Способ получения наностержней диоксида марганца



Способ получения наностержней диоксида марганца
Способ получения наностержней диоксида марганца
Способ получения наностержней диоксида марганца

 


Владельцы патента RU 2587439:

Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) (RU)

Изобретение может быть использовано в неорганической химии и нанотехнологии. Для получения наностержней диоксида марганца смешивают водные растворы перманганата калия и нитрита натрия в мольном соотношении M n O 4 : N O 2 , равном 2:(1-5), до образования однородной дисперсной фазы в сильнощелочном растворе. Затем при постоянном перемешивании медленно прикапывают неорганическую кислоту до достижения значения pH 2-0,5. Полученную суспензию помещают в тефлоновый автоклав, который устанавливают в гидротермально-микроволновую установку на 5-25 мин при 90-170°C, давлении 1-20 атм и мощности микроволнового нагрева 150-1000 Вт. Полученный осадок отделяют декантацией, промывают дистиллированной водой и высушивают на воздухе при температуре не выше 70°C. Получают кристаллический пиролюзит, частицы которого имеют форму стержней диаметром свыше 10 нм и длиной до 2 мкм. В качестве неорганической кислоты используют H2SO4 или HNO3. Изобретение позволяет получать наностержни β-MnO2 для использования в литиевых источниках тока в качестве катодного материала с высокой производительностью и относительно высокой однородностью фракций по диаметру стержней. 1 з.п. ф-лы, 2 ил., 1 табл., 5 пр.

 

Изобретение относится к неорганической химии, конкретно к получению нанокристаллического диоксида марганца, полиморфные модификации которого, имеющие разнообразные морфологические формы, могут быть успешно использованы в составе катализаторов, биосенсоров, адсорбентов и особенно в источниках тока.

Основными структурными единицами полиморфных модификаций диоксида марганца являются октаэдры MnO6, различное взаимное сочленение которых приводит к формированию в структуре MnO2 слоев и каналов. Именно наличие каналов делает MnO2 интересным с точки зрения создания катодных материалов. Наименьшее содержание примесей в MnO2 характерно для пиролюзита (β-MnO2) и рамсделита (γ-MnO2). Для других модификаций MnO2 (α, λ, ε и δ) крайне характерно присутствие в их кристаллической структуре ионов Na+и K+.

В настоящее время актуальной задачей является разработка методов получения наностержней MnO2 β-модификации, представляющих большой практический интерес, ввиду того, что характерная для них анизотропия проводимости может приводить к появлению принципиально новых конструктивных решений при создании аккумуляторных элементов [Xu M.-W., Bao S.-J. // Energy Storage in the Emerging Era of Smart Grids; In tech: 2011; V. 12, P. 251-278].

Из [RU 2536649] известно, что при заряде и разряде Li-ионных аккумуляторов имеют место топотактические реакции, они состоят в инжекции электрона и внедрении катиона Li в твердую матрицу без разрушения внутренней структуры материала. Однако интеркаляция ионов Li в структуру материала может привести к существенным изменениям в строении материала: образование новой фазы, увеличение объема кристаллической ячейки, «вспучиванию» и т.п.

Материал, состоящий из однородных наностержней, в большей степени пригоден для интеркаляции ионов лития, поскольку он не будет испытывать серьезных структурных напряжений при прохождении катиона Li+ по каналам в структуре MnO2.

Известен способ [Xun Wang and Yadong Li // Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods, Chem. Eur. J: 2003, V. 9, №1, P. 19141-19147] получения наностержней диоксида марганца, заключающийся в том, что соли (NH4)2S2O8 и MnSO4·H2O растворяют в дистиллированной воде при комнатной температуре и перемешивают до образования однородного раствора. После чего его переносят в автоклав и подвергают гидротермальной обработке при температуре 140°C в течение 12 ч. Полученный продукт фильтруют, промывают дистиллированной водой и высушивают на воздухе. Образование наностержней α- и β-модификаций диоксида марганца проходит через промежуточную стадию образования δ-модификации диоксида марганца с пластинчатой морфологией.

Недостатком данного способа является то, что получаемая β-модификация диоксида марганца содержит примесь δ-модификации, имеющей слоистую структуру, что ухудшает фазовую однородность материала, необходимую при использовании в электрохимических ячейках.

Также недостатком этого метода является относительно высокая продолжительность синтеза.

Известен способ получения наностержней диоксида марганца, изложенный в [М. Wei, Y. Konishi, Н. Zhou, Н. Sugihara and Н. Arakawa // Synthesis of single-crystal manganese dioxide nanowires by soft chemical process, Nanotechnology: 2005, V. 16, P. 245-249] (прототип), заключается в том, что коммерческий γ-MnO2 смешивают с водой, и полученную суспензию подвергают гидротермальной обработке при температуре 140-200°C в течение 72 дней. Полученный продукт фильтруют, промывают водой и высушивают при температуре 60°C в течение 4 ч.

Существенным недостатком является относительно невысокая морфологическая однородность получаемого продукта.

Недостатком предложенного способа также является слишком большая продолжительность синтеза.

Техническая задача связана с тем, что коммерческий успех современных катодных материалов в значительной степени зависит от метода их получения, который должен обеспечивать возможность контроля морфологии и размера частиц.

Изобретение направлено на изыскание высокопроизводительного способа получения наностержней β-MnO2 для использования в литиевых источниках тока в качестве катодного материала с относительно высокой однородностью фракции по диаметру стержней, что значительно улучшает процесс интеркаляции ионов Li в структуру катодного материала.

Технический результат достигается тем, что предложен способ получения наностержней диоксида марганца, заключающийся в том, что смешивают водные растворы перманганата калия и нитрита натрия в мольном соотношении , равном 2:1÷5, до образования однородной дисперсной фазы в сильнощелочном растворе, после чего к нему при постоянном перемешивании медленно прикапывают неорганическую кислоту до достижения значения pH от 2 до 0,5, полученную суспензию помещают в тефлоновый автоклав, который устанавливают в гидротермально-микроволновую установку на 5÷25 мин при 90÷170°C при давлении 1÷20 атм и мощности микроволнового нагрева 150÷1000 Вт, полученный осадок отделяют декантацией, промывают дистиллированной водой и высушивают на воздухе при температуре не выше 70°C, в результате получают кристаллический пиролюзит β-MnO2, частицы которого имеют форму стержней диаметром свыше 10 нм и длиной до 2 мкм.

Целесообразно, что в качестве неорганической кислоты используют либо H2SO4, либо HNO3.

Мольные соотношения , равные 2:1÷5, выбирают из тех соображений, что при них образуется однородная дисперсная фаза.

Выбор диапазона кислотности обусловлен тем, что в среде с pH>2 в конечном продукте присутствует посторонняя примесь наночастиц δ-MnO2, которые характеризуются сфероидальной формой и шероховатой поверхностью, а при pH<0,5 в конечном продукте также присутствует посторонняя фаза.

Заявленный временной интервал 5÷25 минут определяется динамикой процесса формирования кристаллов, который в целом начинается с 5 минут и завершается через 25 минут, после чего линейные размеры наностержней не изменяются и улучшения функциональных свойств нанокристаллов не происходит.

Заявленный температурный интервал гидротермально-микроволновой обработки определен экспериментальным путем и является оптимальным для получения однородной фазы наностержней диоксида марганца, содержащей в своем составе кристаллы диаметром менее 100 нм. Минимальная температура автоклавной обработки обусловлена тем, что ниже 90°C наностержни не образуются. Верхний предел температуры обусловлен тем, что при температурах выше 170°C в получаемом конечном продукте качественных изменений не происходит. Оптимальным является автоклавная обработка в течение 8 минут при 150°C, при которой в конечном продукте однородность фракции 20÷25 нм составляет 90%.

В качестве гидротермально-микроволновой установки используют аппаратуру Berghof Speedwave MWS four, характеризующуюся давлением R20 атм и мощностью микроволнового нагрева 150÷1000 Вт.

Сущность изобретения заключается в том, что варьирование кислотности среды, продолжительности и температуры синтеза позволяет получать продукты с заданными параметрами однородности.

Изобретение проиллюстрировано следующими микрофотографиями.

Фиг. 1. Результаты растровой электронной микроскопии образца диоксида марганца, полученного по предложенному изобретению гидротермально микроволновой обработкой (ГТМВ) в течение 8 мин при 150°C из реакционной смеси с рН=1 (пример 1).

Фиг. 2. Результаты растровой электронной микроскопии образца диоксида марганца, полученного по прототипу.

Ниже приведены примеры иллюстрирующие, но не ограничивающие предложенный способ.

Пример 1

0,3 г KMnO4 растворяли в 38 мл дистиллированной воды, затем к полученному раствору добавляли 0,19 г NaNO2 (мольное соотношение составляло 2:3), после чего к смеси при постоянном перемешивании медленно прикапывали 0,5М H2SO4 до достижения рН=1. Полученную суспензию помещали в тефлоновый автоклав емкостью 100 мл (степень заполнения составляла 50%) и подвергали гидротермально-микроволновой обработке в установке Berghof Speedwave MWS four в течение 8 мин при 150°C. После завершения обработки автоклав извлекали и охлаждали на воздухе. Образовавшийся осадок отделяли декантацией, несколько раз промывали дистиллированной водой и сушили на воздухе при относительной влажности ~75% и температуре 60°C. Получали продукт с однородностью фракции 95% нм и диаметром наностержней 20÷25 нм.

Примеры 2-5 осуществляли по Примеру 1, меняя мольное соотношение реагентов, кислотность среды, время и температуру синтеза. Результаты сведены в Таблицу: «Показатель однородности фракции наностержней диоксида марганца, синтезированных по предлагаемому способу».

Предлагаемый способ позволяет получать наностержни β-MnO2 с достаточно высокой производительностью, а также с относительно высокой однородностью фракции по диаметру стержней, что определяет пригодность их применения в катодных материалах.

1. Способ получения наностержней диоксида марганца, заключающийся в том, что смешивают водные растворы перманганата калия и нитрита натрия в мольном соотношении MnO4- : NO2-, равном 2:(1÷5), до образования однородной дисперсной фазы в сильнощелочном растворе, после чего к нему при постоянном перемешивании медленно прикапывают неорганическую кислоту до достижения значения рН от 2 до 0,5, полученную суспензию помещают в тефлоновый автоклав, который устанавливают в гидротермально-микроволновую установку на 5÷25 мин при 90÷170°C при давлении 1÷20 атм и мощности микроволнового нагрева 150÷1000 Вт, полученный осадок отделяют декантацией, промывают дистиллированной водой и высушивают на воздухе при температуре не выше 70°C, в результате получают кристаллический пиролюзит β-MnO2, частицы которого имеют форму стержней диаметром свыше 10 нм и длиной до 2 мкм.

2. Способ по п. 1, отличающийся тем, что в качестве неорганической кислоты используют либо H2SO4, либо HNO3.



 

Похожие патенты:

Изобретение относится к металлургии. Способ химического обогащения полиметаллических марганецсодержащих руд включает дробление и размол руды, который ведут до крупности минус 0,125, автоклавное выщелачивание присутствующих в руде элементов путем смешивания ее с 18%-ным раствором хлористого железа в соотношении 1:9 с последующим нагревом до температуры 475-500 K в течение 3 часов.

Изобретение относится к способу обработки марганецсодержащих материалов, таких как подводные марганцевые конкреции, путем выщелачивания водной HNO3 и NO-газом. При этом проводят извлечение ценных составляющих, особенно марганца, кобальта, никеля, железа и меди.
Изобретение относится к области металлургии, конкретнее, к получению высококачественных оксидов марганца, которые могут найти широкое применение в химической и металлургической промышленности.
Изобретение относится к области обогащения марганцевых руд, в частности, к способам получения марганцевых концентратов химического обогащения. .

Изобретение относится к области получения материалов для радиоэлектронной техники, в частности к получению порошка оксидного состава Pb(Mg1/3Nb2/3O3). .
Изобретение относится к химической переработке марганцевых руд, в частности к получению концентратов химического обогащения для металлургической промышленности.

Изобретение относится к химической технологии соединений марганца, а именно к концентрату марганцевому низкофосфористому, применяемому в производстве высокосортных марганцевых сплавов и соединений, в прямом легировании стали, а также покрытии сварочных электродов.

Изобретение относится к получению наноструктурных материалов химическим путем. .

Изобретение относится к области получения диоксида марганца, в частности к электролитическим способам синтеза. .
Изобретение относится к добыче полезных компонентов гидрометаллургическими способами. .

Изобретение относится к способу получения композиции из полимера и наноразмерных наполнителей, используемой в технологиях получения полимерных композиционных материалов широкого спектра применения.

Изобретение относится к неорганическому синтезу искусственных алмазов размером до 150 мкм, которые могут найти промышленное применение в производстве абразивов и алмазных смазок, буровой технике.
Изобретение относится к способу производства стеклоизделий с покрытием. Технический результат изобретения заключается в повышении адгезии со стеклом, снижении коэффициента трения, повышении прочности изделий.

Изобретение относится к области энергетики, а именно к области использования солнечной энергии, и может быть применено при генерировании электрического тока с использованием энергии солнечного излучения в качестве источника теплового излучения.

Изобретение относится к области нанотехнологий, а именно к способам измерения параметров наноструктур, и может быть использовано при определении электрофизических параметров конденсаторной структуры мемристора, характеризующих процесс формовки.

Изобретение относится к области получения синтетических алмазов и может быть использовано в качестве детекторов ядерного излучения в счетчиках быстрых частиц, а также в ювелирном деле.

Изобретение относится к области металлургии, а именно к композиционным материалам (КМ) на основе сплавов оловянных баббитов и способам их получения, и может быть использовано для изготовления подшипников скольжения узлов трения в транспорте, турбиностроении, судостроении.

Изобретение относится получению нанопорошка меди. Способ получения нанопорошка меди включает растворение медного анода с последующим восстановлением меди из электролита на титановом рифленом виброкатоде, по окончании электролиза полученный медный нанопорошок фильтруют под избыточным давлением инертного газа, промывают дистиллированной водой из расчета 1 л воды на 100 г нанопорошка и сушат при температуре 90-110°С в атмосфере аргона в течение 30-45 минут.

Изобретение относится к способу изготовления композитного катодного материала. Способ включает следующие стадии: получение гидрогеля или ксерогеля V2O5; выдержка в герметичном тефлоновом автоклаве при температуре 130-200°C и давлении 100-600 МПа в течение суток смеси, содержащей гидрогель или ксерогель V2O5, и углеродного материала с получением композиционного материала, содержащего наностержни V2O5 в оболочке из графена; центрифугирование полученного композиционного материала; промывка композиционного материала; сушка композиционного материала при температуре 50°C.

Изобретение относится к химии, в частности к гранулированию лекарственных веществ путем впитывания веществ в пористый носитель. Гранулирование лекарственных веществ проводят путем смешивания активного ингредиента в жидком состоянии с пористым носителем.

Изобретение относится к способу получения композиции из полимера и наноразмерных наполнителей, используемой в технологиях получения полимерных композиционных материалов широкого спектра применения.
Наверх