неметаллических материалов
Способ лазерной обработки неметаллических материалов
Способ лазерной обработки неметаллических материалов
Способ лазерной обработки неметаллических материалов
Способ лазерной обработки неметаллических материалов
Способ лазерной обработки неметаллических материалов

 


Владельцы патента RU 2574327:

Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации (RU)

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что способ лазерной обработки неметаллических материалов заключается в облучении их поверхности импульсом лазерного излучения, формируют лазерный импульс, плотность энергии которого на облучаемой поверхности пластины определяется по представленному соотношению. Технический результат: обеспечение возможности снижения энергетических затрат и уменьшения термоупругих напряжений. 2 ил.

 

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Известен способ обработки неметаллических материалов, применяемый для аморфизации кремния и заключающийся в облучении поверхности пластины импульсом лазерного излучения [1] с плотностью энергии, достаточной для плавления поверхностного слоя. Известен также способ обработки неметаллических материалов, применяемый для отжига ионно-легированного кремния [2]. Недостатком указанных способов является то, что они не учитывают термоупругие напряжения, возникающие в пластинах в процессе обработки. Так как обрабатываемые материалы являются частично прозрачными для воздействующего излучения, возможны такие режимы, при которых термоупругие напряжения, способные разрушить пластины, будут определяющими в технологических процессах.

Также известен способ обработки неметаллических материалов [3], в котором обработка пластин осуществляется путем облучения поверхности импульсом лазерного излучения. Временная форма импульса описывается определенным соотношением в зависимости от плотности потока энергии лазерного излучения, констант b1 и b2, характеризующих фронт и спад лазерного импульса, от длительности лазерного импульса, текущего времени от начала воздействия, плотности энергии и максимального значения плотности потока лазерного излучения в импульсе. Эффект достигается тем, что формируют лазерный импульс, временная форма которого описывается соотношением

где q(t) - плотность потока энергии лазерного излучения, Вт/м2;

τ - длительность импульса лазерного излучения, с;

b1 и b2 - константы, характеризующие фронт и спад лазерного импульса;

t - текущее время от начала воздействия, с.

Указанный способ позволяет минимизировать термоупругие напряжения в поглощающем слое материала пластины при воздействии лазерных импульсов длительностью менее 10-6 с, когда рассматривается динамическая задача термоупругости [4]. Но этот способ не работает, когда длительность лазерного импульса составляет ~10-2-10-6 с, и необходимо рассматривать квазистатическую задачу термоупругости.

Наиболее близкий по существенным признакам является способ лазерной обработки [5], в частности, используемый для лазерного отжига неметаллических пластин, в котором плотность энергии на поверхности пластины определяется по соотношению

где Tf - температура отжига;

Т0 - начальная температура;

c и ρ - удельная теплоемкость и плотность материала пластины соответственно;

R - коэффициент отражения материала пластины;

χ - показатель поглощения материала пластины на длине волны лазерного излучения.

Этот способ выбран в качестве прототипа. Недостатком способа является то, что он не позволяет минимизировать термоупругие напряжения и уменьшить энергетические затраты в процессе обработки.

Целью предлагаемого изобретения является снижение энергетических затрат и уменьшение термоупругих напряжений при лазерном отжиге неметаллических материалов, обладающих объемным поглощением лазерного излучения, например полупроводниковых, керамических и стеклообразных материалов.

Поставленная цель достигается тем, что вышедшее из пластины лазерное излучение возвращается в нее при помощи зеркала с коэффициентом отражения ~0,99, а плотность энергии лазерного излучения на облучаемой поверхности пластины рассчитывают по уравнению

где h - толщина пластины.

Ниже приводится более подробное описание способа обработки неметаллических материалов с поясняющей схемой на фиг. 1 и основными зависимостями на фиг. 2

Сущность способа состоит в следующем. Для осуществления лазерного отжига пластины 3 из неметаллического материала ее поверхность подвергают воздействию лазерного импульса. Для предотвращения изгиба пластины 3 при обработке ее, как правило, свободно защемляют по контуру [6]. Пластина 3 полностью накрывается лазерным излучением. Полное накрытие лазерным излучением обеспечивается расфокусирующей или собирающей линзой 2 в зависимости от выходной апертуры лазера 1. В этом случае температурное поле в пластине будет изменяться только по ее толщине. В свободно защемленной по контуру пластине под действием температурного поля, изменяющегося только по толщине пластины, возникают термоупругие напряжения [6]:

где:

E - модуль Юнга материала пластины;

ν - коэффициент Пуассона материала пластины;

αT - коэффициент линейного расширения материала пластины;

z - координата, отсчитываемая от облучаемой поверхности пластины вглубь.

Уравнения (3) и (4) показывают, что максимальные растягивающие напряжения возникают в сечении пластины z=h, где температура минимальна.

Если выполняется условие

то температурное поле в пластине к концу действия лазерного импульса будет определяться уравнением [7]

a - коэффициент температуропроводности материала пластины;

τu - длительность лазерного импульса;

- плотность энергии лазерного излучения.

Условие (5) для большинства полупроводниковых, стеклообразных и керамических материалов выполняется при τu<0,01 с.

Если лазерное излучение, вышедшее из пластины, при помощи зеркала 4 с коэффициентом отражения, близким к 1, направить назад в пластину, то температурное поле в пластине будет определяться соотношением

Подставив (6) и (7) в (4) и (3) и выполнив математические преобразования, получим соотношения для расчета максимальных растягивающих термоупругих напряжений, возникающих в сечении пластины z=h, где температура минимальна, для случая традиционного облучения поверхности пластины лазерным излучением

и для случая возвращения вышедшего из пластины излучения при помощи зеркала с коэффициентом отражения, близким к единице

Если максимальные растягивающие напряжения превысят предел прочности материала пластины на растяжение, она будет разрушена термоупругими напряжениями. Так как предел прочности материала имеет разброс от образца к образцу и в различных партиях пластин вследствие дефектов неизбежен брак в процессе их обработки.

Плотность энергии лазерного излучения, необходимая для достижения облучаемой поверхностью температуры отжига, для первого и второго случаев рассчитывают по уравнениям (1) и (2) соответственно. Для оценки положительного эффекта найдем отношения:

На фиг. 2 представлены зависимости указанных отношений от безразмерного параметра χh. Видно, что положительный эффект по уменьшению энергетических затрат проявляется при χh<2 и может приводить к экономии до 40% энергии излучения лазера при χh~0,1. Уменьшение максимальных растягивающих напряжений при реализации описанного способа обработки проявляется при χh<8. Максимальные растягивающие напряжения могут быть уменьшены, например, более чем в 10 раз при χh~0,1, что должно существенно повысить выход годных пластин при высокотемпературном лазерном отжиге.

Таким образом, реализация предложенного способа лазерной обработки неметаллических материалов приводит к уменьшению энергетических затрат и снижению максимальных растягивающих напряжений в обрабатываемых пластинах.

Литература

1. Боязитов P.M. и др. Аморфизация и кристаллизация кремния субнаносекундными лазерными импульсами. Тезисы докладов Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград. 11-18 марта 1988 г., с. 24.

2. Кузменченко Т.А. и др. Лазерный отжиг ионно-легированного кремния излучением с длиной волны 2,94 мкм. Тезисы докладов Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград. 11-18 марта 1988 г., с. 29.

3. Патент RU 2211753.

4. Коваленко А.Ф. Экспериментальная установка для исследования влияния параметров лазерного импульса на разрушение неметаллических материалов // Приборы и техника эксперимента. - 2004. №4. - С. 119-124.

5. Коваленко А.Ф. Неразрушающие режимы импульсного лазерного отжига стеклянных и керамических пластин // Стекло и керамика. 2006. №7. С. 31-33.

6. Коваленко А.Д. Термоупругость. Киев, «Вища школа», 1973, - 216 с.

7. Лазерная и электронно-лучевая обработка материалов: Справочник / Н.Н. Рыкалин, А.А Углов, И.В. Зуев, А.Н. Кокора. - М.: Машиностроение, 1985, - 496 с.

Способ лазерной обработки неметаллических материалов, заключающийся в облучении их поверхности импульсом лазерного излучения, отличающийся тем, что формируют лазерный импульс, плотность энергии которого на облучаемой поверхности пластины определяется по соотношению

где T f - температура отжига;
T 0 - начальная температура;
c и ρ - удельная теплоемкость и плотность материала пластины соответственно;
R - коэффициент отражения материала пластины;
χ - показатель поглощения материала пластины на длине волны лазерного излучения;
h - толщина пластины,
а вышедшее через тыльную поверхность пластины лазерное излучение при помощи зеркала с коэффициентом отражения, близким к единице, возвращают в пластину.



 

Похожие патенты:

Изобретение может быть использовано для лазерного пробития сквозных отверстий в пластинах из полупроводниковых, керамических и стеклообразных материалов. Способ обработки неметаллических пластин согласно изобретению заключается в облучении их поверхности лазерным импульсом с минимальной расходимостью.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к области нанотехнологий, в частности к получению наноструктур на поверхности полупроводника. Способ модификации полупроводниковой пленки согласно изобретению заключается в том, что воздействуют на полупроводниковую пленку непрерывным лазерным излучением с энергией кванта превосходящей ширину запрещенной зоны в диапазоне мощности от 5 до 10 Вт, при диаметре лазерного пучка на поверхности пленки от 30 до 100 мкм, так чтобы интенсивность воздействия не превышала 106 Вт/см2, при сканировании поверхности пленки со скоростью от 40 до 160 мкм/с.

Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике. Cпособ получения рельефа на поверхности светоизлучающих кристаллов полупроводниковых светодиодов локальными эрозионными воздействиями на поверхность, при этом в соответствии с изобретением, эрозия производится оптико-термическим действием импульсного лазерного излучения, проникающего в кристалл, с глубиной поглощения в кристалле, близкой к глубине эрозии, и длительностью лазерных импульсов, меньшей времени распространения тепловой волны нагревания кристалла на глубину эрозии, причем энергия импульса лазерного излучения не менее приводящей к процессу поверхностного испарения кристалла.

Изобретение относится к оптике. Способ изготовления дифракционной решетки заключается в формировании на поверхности исходной подложки элементов заданной структуры дифракционной решетки путем ионной имплантации через поверхностную маску, при этом имплантацию осуществляют ионами металла с энергией 5-1100 кэВ, дозой облучения, обеспечивающей концентрацию вводимых атомов металла в облучаемой подложке 3·1020-6·1022 атомов/см3, плотностью тока ионного пучка 2·1012-1·1014 ион/см2с в оптически прозрачную диэлектрическую или полупроводниковую подложку.

Изобретение относится к области материалов полупроводниковой электроники и может быть использовано для создания элементов спинтронных устройств, сочетающих источник и приемник поляризованных спинов носителей заряда в тройной гетероструктуре ферромагнитный полупроводник/немагнитный полупроводник/ферромагнитный полупроводник.

Изобретение относится к области технологических процессов и может быть использовано для скрайбирования полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к области электронной промышленности и может быть использовано в технологии микро- и наноэлектроники для получения атомарно-гладких поверхностей и совершенных эпитаксиальных структур на разориентированных поверхностях образцов.

Изобретение относится к технологии получения ферромагнитных полупроводниковых материалов. .

Использование: для отжига и легирования пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что поверхность обрабатываемого материала облучают импульсом лазерного излучения, при этом материал предварительно нагревают до температуры, рассчитываемой по соотношению где σПР - предел прочности материала на растяжение, Па; с0 - скорость звука в материале, м/с; К - модуль всестороннего сжатия, Па; α - коэффициент линейного расширения материала, К-1. Технический результат: уменьшение максимальных растягивающих напряжений и исключение откольного разрушения материалов со стороны облучаемой поверхности. 1 ил.
Наверх