Катализатор для очистки газов от оксидов азота и углерода (ii)

Изобретение относится к катализатору для очистки газовых выбросов от оксидов азота и углерода (II), содержащему комплекс переходного металла, нанесенного на носитель из оксида алюминия. При этом в качестве переходного металла выбрано комплексное соединение меди - 3-(2-гидроксибензоил)-2Н-хромен-2-она, раствором которого пропитывают носитель, при следующем содержании компонентов, мас.%: комплексное соединение меди 3-(2-гидроксибензоил)-2Н-хромен-2-она - 0,1-0,3; оксид алюминия - остальное. Технический результат заключается в обеспечении 100 % обезвреживания газовых выбросов от токсичных примесей оксида азота и углерода (II), начиная уже с температуры 150°C при упрощении технологии приготовления. 1 табл., 1 ил., 5 пр.

 

Изобретение относится к разработке к получению катализатора и может быть использовано в процессах очистки промышленных газовых выбросов и выхлопных газов автотранспорта от оксидов азота и монооксида углерода.

Известны катализаторы окислительно-восстановительной очистки газов от оксидов азота и углерода, включающие переходные металлы или их оксиды, нанесенные на твердые носители (см. патент РФ №2162011, МПК B01J 23/72).

Недостатком таких катализаторов является высокое содержание нескольких активных металлов и необходимость многостадийных процессов их приготовления.

Известны биметаллические катализаторы промышленной очистки, получение которых основано на физических факторах формирования активной поверхности многокомпонентной твердой системы (воздействия ультразвука и плазменного напыления).

Известны металлокомплексные катализаторы санитарной очистки воздуха, содержащие комплексные соединения металлов, нанесенные на носители. Наиболее распространенные из них - системы, включающие фталоцианиновые комплексы переходных металлов.

Известен катализатор для очистки воздуха от монооксида углерода (см. патент РФ №2267354, МПК B01J 23/89), содержащий нанесенные на оксид алюминия соль палладия, соль меди, и промотор, в качестве которого он содержит фталоцианиновый комплекс железа или кобальта и полиатомный спирт при следующем соотношении компонентов, мас.%: соль палладия 0,80-2,54, соль меди 3,09-11,79, фталоцианиновый комплекс железа или кобальта 0,10-1,00, полиатомный спирт 0,50-3,00, оксид алюминия - остальное.

Его недостатком является высокое содержание металлов (одного или нескольких) и многократность процессов упаривания и прокаливания, что существенно усложняет технологию синтеза и удорожает катализатор.

Известен металлофталцианиновый катализатор очистки дымовых и выхлопных газов химических производств ТЭЦ, котельных и двигателей внутреннего сгорания отоксидов азота, углерода и углеводородов на гранулированном или монолитном носителе, в качестве которого используют никельалюминиевую металлокерамику, пропитанную раствором β-фталоцианина, а именно тетрасульфофталлоцианин кобальта (II) с последующей термообработкой (см. А.С. СССР №1775143, B01D 3/36).

Недостатком данного катализатора является низкая степень конверсии NO - всего 24,4%.

Наиболее близким к предлагаемому катализатору по технической сущности и получаемому результату является катализатор обработки отходящих газов для снижения их токсичности, выполненный на основе вещества, содержащего циановые комплексы одного или нескольких переходных металлов на носителе (см. патент РФ №2181618, МПК B01D 53/86, B01J 31/06). Однако данный катализатор не проявляет активности при очистке низкотемпературных газов. Кроме того, к недостаткам катализатора следует отнести необходимость термообработки нанесенного вещества (тетра сульфофталлоцианина кобальта) при 600-1000°С в атмосфере инертного газа (азота или аргона) до возникновения сшитой полимерной системы из полиазамакроциклов при скорости нагревания менее 3°С/с. Кроме того, стадия высокотемпературной сшивки металлокомплекса (02-05% мас.) требует исключения кислорода во время термообработки.

Задачей настоящего изобретения является разработка высокоэффективного катализатора очистки газов от оксидов азота и углерода (II). Технический результат заключается в обеспечении 100% обезвреживания газовых выбросов от токсичных примесей оксида азота и углерода II, начиная уже с температуры 150°С при упрощении технологии приготовления.

Поставленная задача решается тем, что в катализаторе для очистки газовых выбросов от оксидов азота и углерода (II), содержащем носитель на основе оксида алюминия, пропитанный модифицирующим раствором активного компонента, согласно изобретению, в качестве каталитически активного компонента выбрано комплексное соединение меди - 3-(2-гидроксибензоил)-2H-хромен-2-она (брутто формула [Cu2(C16H10O5) (СН3СОО)2(H2O)2]) при следующем содержании компонентов, масс.%: комплексное соединение меди 3-(2-гидроксибензоил)-2Н-хромен-2-она - 0,1-0,3; оксид алюминия - остальное.

Изобретение поясняется чертежом, где на фиг. 1 представлены результаты термических исследований комплексного соединения меди (металлокомплексной соли меди) 3-(2-гидроксибензоил)-2H-хромен-2-она; в таблице 1 приведены результаты восстановления оксидов азота монооксидом углерода на меднокомплексных катализаторах. Способ приготовления катализатора очистки газовых выбросов от оксидов азота и углерода (II) включает пропитку носителя модифицирующими раствором металлокомплексной соли меди, последующую сушку и прокаливание. Синтез указанной соли осуществляют по известному способу получения различных координационных соединений с органическими, особенно гетероциклическими лигандами путем измения лигандного окружения металла. (Elham S. Aazam. Synthesis and Characterization of Mononuclear and Binuclear Metal Complexes of a New Fluorescent Dye Derived from 2-Hydroxy-1-Naphthaldehyde and 7-Amino-4-Methylcoumarin / JKAU: Sci., 2010. Vol. 22 No. 2, pp: 101-116).

Синтез исходного комплексного соединения меди осуществляется по следующей методике: в плоскодонную колбу, снабженную магнитной мешалкой, помещают 10 мл этанола-ректификата, 0.5 г (0,002 моль) 3-(2-гидроксибензоил)2Н-хромен-2-она и 0.72 г (0.004 моль) ацетата меди (II). Реакционную смесь перемешивают при 50°С. Нагревание продолжают до полного исчезновения свободного лиганда. Образовавшееся комплексное соединение меди 3-(2-гидроксибензоил)-2Н-хромен-2-она в виде дигидрата отфильтровывают, промывают спиртом, сушат. Получают 0.58 г, Тпл.=270-272°С.

Результаты физико-химических исследований свойств указанной соли позволили определить оптимальные условия приготовления и применения катализатора окислитель-восстановительной реакции оксидов азота и углерода (II). Исследование термической устойчивости комплексной соли меди показало, что оно содержит воду, которая медленно удаляется в интервале температур 80-150°С с убылью массы 7 мас.%. Дальнейшее нагревание до 400°С протекает без убыли массы соединения, выше (с максимум при 530°С) на кривой ДТА отмечен значительный эндотермический эффект, связанный с окислением продуктов разложения исходной соли, заканчивающийся при 750°С (см. фиг. 1). Для подтверждения достижения технического результата были приготовлены составы с различным значением содержания активного компонента (табл. 1).

Пример 1. Носитель катализатора - оксид алюминия (γ-Al2O3 с Sуд.=176 м2/г) массой 10 г перед нанесением соединения меди подвергали термической обработке при Т=600°С в течение 3 часов. К 0,005 г металлокомплексной соли меди - 3-(2-гидроксибензоил)-2Н-хромен-2-она добавляется 50 мл этанола, с помощью нагревания до 70°С и перемешивания соль растворяется. В полученный раствор погружается прокаленный оксид алюминия, который пропитывается в течение 24 часов, растворитель выпаривается при температуре 75°С, а полученный катализатор высушивается в воздухе при температуре 100°С в течение 3 часов. Температура 100% конверсии оксидов азота и монооксида углерода - выше 200°С.

Пример 2. Носитель катализатора - оксид алюминия (γ-Al2O3 с Sуд.=176 м2/г) массой 10 г перед нанесением соединения меди подвергали термической обработке при Т=600°С в течение 3 часов.

К 0,01 г металлокомплексной соли меди - 3-(2-гидроксибензоил)-2Н-хромен-2-она добавляется 50 мл этанола, с помощью нагревания до 70°С и перемешивания соль растворяется.

В полученный раствор погружается прокаленный оксид алюминия, который пропитывается в течение 24 часов, растворитель выпаривается при температуре 75°С, а полученный катализатор высушивается в воздухе при температуре 100°С в течение 3 часов. Температура 100% конверсии оксидов азота и монооксида углерода - выше 150°С.

Пример 3. Носитель катализатора - оксид алюминия (γ-Al2O3 с Sуд.=176 м2/г) массой 10 г перед нанесением соединения меди подвергали термической обработке при Т=600°С в течение 3 часов.

К 0,02 г металлокомплексной соли меди - 3-(2-гидроксибензоил)-2Н-хромен-2-она добавляется 50 млэтанола, с помощью нагревания до 70°С и перемешивания соль растворяется. В полученный раствор погружается прокаленный оксид алюминия, который пропитывается в течение 24 часов, растворитель выпаривается при температуре 75°С, а полученный катализатор высушивается в воздухе при температуре 100°С в течение 3 часов.

Температура 100% конверсии оксидов азота и монооксида углерода - выше 150°С.

Пример 4. Носитель катализатора - оксид алюминия (γ-Al2O3 с Sуд.=176 м2/г) массой 10 г перед нанесением соединения меди подвергали термической обработке при Т=600°С в течение 3 часов.

К 0,03 г металлокомплексной соли меди - 3-(2-гидроксибензоил)-2Н-хромен-2-она добавляется 50 мл этанола, с помощью нагревания до 70°С и перемешивания соль растворяется. В полученный раствор погружается прокаленный оксид алюминия, который пропитывается в течение 24 часов, растворитель выпаривается при температуре 75°С, а полученный катализатор высушивается в воздухе при температуре 100°С в течение 3 часов.

Температура 100% конверсии оксидов азота и монооксида углерода - выше 150°С.

Пример 5. Носитель катализатора - оксид алюминия (γ-Al2O3 с Sуд.=176 м2/г) массой 10 г перед нанесением соединения меди подвергали термической обработке при Т=600°С в течение 3 часов.

К 0,04 г металлокомплексной соли меди - 3-(2-гидроксибензоил)-2Н-хромен-2-она добавляется 50 мл этанола, с помощью нагревания до 70°С и перемешивания соль растворяется. В полученный раствор погружается прокаленный оксид алюминия, который пропитывается в течение 24 часов, растворитель выпаривается при температуре 75°С, а полученный катализатор высушивается в воздухе при температуре 100°С в течение 3 часов.

Температура 100% конверсии оксидов азота и монооксида углерода - выше 150°С.

Катализатор испытывали в процессе комплексной очистки модельных газовых смесей от оксидов азота и углерода (II) в интервале температур 100-400°С.

Опыты проводились на проточной установке с загрузкой 4-10 см3 катализатора в интервале Т=100-400°С при объемных скоростях газа 500-25000 ч-1. Соотношение CO/NO в исходной смеси варьировалось от 1,1 до 1,6 при содержании оксида азота 0,2-2,0% об. Для моделирования состава отходящих газов двигателей внутреннего сгорания в исходную смесь в ряде опытов вводился метан в количестве 1,0-1,5 % об.

Результаты восстановления оксидов азота монооксидом углерода на меднокомплексных катализаторах представлены в таблице 1.

Катализатор для очистки газовых выбросов от оксидов азота и углерода (II), содержащий комплекс переходного металла, нанесенного на носитель из оксида алюминия, отличающийся тем, что в качестве переходного металла выбрано комплексное соединение меди - 3-(2-гидроксибензоил)-2Н-хромен-2-она, раствором которого пропитывают носитель, при следующем содержании компонентов, мас.%:
комплексное соединение меди 3-(2-гидроксибензоил)-2Н-хромен-2-она - 0,1-0,3;
оксид алюминия - остальное.



 

Похожие патенты:

Изобретение относится к способу получения бис-(эндо-бицикло[4.2.1]нона-2,4-диенов) общей формулы (1). При этом α,ω-диаллены общей формулы взаимодействуют с 1,3,5-циклогептатриеном (ЦГТ) в присутствии каталитической системы TiCl4-Et2AlCl, при мольном соотношении α,ω-диаллен:ЦГТ:TiCl4:Et2AlCl = (9-11):20:(0.1-0.3):4, температуре 20-80°C, в бензоле, в течение 10-48 ч.

Настоящее изобретение относится к способу приготовления каталитического комплекса, имеющего формулу где R1, R2, R3 и R4 независимо выбраны из группы, состоящей из водорода, C1-C20алкила, C2-C20алкоксигруппы, галогена и аминогруппы, где если R1 или R3 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой алкил, если R2 или R4 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой C1-C20алкил.

Изобретение относится к способу получения пентацикло[8.4.0.03,7.04,14.06,11]тетрадека-8,12-диена формулы (1). Способ характеризуется каталитической димеризацией 1,3,5-циклогептатриена (ЦГТ).

Изобретение относится к области органической химии, в частности к способу получения алкиловых эфиров 1- и 2-нафталинкарбоновых кислот, которые используются в синтезе гербицидов, гормонов роста растений, красителей, фотоматериалов и полимеров.
Изобретение относится к улучшенному способу получения N,N-диэтилокта-2,7-диен-1-амина, который может быть использован для синтеза ПАВ и антиоксидантов резины. Способ заключается в каталитической теломеризации бутадиена с диэтиламином в присутствии катализатора на основе катионных комплексов палладия (II) общей формулы [(acac)Pd(L)2]BF4 (где асас-ацетилацетонатный лиганд, L=PPh3, PiPr3, PnBu3 P(p-Tol)3 или (L)2 = дифосфиновые лиганды, выбранные из бис(дифенилфосфино)метана(dppm), бис(дифенилфосфино)пропана(dppp), бис(дифенилфосфино)бутана(dppb), бис(дифенилфосфино)ферроцена(dppf)).

Изобретение относится к химической промышленности, к получению соединений тетрапиразинопорфиразинового ряда, а именно к октасульфооктафенилтетрапиразинопорфиразину кобальта формулы которое может быть использовано в качестве катализатора реакций окисления серусодержащих соединений, в частности цистеина и тиомочевин, а также диэтиламина, причем в кислых и нейтральных средах.

Изобретение относится к новым P,N-бидентатным лигандам формулы (I): где А представляет S или NR,где R представляет C1-C4 алкил,R1 и R 2 представляют водород, C1-C4 алкил или R1 и R2 могут быть замкнуты в бензольное кольцо,R3 и R4 представляют C 1-C4 алкил или фенил,R5 и R6 представляют C1-C4 алкил.

Изобретение относится к новым гетероарил-арилдифосфинам формул (I) и (II), где для соединений формулы (I) A=S, если В=С; А=N, если B=N, R1 - водород или C1-C4 алкил, R2-R5-фенил, R6 и R7 - водород, n=0 или 1, R8-R11 - водород; для соединений ф-лы (II) A=N, если В=С, R1=С1-С4алкил, А=С, если B= N, R1 - водород; A=N, если В=Н, R1=0; А=О, если В=С, R1=0, R2-R5 - фенил, R8-R11 - водород или C1-C4 алкил.

Изобретение относится к получению катализатора для олигомеризации стирола в димеры, которые используются как сырье в органическом синтезе, в производстве синтетических каучуков, теплоносителей, изоляторного масла, как растворители полистирола.

Изобретение относится к фильтру для твердых частиц, который установлен в канале выхлопных газов двигателя внутреннего сгорания. Сущность изобретения: фильтр для твердых частиц, ограниченный пористыми разделительными стенками, имеющими поры, размер которых обеспечивает пропускание через них золы и зольных агрегатов.

Изобретение относится к каталитическим композициям, применяемым в качестве катализаторов или носителей для катализаторов, в частности катализаторов для очистки серосодержащих газов, и может найти применение в процессах очистки серосодержащих газов на предприятиях газовой, нефтяной, химической промышленности, металлургии.
Изобретение относится к катализатору для каталитического разложения закиси азота и к его применению для удаления закиси азота из газовых смесей, особенно для удаления выбросов заводов по производству азотной кислоты и адипиновой кислоты.
Изобретение относится к сложным оксидам и способам их получения. Предложен сложный оксид, содержащий церий и, по меньшей мере, один из редкоземельных элементов-металлов, исключая церий и включая иттрий, в массовом соотношении от 85:15 до 99:1 в пересчете на оксиды, и который дополнительно содержит кремний в количестве от более чем 0 мас.ч.

Изобретение относится к восстановлению водорода из газов. Реактор и способ получения водорода из потока газа, содержащего сероводород или сероводород и диоксид углерода, согласно которому: в камеру вертикального реактора вводят поток указанного газа, при этом указанная камера реактора содержит внешнюю цилиндрическую оболочку, определяющую реакционную камеру, а указанная реакционная камера включает зону нагрева, мембрану и конденсатор серы, а указанный реактор содержит: впускное отверстие для ввода потока газа в реакционную камеру; зону нагрева, расположенную в реакционной камере и приспособленную для контакта с указанным потоком газа, при этом указанная зона нагрева содержит катализатор, выбранный из группы, включающей азурит, малахит и металл, содержащий 75% никеля и 25% хрома; мембрану, представляющую собой керамическую мембрану, расположенную в реакционной камере, при этом указанная керамическая мембрана является проницаемой для водорода, но не проницаема для сероводорода и паров серы, а пропуск потока определяется содержимым мембраны, сообщающейся с первым выпускным отверстием; конденсатор серы, расположенный в реакционной камере ниже мембраны и сообщающийся со вторым выпускным отверстием; отверстие для выпуска газа, сообщающееся с реакционной камерой; подвергают сероводород или, необязательно, сероводород и диоксид углерода, реакции в зоне нагрева при температуре от 400 до 700°C, при которой конверсия сероводорода составляет по меньшей мере 95%, с получением в реакционной камере водорода и паров серы и, необязательно, воды; непрерывно и немедленно удаляют водород через указанную мембрану и отводят полученный водород через первое выпускное отверстие; непрерывно конденсируют пары серы на конденсаторе серы с получением серы в виде жидкости, которую отводят через второе выпускное отверстие; и отводят отработанный в реакторе газ из реакционной камеры через отверстие для выпуска газа, при этом указанный отработанный в реакторе газ, по существу, не содержит сероводород и серу.

Изобретение относится к области термической обработки. Для сокращения потребления энергии при проведении непрерывного отжига стали и её травления осуществляют обработку стали, которую подвергают отжигу в печи (2) и травлению в травильной ванне (3), при этом отходящий газ травильной ванны (3) нагревают до рабочей температуры катализатора и подают на катализатор (5) для уменьшения концентрации оксидов азота, а отходящий газ, пропускаемый через катализатор (5), подают по меньшей мере в одну нагревательную горелку (20) печи (2) для отжига в качестве воздуха для горения.

Изобретение относится к устройству очистки выхлопного газа для двигателя внутреннего сгорания. Предложено устройство очистки выхлопного газа для двигателя внутреннего сгорания, очищающее выхлопной газ в первом выпускном канале и втором выпускном канале, которые проходят от двигателя внутреннего сгорания.

Изобретение относится к способу разложения и/или удаления опасных веществ в газообразной и/или жидкой фазах с использованием фотокаталитического материала. Способ удаления газообразного опасного вещества, содержащего сильно концентрированные оксиды азота и оксиды серы, в окружающей среде, содержащей опасное вещество, включает: удаление оксидов азота посредством использования водного раствора аминового соединения в качестве химикалия в первичном устройстве и удаление оксидов серы посредством использования способа разложения, в котором во вторичном устройстве присутствуют фотокаталитический материал и разбавленный раствор пероксида водорода.
Изобретение относится к сложному оксиду, который может использоваться в качестве катализатора, функциональной керамики, твердого электролита для топливных элементов, абразива и подобного, особенно подходящего для применения как сокаталитического материала в катализаторах очистки выхлопных газов автомобиля, а также относится к способу получения сложного оксида и катализатора для очистки выхлопных газов, использующего сложный оксид.

Изобретение относится к способу обработки серосодержащего газа и к катализатору гидрирования, используемому для этого. Описан катализатор гидрирования, который включает в качестве активного компонента оксид никеля, оксид кобальта, а также оксид молибдена или оксид вольфрама.

Изобретение относится к способу удаления N2O и NOx из отходящих газов. Секция deNOx проводится после секции deN2O при температуре на входе ≤ 400°C, исходный газ для секции deN2O содержит воду и имеет выбранное отношение N2O/NOx. Рабочие параметры: температура, давление и объемная скорость в секции deN2O выбираются так, чтобы получить разложение N2O от 80 до 98%. В этих условиях следующая секция deNOx может работать в оптимальном режиме. Устройство содержит устройство (2) регулирования содержания воды в газе (1), содержащем NOx и N2O; секцию deN2O (3) для снижения содержания N2O в газовом потоке, содержащую наполненный железом цеолитный катализатор; устройство охлаждения (4) для охлаждения газового потока (5), выходящего из секции deN2O; секцию deNOx (6), содержащую SCR-катализатор, для снижения содержания NOx в газовом потоке, и линии подачи (7) для ввода восстановителя NOx в газовый поток (5), выходящий из секции deN2O. Технический результат: эффективное удаление N2O и NOx из газов. 2 н. и 22 з.п. ф-лы, 3 ил., 2 табл.
Наверх