Способ осаждения полупроводниковых наночастиц халькогенидов свинца из коллоидных растворов

Изобретение относится к области технологий осаждения полупроводниковых наночастиц халькогенидов свинца на прозрачные диэлектрические поверхности и может быть использовано при получении новых устройств на основе наносистем для микро- и оптоэлектроники, солнечных батарей, светодиодных ламп и других областей полупроводниковой техники. Техническим результатом является получение наноструктурированных тонких покрытий полупроводников структур из растворов на поверхности твердых тел с контролируемой морфологией осажденного слоя. Технический результат достигается тем, что в данном способе осаждение полупроводниковых наночастиц халькогенидов свинца из коллоидного раствора осуществляется из капли раствора, которую наносят на поверхность, разогретую от 20°C до 200°C, с помощью капилляра от 0.1 до 1 мкм объемом до 200 мкл. 8 ил.

 

Изобретение относится к области технологий осаждения металлических и полупроводниковых наночастиц халькогенидов свинца на прозрачные диэлектрические поверхности (стекло, кварц и т.д.) и может быть использовано при получении новых устройств на основе наносистем для микро- и оптоэлектроники, солнечных батарей, светодиодных ламп и других областей полупроводниковой техники.

Известен способ получения наночастиц серебра (Патент №2385293, МПК C01G 5/00, B82B 3/00). Способ реализуется посредством химического осаждения наночастиц серебра в порах и на поверхности гелевого сильнокислотного стиролдивинилбензольного сульфокатионообменника за счет последовательного введения восстановителя и ионов серебра. С использованием восстановителей в виде нейтральных молекул (например, гидразин) можно добиться объемного распределения частиц серебра по матрице. Восстановление необходимо вести в мягких условиях, чтобы быстрое накопление твердых или газообразных продуктов синтеза не привело к механической деформации матрицы. Объемное распределение металла достигается и с восстановителями катионного типа (например, хлорид олова (II)), ионы которых легко проникают в ионообменную матрицу и фиксируются возле ионогенных центров как противоионы, а также сорбируются на гидрофобных поверхностях полимера. При пропускании раствора соли серебра (раствор насыщения) ионы металла взаимодействуют с катионами восстановителя и образуются наночастицы серебра.

Недостатком является то, что необходимо, использовать ионообменную матрицу, а также последовательно вводить восстановитель и ионы серебра. Такой подход приводит усложнению цикла производства.

Известен способ получения наночастиц (Патент №2242532, МПК С23С 4/00, B01J 2/02), включающий диспергирование расплавленного материала, подачу полученных жидких капель этого материала в плазму, образованную в инертном газе при давлении 10-1-10-4 Па, охлаждение в инертном газе образовавшихся в плазме жидких наночастиц до затвердевания и нанесение полученных твердых наночастиц на носитель, при этом параметры плазмы удовлетворяют определенным соотношениям. Диспергирование расплавленного материала и подачу полученных жидких капель в плазму осуществляют лазерной абляцией мишени или приложением электрического поля к острийному катоду из проводящего материала. Радиус кривизны острия выбирается не более 10 мкм, а напряженность электрического поля на вершине острия не менее 107 В/см.

Недостатком является то, что необходимо использовать дорогостоящее, сложное оборудование. Тем самым характеризуется высокая стоимость конечной продукции.

Известен способ приготовления водных дисперсий TiO2 в форме наночастиц и дисперсии, которые могут быть получены этим способом (Патент №2431604, МПК C01G 23/053, В82В 1/00). Для получения дисперсий TiO2 алкоксид титана при нагреве вводят в реакцию с водой в присутствии минеральной кислоты и неионного поверхностно-активного вещества. Алкоксид титана выбирают из группы, состоящей из метоксида, этоксида, н-пропоксида, изопропоксида, н-бутоксида и изобутоксида титана. Минеральной кислотой является галогеновая кислота. Поверхностно-активные вещества обладают полярной функциональной группой типа простого или сложного эфира. Мольное отношение алкоксид титана/галогеновая кислота составляет от 0,005 до 15. В альтернативном варианте способа к раствору, содержащему алкоксид титана, минеральную кислоту и поверхностно-активное вещество, добавляют соль переходного металла, например Ag, или Cu, или Се, и получают дисперсии наночастиц TiO2 в воде, в которых Ti допирован указанным металлом. Полученные указанным способом дисперсии наночастиц TiO2 применяют для получения фотокаталитических покрытий на поверхности, которая требует такой обработки, а также для фотокаталитической очистки газов и жидкостей от загрязнителей. Способ позволяет получить дисперсии наночастиц TiO2, которые не обнаруживают слипания, коагуляции и осаждения твердого материала даже после продолжительного хранения дисперсионного продукта, а также являются однородными, проявляют фотокаталитическую активность и являются прозрачными

Недостатком является то, что необходимо использовать галогенные кислоты, требующие дальнейшей утилизации и переработки.

Известен способ формирования многослойных нанокристаллических пленок с гетерогенной границей раздела и устройство для формирования многослойных нанокристаллических пленок с гетерогенной границей раздела (Патент №2436876, МПК С30В 25/22, В82В 3/00). Способ заключается в приготовлении раствора смеси солей металлов, аэрозольном нанесении упомянутого раствора на поверхность подложки в потоке газа-носителя, удаления растворителя из раствора смеси солей металлов и формировании на поверхности подложки многослойных нанокристаллических пленок металлов в результате термического разложения солей металлов, при этом поверхность подложки предварительно нагревают, из раствора смеси солей металлов формируют аэрозольный туман, который переносят и осаждают на поверхность подложки потоком кислородсодержащего газа-носителя, давление газа-носителя поддерживают выше атмосферного, формируют гетерогенную границу раздела путем нанесения на сформированный нанокристаллический слой нанокристаллического слоя другого химического состава, отличающегося от предыдущего.

Недостатком является то, что необходимо приготовить раствор, нанести его на поверхность подложки аэрозольным методом. И используя специальное оборудование для нагрева подложки, которое находится в камере высокого давления, испарить раствор на поверхность подложки, где формируется нанокристаллическая пленка. Цикл является трудоемким и дорогостоящим.

Известен способ получения композиционного NiO/C материала (Патент №2449426, МПК Н01М 4/5, C01G 53/04, B05D 5/12, В82В 3/00). Способ получения композиционного NiO/C материала, содержащего 15-60% NiO и представляющего собой равномерно распределенные по поверхности углеродного носителя кристаллиты β-NiO со средним размером 2-5 нм, основан на получении наночастиц NiO в результате электрохимического окисления и разрушения двух никелевых электродов в растворах гидроксидов щелочных металлов концентрацией 2 моль/л под действием переменного тока частотой 50 Гц при средней величине тока, отнесенной к единице площади поверхности электродов, равной 0,3-1,5 А/см2, с одновременным осаждением образующихся наночастиц оксида никеля на углеродный носитель, последующем фильтровании полученной суспензии, промывке композита дистиллированной водой с его сушкой при 80°C в течение 1 часа.

Недостатком является то, что наночастицы NiO получают в растворах щелочных металлом. Полученный раствор необходимо промывать в дистиллированной воде и высушивать в течение 1 часа при температуре 80°C.

В качестве прототипа выбран способ нанесения покрытия ультратонким слоем на металлические изделия (Патент №2353702, МПК С23С 2/26, С23С 24/08, В82В 1/00). Способ включает осаждение ультратонкого слоя наночастиц оксида из раствора, содержащего наночастицы оксидов, в условиях регулируемого рН при температуре субстрата выше 120°C и суммарной продолжительности менее 5 секунд, предпочтительно менее 1 секунды, при этом в раствор вводят, по меньшей мере, одну химическую добавку, обладающую эффектом ограничения толщины наносимого слоя наночастиц оксида. Установка для нанесения покрытия содержит устройство для получения второго покрывающего слоя на первом покрывающем слое, полученном путем горячего погружения или путем распыления форсунками посредством применения указанного способа. Установка расположена после элементов, обеспечивающих операции формования и отвердевания первого покрывающего слоя, где указанный второй покрывающий слой наносят при температуре, по меньшей мере, на 100°C ниже температуры отвердевания первого покрывающего слоя. Способ позволяет наносить ультратонкий слой наночастиц оксида при более широком диапазоне температур полосы на входе в ванну и воспроизвести толщины покрытия при различной массе слоя.

Недостатками данного изобретения является то, что нанесение последующих слоев оксидов металлов происходит не напылением, а погружением подложки в горячий субстрат. Такой подход приводит к усложнению цикла производства ультратонких покрытий. Необходимо вводить в раствор, по меньшей мере, одну химическую добавку для ограничения толщины. Контролировать чистоту, однокомпонентность осажденного слоя практически невозможно.

Техническим результатом является получение наноструктурированных тонких полупроводниковых структур (покрытий) из растворов на поверхности твердых тел с контролируемой морфологией осажденного слоя.

Технический результат достигается тем, что в данном способе осаждение полупроводниковых наночастиц халькогенидов свинца из коллоидного раствора осуществляется из капли раствора, которую наносят на поверхность, разогретую от 20°C до 200°C, с помощью капилляра от 0.1 до 1 мкм объемом до 200 мкл.

Для получения коллоидного раствора используют метод лазерной абляции вещества (например, полупроводник PbTe) в жидкости (спирты, дистиллированная вода и т.д.) согласно полученному патенту РФ №2517781. Для получения однородной консистенции используют ультразвуковое воздействие и встряхиватель (например, Ротамикс). Возможно изготовление многокомпонентных коллоидных растворов. Полученный раствор наносят на подложку, разогретую от 20°C до 200°C в зависимости от состава коллоида, капилляром различного объема и диаметра. В результате с поверхности подложки происходит испарение жидкой фазы (спирты, дистиллированная вода и т.д.) с образованием наноструктурированного слоя из полупроводниковых наночастиц, которые образуют агрегаты различного профиля в зависимости от температуры подложки: 20°C (фиг. 4), 40°C (фиг. 5), 80°C (фиг. 6), 100°C (фиг. 7), 130°C (фиг. 8). Для получения наноструктурированного осажденного слоя в виде кольца коллоидный раствор наносится из капилляра 100 мкм на диэлектрическую подложку, разогретую до температуры 20°C. В процессе испарения жидкой фазы на поверхности диэлектрической подложке формируется осажденный слой в виде кольца (фиг. 2).

Изобретение поясняется представленными фигурами: фиг. 1 - принципиальная схема осаждения наночастиц из коллоидного раствора: d - диаметр капилляра, h - высота капилляра над подложкой, g - ускорение свободного падения; фиг. 2 - сформированный слой на поверхности подложки, разогретой до 20°C; фиг. 3 - сформированный слой на поверхности подложки, разогретой до 100°C; фиг. 4 - структура осажденного наноструктурированного слоя на поверхности подложки, разогретой до 20°C; фиг. 5 - структура осажденного наноструктурированного слоя на поверхности подложки, разогретой до 40°C; фиг. 6 - структура осажденного наноструктурированного слоя на поверхности подложки, разогретой до 80°C; фиг. 7 - структура осажденного наноструктурированного слоя на поверхности подложки, разогретой до 100°C; фиг. 8 - структура осажденного наноструктурированного слоя на поверхности подложки, разогретой до 130°C;

Заявляемый способ основан на проведенных исследованиях физико-химических процессов осаждения наночастиц из коллоидных растворов на подложки с различной температурой. В настоящем способе изготовление коллоидного раствора происходит методом лазерной абляции в жидкости согласно патенту РФ №2517781.

Особенность способа заключается в том, что осаждать можно полупроводниковые наночастицы халькогенидов свинца, которые способны разрушаться при интенсивном внешнем воздействии (например, лазерным излучением). Энергию, необходимую для активации процесса осаждения наночастиц, можно контролировать потенциальной энергией капли раствора в капилляре, изменяя расстояние от капилляра до поверхности подложки. Такой подход позволяет отказаться от применения химических реакций разложения, а также специального оборудования для промывки полученных наночастиц. К тому же, варьируя температурой подложки, на которую происходит осаждение, можно получать контролируемый профиль наноструктурированного слоя. Такое решение приводит к формированию наноструктурированного слоя различной модификации на поверхности подложки, не требуется специального оборудования.

Способ осаждения полупроводниковых наночастиц халькогенидов свинца из коллоидных растворов, отличающийся тем, что осаждение наночастиц осуществляется из капли раствора, которую наносят на поверхность, разогретую от 20°C до 200°C, с помощью капилляра от 0.1 до 1 мкм объемом до 200 мкл.



 

Похожие патенты:

Изобретение относится к технологии эпитаксии кремний-германиевой гетероструктуры, основанной на сочетании сублимации кремния с поверхности источника кремния, разогретого электрическим током, и осаждения германия из германа в одной вакуумной камере, и может быть использовано для производства полупроводниковых структур.

Изобретение относится к технологии микроэлектроники и может быть использовано для получения слоев карбида кремния при изготовлении микроэлектромеханических устройств, фотопреобразователей с широкозонным окном 3С-SiC, ИК-микроизлучателей.

Изобретение относится к технологии получения полупроводниковых материалов. Способ изготовления изделий, содержащих кремниевую подложку с пленкой карбида кремния на ее поверхности, осуществляется в газопроницаемой камере, размещенной в реакторе, в который подают смесь газов, включающую оксид углерода и кремнийсодержащий газ, при этом давление в реакторе 20-600 Па, температура 950-1400°C.

Изобретение относится к технологии полупроводниковых структур для приборов электронной техники. Изобретение обеспечивает возможность прецизионного варьирования в широких пределах концентрацией легирующей примеси в выращиваемой структуре путем изменения температуры и агрегатного состояния источника примеси из напыляемого легированного материала.

Изобретение относится к технологии получения массивов наноколец различных материалов, используемых в микро- и наноэлектронике. Сущность изобретения: в способе получения массивов наноколец, включающем подложку с нанесенными полистирольными сферами, с нанесенным затем слоем металла и последующим травлением, в качестве подложки используют упорядоченные пористые пленки, а расположение наноколец задается расположением пор в пленочном материале с использованием подходов самоорганизации.
Изобретение относится к материаловедению, а именно к технологии получения тонких пленок. .

Изобретение относится к технике получения пленок молекулярно-лучевым осаждением и использованием резистивных источников напыляемого материала. .

Изобретение относится к области электронной техники и может быть использовано при производстве изделий микроэлектроники. .
Изобретение относится к области нанотехнологий и может быть использовано для изготовления упорядоченных наноструктур, используемых в микро- и наноэлектронике, оптике, нанофотонике, биологии и медицине.

Изобретение относится к области нанотехнологий и может быть использовано для формирования наноструктур из испаряемой микрокапли воздействием акустических полей.

Изобретение относится к полимерным нанокомпозитам, в частности к эпоксидным сферопластикам, содержащим полимерную матрицу и неорганические добавки, в частности стеклосферы и наноразмерные частицы неорганического материала, и может быть использовано в качестве конструкционного материала в строительной, автомобильной, судостроительной промышленности.

Изобретение может быть использовано в неорганической химии и нанотехнологии. Для получения наностержней диоксида марганца смешивают водные растворы перманганата калия и нитрита натрия в мольном соотношении M n O 4 − : N O 2 − , равном 2:(1-5), до образования однородной дисперсной фазы в сильнощелочном растворе.

Изобретение относится к способу получения композиции из полимера и наноразмерных наполнителей, используемой в технологиях получения полимерных композиционных материалов широкого спектра применения.

Изобретение относится к источнику электронов, предназначенному для использования в автоэмиссионных электронных приборах. Источник содержит множество управляемых автоэмиссионных ячеек, сформированных на подложке 1 с последовательно нанесенными на нее изоляционным 2 и проводящим 3 слоями, имеющими множество отверстий (4, 5).

Изобретение относится в области нанотехнологии и фармацевтики. Описан способ получения нанокапсул адаптогенов в оболочке из ксантановой камеди.

Использование: для создания новых перестраиваемых искусственных электромагнитных сред на основе тонкопленочных металл-полупроводниковых и металлических оболочек.

Изобретение относится к обработке металлов давлением и может быть использовано для интенсивной пластической деформации кручением. Для измельчения микроструктуры металлов и повышения их микротвердости, прочности и пластичности способ включает сжатие и последующее кручение заготовки с получением деформации сдвига, при этом деформацию заготовки проводят на бойках Бриджмена с приложением удельного давления 3-6 ГПа и последующим вращением подвижного бойка относительно своей оси со скоростью 0,2-1,5 об/мин, а в процессе вращения бойка осуществляют плавное изменение температуры заготовки, но не выше 0,4Тпл металла или сплава, а также изменение температуры в зависимости от режимов деформации.

Изобретение относится к области изготовления слоистых пластиков, которые могут быть использованы в авиа- и судостроении. Способ получения слоистого пластика заключается в получении связующего, модифицированного углеродными нанотрубками посредством совместного диспергирования углеродных нанотрубок и связующего в растворителе, нанесении связующего, модифицированного углеродными нанотрубками, на поверхность слоев наполнителя, сборке пакета из слоев наполнителя и отверждение пакета под давлением, при этом углеродные нанотрубки предварительно обрабатывают раствором по меньшей мере одного полимера-регулятора смачиваемости углеродных нанотрубок связующим при воздействии ультразвука.

Изобретение относится к неорганическому синтезу искусственных алмазов размером до 150 мкм, которые могут найти промышленное применение в производстве абразивов и алмазных смазок, буровой технике.

Изобретение относится к оптоэлектронике и может быть использовано в устройствах и системах визуализации, отображения, хранения и обработки информации. Электрооптическая ячейка содержит две диэлектрические пластины, из которых, по крайней мере, одна прозрачная.

Изобретение относится к области биотехнологии, экологической и промышленной токсикологии. Предложен способ определения цитотоксичности наноматериалов на основе оксида цинка. Наноматериал приготавливают в виде двухслойной наноструктуры, в которой верхний слой модифицирован атомами Fe. Полученная наноструктура нанесена на диэлектрическую подложку, к которой формируют токопроводящие контактные площадки, соединенные посредством контактных проводников с измерительным устройством. Подложка, наноматериал, контактные площадки и контактные проводники образуют биосенсор. Для определения цитотоксичности измеряют временную зависимость сенсорного отклика - изменение сопротивления, емкости или ЭДС пленки при взаимодействии ее поверхности с бактериальной суспензией. Сенсорный отклик двухслойной наноструктуры ZnO-ZnO:Fe пропорционален концентрации живых бактерий. На основании полученной зависимости определяют время, за которое концентрация бактерий уменьшится в е раз за счет их гибели на поверхности пленки. Техническим результатом является расширение спектра исследуемых материалов. 4 ил., 1 табл.

Изобретение относится к области технологий осаждения полупроводниковых наночастиц халькогенидов свинца на прозрачные диэлектрические поверхности и может быть использовано при получении новых устройств на основе наносистем для микро- и оптоэлектроники, солнечных батарей, светодиодных ламп и других областей полупроводниковой техники. Техническим результатом является получение наноструктурированных тонких покрытий полупроводников структур из растворов на поверхности твердых тел с контролируемой морфологией осажденного слоя. Технический результат достигается тем, что в данном способе осаждение полупроводниковых наночастиц халькогенидов свинца из коллоидного раствора осуществляется из капли раствора, которую наносят на поверхность, разогретую от 20°C до 200°C, с помощью капилляра от 0.1 до 1 мкм объемом до 200 мкл. 8 ил.

Наверх