Установка для измерения механических сопротивлений упругих вставок в трубопроводах



Установка для измерения механических сопротивлений упругих вставок в трубопроводах
Установка для измерения механических сопротивлений упругих вставок в трубопроводах
Установка для измерения механических сопротивлений упругих вставок в трубопроводах
Установка для измерения механических сопротивлений упругих вставок в трубопроводах
Установка для измерения механических сопротивлений упругих вставок в трубопроводах

 


Владельцы патента RU 2577790:

Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (RU)

Изобретение относится к испытательным стендам для определения механических сопротивлений упругих вставок в трубопроводы с жидкостью. Техническим результатом заявляемой установки является обеспечение проведения достоверных измерений механических сопротивлений гибких вставок в трубопроводы. Технический результат достигается за счет жесткого крепления поршня входной и выходной камер через упор и поршня к опорным уголкам и использования, по меньшей мере, четырех вибраторов, расположения датчиков силы между входной камерой и фланцем упругой вставки, что в совокупности обеспечивает создание установки для проведения достоверных измерений механических сопротивлений благодаря соблюдению граничных условий по рабочей среде упругой вставки в трубопроводы с жидкостью. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к испытательной технике, в частности к устройствам для измерения механических сопротивлений упругих вставок в трубопроводы с жидкостью.

Известен стандарт ISO 10846, в котором представлены общие принципы измерения динамической жесткости опорных и неопорных упругих элементов.

Недостатком известного стандарта является то, что в нем не рассматриваются гибкие вставки в трубопроводы с жидкостью.

Известна установка для нагружения конструкций при прочностных испытаниях (а.с. SU №795147, МПК G01M 5/00, опубл. 27.08.1995), состоящая из металлической пластины основания, на которой закреплены жесткие уголки, входящая и выходящая камеры, гидродвигатель, датчики силы пластины и ускорения, системы подачи воды и возбуждения, блок регистрации и обработки сигналов.

Недостатком известной установки является то, что установка не обеспечивает измерение механических сопротивлений из-за невыполнения требуемых граничных условий по рабочей среде упругой вставки, поскольку возбуждение фланца упругой вставки осуществляется одновременно с жидкостью.

Техническим результатом заявляемой установки является создание установки, обеспечивающей проведение достоверных измерений механических сопротивлений упругих вставок в трубопроводах с жидкостью.

Технический результат достигается за счет жесткого крепления поршня входной и выходной камер через упоры к жестким опорным уголкам для выполнения требуемых граничных условий проведения измерений и размещения датчиков силы между входной камерой и фланцем упругой вставки для исключения влияния уплотнительных колец на достоверность измеряемых параметров механических сопротивлений.

Заявляемая установка позволяет достоверно определять входное и передаточное сопротивления упругой вставки в трубопроводы с жидкостью в осевом направлении при номинальном статическом давлении.

Сущность заявляемой установки поясняется следующими чертежами:

фиг. 1 - установка для измерения механических сопротивлений упругих вставок в трубопроводы, общий вид;

фиг. 2 - установка для измерения механических сопротивлений упругих вставок в трубопроводы, схема;

фиг. 3 - установка в аксонометрии, общий вид.

Установка для измерения механических сопротивлений упругих вставок в трубопроводы с жидкостью (фиг. 1 и фиг. 2) состоит из двух металлических опорных уголков 2 с закрепленными на них входной камерой 3, на фланце которой закреплены равномерно расположенные по окружности (фланца) по меньшей мере четыре вибратора 5 (вибровозбудителя), например пьезокерамические, выходной камерой 4 с датчиками силы 8 на выходе, датчиков ускорения 6 и датчиков силы 7 на входе, поршня 9 с уплотнительными кольцами на входе, поршня 10 с уплотнительными кольцами (ГОСТ 9833-73) на выходе, упора 11 для поршня на входе, при этом поршни входной камеры 3 и выходной камеры 4 жестко закреплены через упор 11 и поршень 10 к двум опорным уголкам 2, системы подачи воды 12 и системы возбуждения 15 на входе, блока регистрации и обработки сигналов 14 на входе и на выходе рабочей среды упругой вставки 1. В поршне 10 с уплотнительными кольцами на выходе выполнено отверстие выхода воздуха 13 с заглушкой для удаления пузырьков воздуха из полости упругой вставки 1.

Заявляемая установка для измерения механических сопротивлений упругих вставок в трубопроводы работает следующим образом.

Через отверстие в поршне 9 с уплотнительными кольцами на входе в упругую вставку 1 подается жидкость по системе подачи воды 12, давление воды в упругой вставке 1 контролируют манометром. Для соблюдения граничных условий неподвижности жидкости на выходе, выходная камера 4 жестко крепится к опорному уголку 2 через датчики силы 8 на выходе. Жесткое крепление к двум опорным уголкам 2 поршня 9 с уплотнительными кольцами на входе через упор для поршня 11 на входе и поршня 10 на выходе обеспечивает соблюдение граничных условий неподвижности жидкости на выходе упругой вставки 1 (фиг. 2) за счет фиксации поршней 10, 11 к опорным уголкам 2, что позволяет достичь нулевого значения скорости жидкости на входе и выходе для достоверного измерения механических сопротивлений при номинальном статическом давлении.

В заявляемой установке система возбуждения 15 и вместо гидродвигателя по меньшей мере четыре, например пьезокерамических, вибратора 5, которые за счет синфазной работы создают условия строго поступательного смещения фланцев на входе упругой вставки 1 в осевом направлении без угловых перемещений и предотвращают возбуждение фланца упругой вставки 1 одновременно с жидкой рабочей средой трубопровода, что способствует соблюдению граничных условий по рабочей среде упругой вставки 1 и, тем самым, повышает достоверность измерений механических сопротивлений упругой вставки. Кроме того, вибраторы 5 воспринимают распорное усилие, возникающее в упругой вставке 1 при рабочем давлении жидкости в ней, что также повышает достоверность измерения механических сопротивлений.

Датчики ускорения 6, датчик силы 7 на входе и датчик силы 8 на выходе, блок регистрации и обработки сигналов 14 на входе и выходе измеряют механические (входное и передаточное) сопротивления упругих вставок в трубопроводы с жидкостью.

Отличительной особенностью поршня 9 с уплотнительными кольцами на входе (фиг. 3) является расположение датчиков силы 7 между входной камерой 3 и фланцем упругой вставки 1. Уплотнение, выполненное на основе уплотнительных колец по ГОСТ 9833-73, предотвращает контакт металла с металлом между входной камерой 3 и фланцем упругой вставки 1. Контакт осуществляется через датчики силы 7 на входе. Заявленное расположение датчиков силы и уплотнение исключает влияние уплотнительных колец на измеряемые параметры механических сопротивлений.

Таким образом, соблюдение граничных условий по рабочей среде упругой вставки за счет жесткого крепления поршней входной и выходной камер через упоры к опорным уголкам, исключение влияния конструктивных элементов заявляемой установки за счет расположения датчиков силы между входной камерой и фланцем упругой вставки, создание условий строго поступательного движения в осевом направлении за счет использования по меньшей мере четырех вибраторов обеспечивает создание установки для проведения достоверных измерений механических сопротивлений упругих вставок в трубопроводы с жидкостью.

1. Установка для измерения механических сопротивлений упругих вставок в трубопроводы, состоящая из двух металлических опорных уголков, входной и выходной камер, датчиков силы и ускорения, систем подачи воды и возбуждения, блока регистрации и обработки сигналов, отличающаяся тем, что поршни входной и выходной камер жестко закреплены через упоры к опорным уголкам, при этом используются по меньшей мере четыре вибратора.

2. Установка по п.1, отличающаяся тем, что датчики силы расположены между входной камерой и фланцем упругой вставки.



 

Похожие патенты:

Система (6) для сброса грузов из летательного аппарата (10) содержит грузовой парашют (2) с канатом (4) грузового парашюта и средства (21) приведения в действие, предназначенные для введения грузового парашюта (4) в окружающий воздушный поток позади летательного аппарата (10).

Настоящее изобретение относится к оборудованию для изготовления шин. В частности, настоящее изобретение относится к противодеформационному узлу для обеспечения осевой устойчивости оборудования для производства шин, которое включает в себя вращающийся, расширяющийся или сжимающийся барабан.

Изобретение относится к области измерительной техники и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых преобразователей силы, механических напряжений и деформаций, работоспособных при повышенных и пониженных температурах.

Изобретение относится к конструкциям усиленных панелей и касается расчета сопротивления таких конструкций, подвергшихся комбинированным нагрузкам. Панель выполнена из однородного и изотропного материала.

Изобретение относится к системам водоотведения. В системе, включающей модуль перекачки воды, содержащий насосы, приемный резервуар с подводящим трубопроводом, модуль анализа диагностируемых параметров, модуль контрольно-измерительных приборов, блок ввода объемов приемного резервуара, блок анализа водопритока, модуль анализа диагностируемых параметров, снабженный блоками ввода геометрических характеристик приемного резервуара, ввода гидравлических характеристик подводящего трубопровода, анализа откачки воды из приемного резервуара, модуль контрольно-измерительных приборов снабжен датчиками уровня воды, установленными на подводящем трубопроводе и в приемном резервуаре, модуль перекачки воды снабжен запорно-регулирующим устройством с исполнительным органом, установленным на подводящем трубопроводе, устройством управления, при этом выходы блоков ввода геометрических характеристик приемного резервуара, ввода гидравлических характеристик подводящего трубопровода и блока анализа откачки воды из приемного резервуара подключены к входу блока анализа водопритока.

Изобретение относится к способу контроля продольно-напряженного состояния рельсовых плетей бесстыкового железнодорожного пути. Определение продольных напряжений осуществляют непрерывно в движении железнодорожного подвижного состава при механическом взаимодействии катящегося железнодорожного колеса и рельса при возбуждении механических колебаний на контролируемых участках рельсовых плетей с регистрацией, преобразованием полученных колебаний в акустические и усилением сигнала, и при анализе спектра возбуждаемых колебаний по частоте и амплитуде, зависящих от величины продольных механических напряжений участков рельсовых плетей.

Изобретение относится к датчику веса автотранспортного средства (АТС). Техническим результатом изобретения является повышение точности измерений и увеличение длительности жизненного цикла датчика в конкретных дорожных условиях.

Способ определения напряжений в конструкции без снятия статических нагрузок может быть использован для оценки прочности конструкции и прогнозирования ее несущей способности.

Изобретение относится к области измерения напряжения начального сдвига (пластичности) жидкостей в трубопроводе, например молока в шлангах доильного аппарата. Предложенный способ измерения напряжения сдвига столбика молока заключается в том, что предварительно устанавливается с помощью одного нагнетателя давление h1 = 20 - 25 мм водяного столба в стеклянной емкости, связанной трубопроводами с дифференциальным водяным манометром и капилляром, а трубопровод капилляра перекрыт зажимом, и с помощью второго нагнетателя всасывается в капилляр порция молока на длину столбика l0 = 1 - 2 см, после чего трубопровод перекрывается зажимом, устанавливается h2 = 25 - 30 мм водяного столба, зажим раздвигается.

Изобретение относится к редукторам дыхательных аппаратов. Редуктор содержит корпус и выполненные в нем три разделенные стенками камеры: камеру высокого давления (КВД) и камеру редуцированного давления (КРД), разделенные первой стенкой, камеру регулирования (КР), отделенную второй стенкой от КРД; седло с отверстием в первой стенке; перегородку с подвижным плунжером и клапаном, размещенным в КРД, разделяющую КР на поршневую и кольцевую полости; первый канал, соединяющий КРД с поршневой полостью КР; второй канал, соединяющий кольцевую полость КР с окружающей средой, третий канал с дросселем, соединяющий КВД с кольцевой полостью КР; обратный клапан, подсоединенный ко второму каналу.

Изобретение относится к способам оценки напряженно-деформированного состояния (НДС) и может быть использовано для определения механических напряжений и деформаций элементов сложных конструкций расчетно-экспериментальным методом. Сущность: осуществляют проведение прямых измерений напряжений в контрольных точках, определение НДС по результатам расчета методом конечных элементов с использованием результатов прямых измерений для корректировки расчетной схемы. Осуществляют выполнение прямых измерений именно методом акустоупругости, позволяющим определить не поверхностные, а усредненные по толщине стенки напряжения, и процедуру определения силовых граничных условий, действующих на каждый элемент сложной конструкции непосредственно по результатам прямых измерений напряжений с последующим выполнением уточняющего прочностного расчета. Технический результат: повышение достоверности расчетной оценки напряженно-деформированного состояния элементов сложных конструкций при выполнении расчета методом конечных элементов за счет определения силовых граничных условий расчетной модели по результатам измерения напряжений инструментальными методами.
Наверх