Способ холодной прокатки полос

Изобретение относится к технологии дрессировки отожженных стальных полос на одноклетевом дрессировочном стане с использованием моталки и разматывателя. Способ включает прокатку с относительными обжатиями 0,5-2% с приложением заднего и переднего натяжений. Снижение энергозатрат обеспечивается за счет того, что обжатие производят приводными рабочими валками, заднее натяжение устанавливают и поддерживают постоянным в диапазоне 0,05-0,1, а переднее - в диапазоне 0,15-0,21 от условного предела текучести отожженной полосы. 2 ил., 1 табл.

 

Изобретение относится к технологии прокатного производства и может быть использовано при дрессировке стальных отожженных полос на одноклетевом стане с относительными обжатиями 0,5-2,0%.

Известен способ холодной прокатки (в частности, дрессировки) стальных отожженных полос с относительным обжатием от 0,5 и до 8-10%, включающий установку рулона полосы на разматыватель, заправку ее в стан, закрепление переднего конца на барабане моталки и прокатку полосы с заданной скоростью, с приложением заднего и переднего натяжений, создаваемых электроприводами разматывателя и моталки [1].

Недостатком известного способа является то, что в нем не предусмотрены технологические мероприятия, направленные на минимизацию затрат энергии.

Известен способ дрессировки стальных отожженных полос с приложением заднего и переднего натяжений, включающий установку рулона полосы на разматыватель, заправку ее в стан, обжатие полосы до закрепления ее переднего конца на моталке, закрепление переднего конца полосы на барабане моталки и последующую дрессировку в рабочих валках [2].

В этом способе после завершения заправки полосы на моталке электропривод рабочих валков отключают с целью снижения энергозатрат и до начала холостого вращения валков производят плавное увеличение заднего и переднего натяжений, причем заднее натяжение увеличивают до удельного значения, равного 0,05-0,20 от условного предела текучести отожженной стальной полосы, а переднее натяжение - до удельного значения, не превышающего 0,8 от условного предела текучести отожженной стальной полосы, соответствующего началу вращения рабочих валков с заданной скоростью, при этом дрессировку производят с относительным обжатием, составляющим 0,5-2,0%.

Описанный способ является ближайшим аналогом изобретения и принят нами за прототип.

Недостатки способа-прототипа состоят в следующем: отключение электропривода рабочих валков невозможно выполнить на большинстве дрессировочных станов, оснащенных автоматической системой регулирования натяжения полосы на разматывателе и моталке, в работе которой используются сигналы частоты вращения двигателя клети; кроме того, увеличение переднего натяжения до величины 0,8 от условного предела текучести отожженной полосы создает опасность ее порыва, т.к. фактический предел текучести по длине полосы может колебаться и зачастую отличаться от условного предела текучести на 20% и более.

Задача настоящего изобретения - обеспечить снижение энергозатрат процесса дрессировки отожженных полос на одноклетевом стане с относительными обжатиями, не превышающими 2%.

Указанная задача решается тем, что в способе дрессировки отожженных полос на одноклетевом стане с использованием моталки и разматывателя с относительными обжатиями 0,5-2%, включающем обжатие полосы с приложением заднего и переднего натяжений, согласно изобретению обжатие производят приводными рабочими валками, заднее натяжение устанавливают и поддерживают постоянным в диапазоне 0,05-0,1, а переднее - в диапазоне 0,15-0,21 от условного предела текучести отожженной полосы.

Сущность изобретения заключается в следующем.

Уменьшение энергозатрат - одна из актуальных задач при производстве холоднокатаных стальных полос. Для решения этой задачи необходимо проанализировать факторы, которые влияют на расход энергии при прокатке. Существует достоверная методика расчета мощности процесса прокатки, изложенная в работе [3] (параграф 3.3.3, пункт «г»), которая учитывает, что в зоне опережения очага деформации валки не затрачивают энергию на пластическую деформацию полосы, напротив, полоса возвращает валкам часть энергии, полученной при прохождении зоны отставания. Таким образом, расход энергии в рабочей клети зависит от соотношения длин зон отставания и опережения: чем длиннее последняя, тем меньше мощность прокатки и расход энергии. Однако, учитывая различия напряженно-деформированного состояния (НДС) полосы при холодной прокатке с обжатиями более 5% и при дрессировке с обжатиями в диапазоне 0,5-2% была разработана новая математическая модель взаимосвязанных технологических и энергосиловых параметров, обеспечивающая минимальные расхождения между рассчитанными и фактическими значениями удельного расхода энергии.

Поскольку отличительные признаки изобретения являются следствием применения указанной модели, ниже подробно поясняется ее сущность.

В модели энергосиловых параметров дрессировочного стана очаг деформации условно разбит на следующие участки: упругого сжатия полосы длиной х1упр, зон отставания и опережения пластического участка (хпл.от, хпл.оп), упругого восстановления части толщины полосы (х2упр). При этом в связи с условиями трения покоя для определения границ зон отставания и опережения окружную скорость бочки валков сравнивают не с поверхностной скоростью полосы, а со средней в поперечных сечениях.

Изменение сопротивления деформации на упругих участках принято линейным: на первом - от нуля до исходного значения σ0,2исх после отжига, на втором - от значения σ0,2 в конце пластического участка до нуля.

На пластическом участке принята следующая зависимость условного предела текучести от относительного обжатия ε, полученная путем аппроксимации большого количества фактических графиков изменения σ0,2 при обжатиях 0,5-2%:

Среднее значение σ0,2 на пластическом участке получено путем интегрирования выражения (1):

Коэффициенты А1, А2, А3, входящие в выражение (1) и (2), зависящие от пластических свойств материала полосы, для малоуглеродистых сталей представлены в таблице 1.

Специфика процесса трения при дрессировке привела к необходимости разработки уточненной методики определения напряжений трения в очаге деформации дрессировочного стана. Для этого принято решение отказаться от усреднения коэффициентов трения покоя по всей длине очага деформации дрессировочного стана и усреднять их отдельно на каждом участке.

Для получения новых формул коэффициентов трения покоя на каждом участке очага деформации создали базу данных, содержащую информацию о 50 фактических режимах дрессировки на одном из действующих дрессировочных станов.

Методом имитационного моделирования подбирали такие значения коэффициентов трения, при которых расхождения фактических значений мощности дрессировки, полученных по замерам напряжения и силы тока на якорях двигателей клети, моталки и разматывателя и рассчитанных по модели, были бы минимальными (не более 2%) на всем массиве данных.

В результате регрессионного анализа были получены следующие выражения для определения коэффициентов трения:

на первом упругом участке

на пластическом участке

на втором упругом участке

Здесь σ0, σ1 - заднее и переднее удельные натяжения полосы, МПа; h0 - толщина полосы (подката) перед клетью, мм; Ra0 - шероховатость поверхности подката, мкм; υ - скорость дрессировки, м/с; ε - относительное обжатие, %; Rав - шероховатость поверхности бочки рабочего валка, мкм.

Средние значения нормальных контактных напряжений также рассчитываются отдельно на каждом упругом и пластическом участке: на первом упругом участке длиной х1упр, на втором упругом участке длиной х2упр, на пластическом участке в зоне отставания длиной хпл.от и на пластическом участке в зоне опережения длиной хпл.оп.

В связи с принятым допущением о трении покоя удельные работы прокатки определяли по классическим формулам Финка:

где a 1упр, а пл.от, а пл.оп, а 2упр - удельные работы прокатки соответственно на первом упругом, в зоне отставания, опережения пластического и на втором упругом участках очага деформации;

p1упр, pпл.от, pпл.оп, p2упр - средние значения нормальных контактных напряжений соответственно на первом упругом участке длиной х1упр, пластическом участке в зоне отставания длиной хпл.от и в зоне опережения длиной хпл.оп, втором упругом участке длиной х2упр;

h0, h1упр, h2упр, hн, h1 - толщина полосы перед клетью, на границах упругих участков, в нейтральном сечении и на выходе из очага деформации [4].

Удельную работу дрессировки в очаге деформации вычисляли суммированием удельных работ на его участках:

Мощность дрессировки вычисляли по формуле:

где b - ширина полосы, υ1 - скорость полосы на выходе из валков.

При расчете мощности двигателей главного привода дрессировочной клети учитывали расход энергии не только в очаге деформации, но и на преодоление сил трения между рабочими и опорными валками и в элементах главной линии стана [4].

Полные затраты энергии на процесс дрессировки определяли алгебраическим суммированием мощностей двигателей рабочей клети, моталки и разматывателя, при этом учитывали, что двигатель разматывателя работает в генераторном режиме.

Используя изложенную выше математическую модель, выполнили исследование влияния технологических параметров на суммарную мощность процесса дрессировки.

Методика моделирования состояла в следующем: изменяя с определенным шагом один из параметров (исходный предел текучести, заднее, переднее натяжения, относительное обжатие, скорость дрессировки), при неизменных значениях других параметров рассчитывали суммарную мощность дрессировки.

Моделирование показало, что наиболее эффективный метод экономии энергии на одноклетевом дрессировочном стане - увеличение силы переднего натяжения, создаваемой двигателем моталки, при условии поддержания заднего натяжения постоянным. Объяснение этого эффекта состоит в том, что с ростом переднего натяжения увеличивается протяженность зоны опережения хпл.оп в очаге деформации за счет уменьшения протяженности зоны отставания хпл.от, а отношение стремится к Xmin, в результате чего разгружается двигатель главного привода рабочей клети, т.к. рабочие валки могут совершать активную работу только в зоне отставания, где окружная скорость их бочки больше, чем средняя по сечению скорость дрессируемой полосы.

Изобретение иллюстрируется чертежами, где на фиг. 1 показаны графики изменения мощности двигателей моталки, рабочей клети и суммарной мощности в зависимости от изменения переднего натяжения (в процентах от базовых значений, принятых по технологии); на фиг. 2 показаны графики изменения мощности двигателей разматывателя, рабочей клети и суммарной мощности в зависимости от изменения заднего натяжения (в процентах от базовых значений, принятых по технологии).

Из графиков, представленных на фиг. 1, видно, что пропорционально росту переднего натяжения увеличивается мощность двигателя моталки, однако это увеличение перекрывается более интенсивным уменьшением мощности двигателя главного привода рабочей клети. В результате суммарная мощность процесса дрессировки уменьшается. Например, увеличение переднего натяжения на 25% обеспечивает снижение суммарной мощности и удельного расхода энергии на 17%.

Увеличение заднего натяжения приводит к увеличению мощности двигателя разматывателя, работающего в генераторном режиме, т.е. к поступлению в сеть дополнительной энергии (фиг. 2). Однако заднее натяжение, увеличиваясь, вызывает рост протяженности зоны отставания в очаге деформации рабочей клети, в результате возрастание в ней расхода энергии существенно перекрывает экономию, обеспечиваемую двигателем разматывателя, и суммарная мощность двигателей стана возрастает.

Если же заднее натяжение самопроизвольно уменьшается при росте переднего натяжения (что наблюдается на практике), то поступление энергии от разматывателя в сеть снижается, т.е. суммарный расход энергии растет. Таким образом, для достижения требуемого результата необходимо контролировать мощности двигателей разматывателя и моталки, т.е. поддерживать стабильные величины натяжений.

Что касается определения оптимальных величин переднего и заднего натяжений, то здесь необходимо иметь в виду следующее. Прокатываемые рулоны имеют неизбежный разброс характеристик параметров полосы: колеблется условный предел текучести материала отожженной полосы, ее толщина (в пределах допустимой разнотолщинности), колеблется скорость прокатки (например, при подходе к клети сварного шва, которым соединяются разные рулоны для работы в режиме бесконечной прокатки, эта скорость уменьшается), меняется коэффициент трения между полосой и валками, шероховатость валков с течением времени эксплуатации и т.д. Вместе с тем, в производственных условиях необходимо, чтобы технологический режим согласно изобретению надежно давал эффект экономии энергии при всех, в том числе случайных разбросах значений технологических параметров процесса. Проведенные многочисленные исследования энергосиловых параметров процесса дрессировки отожженых стальных полос различного сортамента с варьированием величин натяжений и других параметров процесса показали, что для гарантированного эффекта экономии энергии при всех возможных отклонениях механических и геометрических характеристик полосы и других параметров дрессировки величина заднего натяжения должна быть постоянной, равной значению из диапазона 0,05-0,1, а переднего - в диапазоне 0,15-0,21 от условного предела текучести отожженной полосы.

Если заднее натяжение задать меньшим, чем 0,05 от σ0,2, то из-за имеющей место на практике нестабильности таких параметров, как механические свойства и толщина полосы, стабильность процесса размотки рулона на дрессировочном стане может нарушиться, т.к. при натяжениях, близких к нулю, рабочая клеть будет не в состоянии отделить друг от друга витки рулона, которые после отжига имеют тенденцию к слипанию.

Если же заднее натяжение задать большим, чем 0,1 от σ0,2, то из-за уже отмеченной нестабильности параметров разность переднего и заднего натяжений уменьшится и гарантированная экономия энергии (минимум 3%) может быть не достигнута.

Если переднее натяжение задать меньшим, чем 0,15 от σ0,2, то по той же причине разность переднего и заднего натяжений уменьшится, что не гарантирует получения минимальной экономии энергии.

Если переднее натяжение задать большим, чем 0,21 от σ0,2, то теоретически это даст большую экономию энергии, но на практике может привести к разрыву полосы на участке «рабочая клеть-моталка» из-за нестабильности указанных выше параметров, что недопустимо.

Конкретный пример реализации способа

Для оценки технического результата изобретения на двух одноклетевых станах 1700 была проведена серия промышленных испытаний, в рамках которых выполнили следующие действия:

- увеличили переднее натяжение полосы на 33% относительно существующей технологии на стане (с 0,11-0,16 до 0,15-0,21 от условного предела текучести отожженной полосы);

- контролировали поддержание заднего натяжения постоянным в диапазоне, соответствующем существующей технологии (0,05-0,1 от условного предела текучести);

- замеряли напряжения и силы токов якорей на двигателях моталки, клети и разматывателя, по которым рассчитали их мощности, моменты и удельные расходы энергии; при этом контролировали, чтобы мощность и момент двигателя моталки были ниже их паспортных значений.

Технологические параметры (относительное обжатие, скорость, натяжения, усилия дрессировки) брали из базы данных АСУ ТП дрессировочного стана №2 и с диагностического центра, установленного на дрессировочном стане №1. Предел текучести металла до и после дрессировки определяли путем механических испытаний образцов, отобранных от каждого рулона.

В каждом эксперименте использовали по две партии металла; рулоны первых партий были подвергнуты дрессировке по существующей технологии, а вторых - по опытным режимам с увеличенным передним натяжением.

Для оценки энергоэффективности опытных режимов дрессировки был проведен сравнительный анализ средних значений удельных затрат электроэнергии на процесс дрессировки по существующей технологии и с увеличенным передним натяжением полосы.

В результате испытаний достоверно установлено, что удельный расход электроэнергии на дрессировку по опытным режимам, по сравнению с базовыми режимами, уменьшился на 3-5%.

Таким образом, подтверждено, что разработанный способ практически реализуем и дает ожидаемый технический результат: экономию энергии при дрессировке отожженной полосы на одноклетевом стане.

Источники информации

1. М.А. Беняковский, В.А. Масленников Автомобильная сталь и тонкий лист. Череповец, Издательский дом «Череповец», 2007 г., с. 344-349.

2. Патент РФ №2492947, МПК В21В 1/28, 2012 г.

3. Гарбер Э.А. Производство проката: Справочное издание. Том 1. Книга 1. Производство холоднокатаных полос и листов (сортамент, теория, технология, оборудование). - М.: Теплотехник, 2007, с. 185-187.

4. Э.А. Гарбер, И.А. Кожевникова Теория прокатки: Учеб. для студентов вузов. - Череповец: ЧГУ; М.: Теплотехник, 2013. - 305 с.

Способ дрессировки отожженных полос на одноклетевом стане с использованием моталки и разматывателя с относительными обжатиями 0,5-2%, включающий обжатие полосы с приложением заднего и переднего натяжений, отличающийся тем, что обжатие производят приводными рабочими валками, заднее натяжение устанавливают и поддерживают постоянным в диапазоне 0,05-0,1, а переднее - в диапазоне 0,15-0,21 от условного предела текучести отожженной полосы.



 

Похожие патенты:

Изобретение относится к технологии производства холоднокатаного проката, предназначенного для изготовления упаковочной ленты. Повышение механических свойств, их стабильности и однородности по длине полосы обеспечивается за счет того, что способ включает горячую прокатку полосы из стали, имеющей регламентированный состав, ее смотку, травление, холодную прокатку, термообработку, согласно которому температуру раската перед чистовой группой клетей поддерживают в диапазоне 1050-1200°С, горячую прокатку ведут с суммарным относительным обжатием не менее 90%, температуру конца прокатки и смотки поддерживают в диапазонах 810-880°С и 480-570°С соответственно, холодную прокатку ведут с суммарным относительным обжатием не менее 62%.

Изобретение относится к области прокатного производства металлической полосы. Снижение продольной и поперечной разнотолщинности полосы обеспечивается за счет того, что в способе обработки металлической полосы пластической деформацией, включающем прокатку с охватом передним концом полосы ведущего валка и охватом задним концом полосы ведомого валка с углом охвата в пределах π≤φ1 и φ0 < 2π радиан, соответственно, с рассогласованием окружных скоростей валков и обеспечением снижения натяжения концов полосы, снижают силы переднего и заднего натяжений на свободных концах полосы путем подачи смазочно-охлаждающей жидкости в зазор между ведущим и ведомым валками и полосой на входе полосы в валки.

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления полосы с прочностными свойствами в 1,2-1,4 раза выше, чем у прототипа.

Изобретение относится к прокатному производству и может быть использовано при получении холоднокатаных листов толщиной 0,4-1,8 мм из низкоуглеродистой стали марки 08ЮТР для получения изделий методом глубокой вытяжки.

Изобретение относится к прокатному производству и может быть использовано при получении бескремнистой листовой изотропной электротехнической стали толщиной 0,2-1,8 мм.
Изобретение относится к прокатному производству и может быть использовано на непрерывных станах для холодной прокатки полос и лент из высокопрочных сталей и сплавов.

Изобретение относится к прокатному производству и может быть использовано на многоклетевых непрерывных станах при холодной прокатке полосы из стали или сплавов цветных металлов из горячекатаного подката.
Изобретение относится к области черной металлургии, конкретнее к технологии прокатки и термической обработки металлов, и может быть использовано при производстве высокопрочной холоднокатаной полосы из углеродистой стали в нагартованном состоянии толщиной 0,8-1,0 мм и массой 17-26 т для получения упаковочной ленты.

Изобретение предназначено для повышения производительности при производстве холоднокатаной широкополосной стали. Способ включает непрерывную прокатку на совмещенном агрегате непрерывного травления и стане непрерывной холодной прокатки при заданных режимах травления и прокатки.

Изобретение относится к области черной металлургии, к прокатному производству, и может быть использовано при получении упаковочной ленты, используемой для автоматизированной обвязки грузов.

Изобретение относится к области прокатки, в частности холодной прокатки металлической полосы (2). Прокатный стан содержит по меньшей мере одну клеть (1) холодной прокатки, расположенный перед клетью (1) холодной прокатки разматыватель (3), при этом между разматывателем (3) и клетью (1) холодной прокатки промежуточно расположен блок (10), который состоит по меньшей мере из трех приводимых во вращение вокруг соответствующей оси (6А, 7А, 8А) вращения роликов (6, 7, 8), при этом предусмотрена возможность перестановки каждого из этих роликов (6, 7, 8) по отдельности или совместно в направлении соответствующей оси (6А, 7А, 8А) вращения или в направлении поперек оси (6А, 7А, 8А) вращения с помощью приводного и регулировочного устройства (11). Способ включает прокатку с перемещением в процессе прокатки роликов (6, 7, 8) с помощью приводного и регулировочного устройства (11). 2 н. и 20 з.п. ф-лы, 4 ил.

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления высокопрочных тонких полос и листов из алюминиевых сплавов. Способ включает прокатку тонкой полосы из алюминиевых сплавов в двух валках с рассогласованием их окружных скоростей по меньшей мере в два раза и с единичной степенью деформации не менее 50% до суммарной степени деформации 75-95%. Одновременное повышение прочностных и пластических свойств изделий в условиях интенсификации процесса фрагментирования зерен металла путем активизации процесса механического двойникования и повышения плотности дислокаций под действием больших сдвиговых деформаций, а также подавления процессов динамического возврата и рекристаллизации в условиях криогенных температур обеспечивается за счет того, что перед прокаткой тонкую полосу охлаждают до -153÷-196°С, а сразу после прокатки полосу нагревают до температуры 20-25°С со скоростью 100-400°С/с. 2 табл.

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления металлических профилей с повышенными прочностными свойствами. Продольную прокатку металла производят в клети с двумя трехвалковыми калибрами, образующими между собой максимально сближенные очаги деформации. Повышение прочностных свойств изготавливаемых металлических профилей за счет создания в металле фрагментированной структуры с высокой плотностью дислокаций обеспечивается за счет того, что прокатку осуществляют в валках с шероховатостью 3,0-9,0 мкм Ra и логарифмическим коэффициентом вытяжки в каждом калибре не менее 0,4, при этом окружные скорости валков регламентированы математической зависимостью. Осуществление заявляемого способа позволяет создать сложную схему напряженно-деформированного состояния, включающую одновременно высокие деформации всестороннего сжатия и сдвига. 6 ил., 2 табл.

Изобретение относится к области металлургии. Для уменьшении шероховатости поверхности полосы, что приводит к уменьшению удельных магнитных потерь на 10%, способ производства полосы из электротехнической стали включает выплавку и разливку стали, горячую прокатку, две холодные прокатки полосы в рабочих валках клети прокатного стана, обезуглероживающий отжиг, нанесение термостойкого покрытия, высокотемпературный отжиг и выпрямляющий отжиг полосы с нанесением электроизоляционного покрытия, при этом после окончательной холодной прокатки осуществляют обжатие полосы со степенью не более 10% для уменьшения шероховатости ее поверхности путем протяжки холоднокатаной полосы через рабочие валки стана при отключенном приводе. Предложенный способ очень технологичен, так как обжатие можно провести путем протяжки полосы на стане для холодной прокатки при отключенном приводе рабочих валков с помощью моталок, без привлечения дополнительного оборудования. Операция обжатия обеспечивает весьма гладкую поверхность и необходимую планшетность полосы электротехнической стали. 1 табл.

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления высокопрочных тонких листов и полос из алюминиевых сплавов. Способ включает холодную прокатку полосы в двух валках при рассогласовании их окружных скоростей до суммарной степени деформации 75-95% с минимальной единичной степенью деформации 50%. Повышение прочностных свойств изделий за счет создания фрагментированной структуры металла с высокой плотностью дислокаций в условиях отсутствия термически активационных процессов разупрочнения при деформационном разогреве металла в очаге деформации обеспечивается путем проведения прокатки с регламентированными окружными скоростями валков, при этом максимальную единичную степень деформации при прокатке полосы задают не более 75%, а после каждого прохода полосу охлаждают до температуры 20-25°С. 2 табл.

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления высокопрочных тонких листов из металлических материалов, в том числе из алюминиевых сплавов. Повышение прочностных свойств металла одновременно как по длине, так и по ширине листа за счет создания в нем пространственно-равномерной фрагментированной структуры металла с высокой плотностью дислокаций обеспечивается путем осуществления прокатки тонкого листа в двух валках с рассогласованием их окружных скоростей по меньшей мере в два раза и с единичной степенью деформации не менее 50% до суммарной степени деформации 75-95%, при этом прокатку осуществляют за два или четыре прохода, причем в каждом проходе, начиная с первого, задают одинаковое рассогласование окружных скоростей валков и одинаковую единичную степень деформации металла, а между проходами осуществляют поворот листа в плоскости прокатки на угол 90°. 2 табл.

Изобретение относится к области металлургии. Для повышения коррозионной стойкости упаковочной ленты способ включает получение сляба из стали, содержащей, мас.%: C 0,003 или менее, N 0,004 или менее, Mn от 0,05 до 0,5, P 0,02 или менее, Si 0,02 или менее, S 0,03 или менее, Al 0,1 или менее, железо и неизбежные примеси - остальное, горячую прокатку сляба при конечной температуре выше или равной температуре фазового перехода Ar3, однократную или двукратную холодную прокатку ленты, причем при двукратной холодной прокатке проводят рекристаллизационный отжиг между стадиями холодной прокатки, электроосаждение слоя олова по меньшей мере на одну сторону ленты, причем масса покрытия слоя олова или слоев на одной или обеих сторонах ленты составляет не более 1000 мг/м2; отжиг ленты с покрытием путем ее нагрева со скоростью, превышающей 300°C/с, до температуры Та от 513 до 645°C с выдержкой при Та в течение времени ta с обеспечением преобразования слоя олова в слой сплава железо-олово, который содержит по меньшей мере 90 мас.%, предпочтительно 95 мас.% FeSn с 50 ат.% железа и 50 ат.% олова, с получением восстановленной микроструктуры стали при отсутствии рекристаллизации стальной ленты, подвергнутой холодной прокатке, и быстрое охлаждение ленты с покрытием со скоростью по меньшей мере 100°C/с. 2 н. и 8 з.п. ф-лы, 3 табл.
Изобретение относится к области металлургии. Для повышения коррозионной стойкости стального листа способ включает получение сляба из стали, содержащей, мас.%: С 0,05 или менее, N 0,004 или менее, Mn от 0,05 до 0,5, P 0,02 или менее, Si 0,02 или менее, S 0,03 или менее, Al 0,1 или менее, при необходимости один или более элементов из: Nb от 0,001 до 0,1, Ti от 0,001 до 0,15, V от 0,001 до 0,2, Zr от 0,001 до 0,1, B от 5 до 50 ppm, Fe и неизбежные примеси - остальное, горячую прокатку при конечной температуре, большей или равной температуре превращения Ar3, однократную холодную прокатку с получением подложки, электроосаждение слоя олова на одну или обе стороны подложки с получением луженого стального листа для упаковочных применений, причем масса покрытия слоя олова или слоев составляет не более 1000 мг/м2, отжиг луженого упаковочного стального листа путем его нагрева со скоростью более 300°С/с до температуры Ta от 513°C до 645°C с выдержкой в течение времени ta с преобразованием слоя олова в слой железо-оловянного сплава, содержащего, по меньшей мере, 90, предпочтительно 95 мас.% FeSn с 50 ат.% Fe и 50 ат.% Sn, и охлаждение со скоростью по меньшей мере 100°С/с. 2 н. и 10 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии. Для повышения коррозионной стойкости детали способ её изготовления включает стадии холодной прокатки подложки (3) с использованием рабочих валков, рабочая поверхность которых имеет шероховатость Ra2.5 меньшую или равную 3,6 мкм; нанесения металлического покрытия (7) по меньшей мере на одной поверхности (5) отожженной подложки (5) с помощью электролитического осаждения с образованием металлического листа (1); деформирования отрезанного металлического листа (1) с формированием деталей, при этом внешняя поверхность (21) металлического покрытия (7) после проведения стадии деформирования имеет волнистость Wa0,8 меньшую или равную 0,5 мкм. 3 н. И 15 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к области прокатки, плоского проката из металлического материала, в частности из стального материала, к его применению, способу и валку для его изготовления. Для улучшения трибологических свойств и условий для нанесения лакового покрытия плоский прокат имеет детерминированную структуру поверхности, которая имеет большое количество углублений с глубиной в пределах от 2 до 14 мкм, причем углубления осуществлены I-образными, Н-образными, крестообразными, С-образными или Х-образными. Структура поверхности имеет количество пиков RPc в пределах от 45 до 180 1/см, среднюю арифметическую шероховатость Ra в пределах от 0,3 до 3,6 мкм и среднюю арифметическую волнистость Wsa в пределах от 0,05 до 0,65 мкм. Валок текстурирован с применением лазера и имеет детерминированную структуру поверхности с большим количеством перекрывающих друг друга чашевидных углублений соответствующей формы. Структура поверхности валка, измеренная в направлении валка, отличается количеством пиков RPc в пределах от 80 до 180 1/см, средней арифметической шероховатостью Ra в пределах от 2,5 до 3,5 мкм и средней арифметической волнистостью Wsa в пределах от 0,08 до 1,0 мкм. 4 н. и 13 з.п. ф-лы, 15 ил.
Наверх