Экстрагент для извлечения азотной кислоты из водных растворов



Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов
Экстрагент для извлечения азотной кислоты из водных растворов

 


Владельцы патента RU 2596624:

Общество с ограниченной ответственностью "Инновационные химические технологии" (RU)

Изобретение относится к группе новых экстрагентов для извлечения азотной кислоты из водных растворов, в том числе из сточных вод, которые могут быть использованы для жидкостной экстракции азотной кислоты и разделения соляной и азотной кислот. Предложенные экстрагенты могут включать один или несколько диалкилсульфонов формулы , где каждый независимо представляет собой линейный или разветвленный алкил, содержащий 1-8 атомов углерода, при этом суммарное число атомов углерода в соединении формулы (I) составляет 6-12. Экстрагент может представлять собой смесь диалкилсульфонов, получаемых в результате окисления трех продуктов взаимодействия двух алифатических С45 спиртов с сероводородом. Экстрагент может дополнительно включать другие экстрагенты, например ТБФ или МиБК, или разбавители, такие как керосины, С610 алифатические спирты, галогензамещенные С610 кетоны, линейные или циклические силоксаны. 14 з.п. ф-лы, 14 ил., 9 табл., 24 пр.

 

Настоящее изобретение относится к химической технологии, конкретно к экстрагентам для жидкостной экстракции, способным извлекать азотную кислоту из водных растворов, включающим один или несколько диалкилсульфонов формулы (I)

где R1 и R2 представляют собой линейные или разветвленные алкилы, содержащие 1-8 атомов углерода.

Наиболее эффективно изобретение может использоваться в химической, металлургической и горнодобывающей промышленности, а также для очистки сбросовых и сточных вод.

Экстракция азотной и других кислот из водных растворов является важным промышленным процессом. Необходимость экстракционного извлечения азотной кислоты возникает при очистке сбросовых вод от нитрат-ионов [патент США US 4169880 (1979)], разделении смесей кислот [патенты США US 4668495 (1987), US 4364914 (1982), US 4378342 (1983), US 4285924 (1981)], извлечении, разделении и очистке цветных металлов [патенты США US 4647438 (1987), US 5338520 (1994), заявка US 20130259777 A], выделении урана, тория и других актиноидов и лантаноидов [заявка RU 2009119466 A].

Наибольшее распространение среди экстрагентов, применяемых в настоящее время для экстракции азотной кислоты, получили трибутилфосфат (ТБФ) [(патенты США US 4668495 (1987) и US 4364916 (1982), Chang-HoonShin, et al, Journal of Hazardous Materials 163 (2009), 729-734), а также нерастворимые в воде алифатические кетоны, например, метилизобутилкетон (МиБК) (Ion Exchange and Solvent Extraction: A Series of Advances, Vol. 19, Ed. B.A. Moyer, CRC Press, Boca Raton, 2010, 673 p.).

Кроме ТБФ, в качестве экстрагентов используются также и другие соединения фосфора, такие, как ди(2-этилгексил)фосфорная кислота (Д2ЭГФК), моно(2-этилгексил)2-этилгексилфосфоновая кислота (ЕНЕНРА), бис(2-этилгексил)фосфиновая кислота, фосфиноксид разнорадикальный (ФОР), смеси на основе вышеперечисленных сложных эфиров и их гомологов (например, смеси под торговой маркой CYANEX).

Известно, что для экстракции азотной кислоты используют растворы алифатических триалкиламинов в соответствующих растворителях, например, триоктиламин в керосине [патенты США US 4285924 (1981) и US 4169880 (1977)].

Аналогами заявляемых экстрагентов являются вещества того же назначения, такие как ТБФ, МиБК, ФОР, ЕНЕНРА и др. Эти аналоги использовали для сравнения в экспериментах по изучению экстрагирующей способности и других свойств заявляемых экстрагентов. Наиболее близкими аналогами заявляемых экстрагентов являются ТБФ и МиБК. Несмотря на высокую экстрагирующую способность и широкое применение, эти аналоги не лишены недостатков. Недостатками метилизобутилкетона являются его токсичность (LC50=8,2 мг/л) и недостаточная химическая устойчивость в сильнокислых средах. Недостатками ТБФ как экстрагента являются его высокая плотность и вязкость (поэтому необходимо прибавлять разбавитель для снижения вязкости), а также легкая гидролизуемость с образованием моно- и дибутилфосфатов. В качестве прототипа был выбран широко применяемый для экстракции ТБФ.

Несмотря на разнообразие известных и применяемых экстрагентов, подбор экстракционной системы для конкретной технологии является сложной задачей, так как необходимо учитывать множество факторов, от которых зависит производительность и селективность процесса. Среди таких факторов важнейшими являются экстракционная способность, селективность, вязкость, стабильность экстрагента, растворимость, соответствие экологическим требованиям, стоимость экстрагента, простота реэкстракции и т.п.

Невозможно подобрать экстрагент, который бы одновременно удовлетворял всем требованиям, существует потребность в новых экстрагентах, которые могли бы использоваться в конкретных промышленных процессах. Поиск таких экстрагентов, расширяющих арсенал средств для экстракции и позволяющих совершенствовать технологии ряда производств, представляется весьма актуальным.

Задачей изобретения является разработка новых экстрагентов для извлечения азотной кислоты из водных растворов, которые не уступали бы известным экстрагентам по своей экстрагирующей способности и позволяли бы извлекать азотную кислоту из смесей с другими кислотами.

Поставленная задача решается новым экстрагентом для извлечения азотной кислоты и нитратов из водных растворов, включающим один или несколько диалкилсульфонов формулы (I)

где R1 и R2 каждый независимо представляет собой линейный или разветвленный алкил, содержащий 1-8 атомов углерода, при этом суммарное число атомов углерода в соединении формулы (I) составляет от 6 до 12.

Заявляемый экстрагент может представлять собой чистый диалкилсульфон, такой как дибутилсульфон, или смесь диалкилсульфонов формулы (I), которая в ряде случаев является эвтектической.

Заявляемый экстрагент может представлять собой смесь диалкилсульфонов, получаемых в результате окисления трех продуктов взаимодействия двух алифатических С45 спиртов с сероводородом.

Заявляемый экстрагент, включающий диалкилсульфон или смеси диалкилсульфонов, может дополнительно содержать одно или несколько фосфорсодержащих соединений, таких, как триалкилфосфаты, диалкилфосфаты, алкилфосфонаты, фосфиновые кислоты, фосфиноксиды или один или несколько С6-C10 кетонов.

Предложенный экстрагент может включать один или несколько разбавителей, выбранных из группы: керосины, алифатические C6-C10 спирты, галогензамещенные С6-C10 кетоны, линейные или циклические силоксаны.

Экстрагент может представлять собой смеси следующих составов (мас. ч.):

(а) дибутилсульфон 30-35
бутилизобутилсульфон 65-70
(б) диизобутилсульфон 4-10
бутилизобутилсульфон 45-48
дибутилсульфон 45-48
(в) дибутилсульфон 20-30
диизобутилсульфон 20-30
бутилизобутилсульфон 40-60
(г) диизобутилсульфон 20-30
диизоамилсульфон 20-30
изоамилизобутилсульфон 40-60
(д) диизопропилсульфон 20-30
диизоамилсульфон 20-30
изоамилизопропилсульфон 40-60

Заявляемый экстрагент позволяет извлекать азотную кислоту из водных растворов, содержащих другие кислоты, такие как соляная, серная или метансульфоновая, его можно использовать для извлечения азотной кислоты из сточных вод.

Выбор диалкилсульфонов и их смесей для использования в качестве экстрагентов был продиктован их свойствами, которые удовлетворяют ряду требований, предъявляемым к экстрагентам. Для диалкилсульфонов характерна высокая химическая и термическая стабильность (Общая органическая химия, т. 5. Соединения фосфора и серы. // Под ред. Н.К. Кочеткова, М., Химия, 1983 с. 318). Диалкилсульфоны обладают высокой селективностью, низкой растворимостью в воде, достаточно высокой температурой вспышки, совместимостью с разбавителями. Кроме того, в отличие от фосфатов, фосфонатов и алифатических кетонов, диалкилсульфоны стабильны в сильнокислых средах. Некоторые свойства диалкилсульфонов и их смесей представлены в таблице 1.

Диалкилсульфоны формулы (I) получают окислением соответствующих сульфидов, которые в большинстве своем являются легкодоступными соединениями (Сьютер Ч. Химия органических соединений серы. Пер. с англ. М., Издатинлит, 1951; A. Schoberl, A. WagnerinHouben-Weyl. Methoden der Organishe; EP 2441751 A1; Kuchin A.V., et al, Russian Journal of Organic Chemistry, 36(12), 1819-1820, 2000; Moshref J., Maedeh et al, Polyhedron, 72, 19-26, 2014; Postigo, Lorena et al, Catalysis Science & Technology, 4(1), 38-42, 2014; Doherty, S. et al, Green Chemistry, 17(3), 1559-1571, 2015).

Чем меньше длина алкильных заместителей, тем меньше вязкость диалкилсульфонов, следовательно, тем быстрее происходит массообмен при экстракции. Но диалкилсульфоны формулы (I), где R1 и R2 являются линейными или разветвленными алкилами, имеющими от 1 до 4 атомов углерода, и где сумма атомов углерода в группах R1 и R2 не больше 7, такие как, например, изобутилизопропилсульфон, не подходят для использования в качестве экстрагентов, т.к. они хорошо растворимы в воде. Применение добавок, ограничивающих растворимость в воде, в этом случае нецелесообразно ввиду их лабильности в сильнокислых средах, либо из-за снижения экстракционных характеристик сульфонов.

Диалкилсульфоны, в которых оба заместителя R1 и R2 имеют нормальное строение, как правило, являются твердыми веществами при комнатной температуре. Соединения формулы (I), где сумма атомов углерода в группах R1 и R2 не меньше 10, такие как, например, этил(2-этилгексил)сульфон являются твердыми веществами или сильновязкими жидкостями и существенно хуже экстрагируют азотную кислоту.

Температуры плавления для диалкилсульфонов формулы (I) представлены в таблице 2.

В некоторых случаях смеси диалкилсульфонов являются эвтектическими. Применение эвтектических композиций позволяет проводить экстракционное разделение при низких температурах. Необходимость снижения температуры при экстракции возникает, например, при разделении азотной и соляной кислот, которое целесообразно проводить при температуре ниже 5°C, что позволяет предотвратить разложение азотной кислоты и образование токсичных NOCl и NO2Cl.

Наиболее предпочтительными свойствами для использования в качестве экстрагентов обладают такие соединения формулы (I), как дибутилсульфон, диизобутилсульфон, бутилизобутилсульфон, диизоамилсульфон, изоамилизобутилсульфон и изоамилизопропилсульфон.

Но получение чистых несимметричных диалкилсульфонов существенно сложнее, чем получение симметричных. Альтернативой несимметричным сульфонам могут быть низкоплавкие трехкомпонентные смеси, получаемые по схеме:

Такие смеси получают показанным выше способом при использовании С45 спиртов, взятых в эквимолярных количествах.

Возможность использования диалкилсульфонов в качестве экстрагентов подтверждена экспериментально. Изучена экстракция азотной кислоты из водных растворов различными диалкилсульфонами и их смесями. Изучена экстракция азотной кислоты из водных растворов, содержащих другие кислоты. Для сравнения проведены эксперименты с известными экстрагентами в аналогичных условиях. Изучена экстракция кислот смесями диалкилсульфонов с известными экстрагентами и смесями диалкилсульфона с разбавителями.

Изобретение иллюстрируется приведенными ниже фигурами.

На фиг. 1 представлены изотермы экстракции азотной кислоты из водных растворов различными диалкилсульфонами или их смесями.

На фиг. 2 представлены изотермы экстракции азотной кислоты из водных растворов при использовании в качестве экстрагента диизобутилсульфона, и для сравнения показаны изотермы экстракции HNO3 трибутилфосфатом (ТБФ) и метилизобутилкетоном (МиБК).

На фиг. 3 представлена изотерма экстракции азотной и соляной кислоты из водных растворов при использовании в качестве экстрагента диизобутилсульфона, иллюстрирующая эффективность этого экстрагента для разделения указанных кислот.

Для сравнения эффективности заявляемого экстрагента с ТБФ на фиг. 4 представлена изотерма экстракции азотной и соляной кислоты из водных растворов трибутилфосфатом.

На фиг. 5 приведены изотермы экстракции азотной и соляной кислоты из водных растворов при использовании в качестве экстрагентов диизобутилсульфона, ТБФ и МиБК, которые позволяют сравнить эффективность этих экстрагентов для разделения азотной и соляной кислот.

На фиг. 6 представлены изотермы экстракции азотной, соляной, серной и метансульфоновой кислот из водных растворов при использовании диизобутилсульфона в качестве экстрагента. Фиг.6 иллюстрирует селективность диизобутилсульфона в отношении различных кислот и возможность разделения кислот с сильно различающимися коэффициентами распределения путем экстракции. Например, можно отделить азотную кислоту от соляной, серной и метансульфоновой кислот.

На фиг. 7 представлены изотермы экстракции азотной кислоты из водных растворов при использовании в качестве экстрагента чистого диизобутилсульфона, смеси диизобутилсульфона с ТБФ и смеси диизобутилсульфона с МиБК.

На фиг. 8 представлены изотермы экстракции азотной кислоты из водных растворов при использовании в качестве экстрагентов чистого диизобутилсульфона и смесей диизобутилсульфона с различными разбавителями, такими, как 2-этилгексанол, керосины и др.

На фиг. 9-13 представлены графики зависимости коэффициентов распределения азотной и соляной кислот от состава экстрагента, включающего диалкилсульфон в смеси с известным экстрагентом, где точка 0 на оси абсцисс соответствует чистому диалкилсульфону, точка 100 - чистому известному экстрагенту: МиБК (фиг. 9), ТБФ (фиг. 10), ФОР (фиг. 11), ЕНЕНРА (фиг. 12) и Д2ЭГФК (фиг. 13).

Фиг.14 относится к примеру 24, на ней схематично изображен пятиступенчатый противоточный экстракционный каскад, в котором проводят разделение смеси азотной и соляной кислоты, а в качестве экстрагента используют диизобутилсульфон.

Преимуществами диалкилсульфонов, по сравнению с фосфорорганическими соединениями, являются их низкая стоимость, низкая вязкость, низкая температура плавления и высокая экстракционная способность. Кроме того, в отличие от фосфатов и фосфонатов, сульфоны стабильны в сильнокислых средах. Так, например, не было зафиксировано образования продуктов разложения сульфонов методом ЯМР при выдерживании его в течение месяца в 35% HCl, 96% H2SO4, 90% HNO3 и 6М NaOH.

Химическая стабильность, низкая токсичность и высокая температура вспышки диалкилсульфонов также выгодно отличают их от алифатических кетонов, содержащих 6 атомов углерода (МиБК), широко используемых для экстракции азотной кислоты.

Диалкилсульфоны могут быть использованы в качестве разбавителей для известных экстрагентов, таких как ТБФ, Д2ЭГФК, ФОР и т.д. Варьируя соотношение известный экстрагент : диалкилсульфон, можно подобрать оптимальные значения коэффициента распределения, обеспечивающие наибольшую эффективность экстракции/реэкстракции (фиг. 9-13). Кроме того, добавление диалкилсульфонов ведет к увеличению селективности экстракции азотной кислоты и удешевлению получаемых экстрагентов. Использование разбавителей в смеси с диалкилсульфонами позволяет также удешевить экстрагент и сделать его менее вязким (Пример 3, фиг. 8).

Эффективность экстракции смесью диизобутилсульфона и керосина производства компании Shell Chemicals ShelSolD60 (D60) или смесью диизобутилсульфона и 2-этилгексанола близка к эффективности экстракции чистым диизобутилсульфоном. Так, при исходной концентрации азотной кислоты 3M коэффициенты разделения при использовании в качестве экстрагента чистого диизобутилсульфона и его 33% смеси с D60 составляют 0,261 и 0,213 соответственно, при концентрации 5М 0,363 и 0,326 соответственно. При использовании диизобутилсульфона в смеси с керосином D60 в процессе экстракции наблюдалось трехфазное расслоение системы на водную фазу, сульфон, содержащий азотную кислоту (тяжелая органическая фаза), и керосин D60, содержащий чистый сульфон (легкая органическая фаза). В процессе реэкстракции свободный диизобутилсульфон переходит в керосиновую фазу, объем тяжелой органической фазы уменьшается, при этом концентрация кислоты в этой фазе остается неизменной. Таким образом, образование трехфазной системы в данном случае облегчает процесс реэкстракции.

Экспериментально показано, что коэффициенты распределения соляной, серной и метансульфоновой кислот существенно ниже коэффициента распределения азотной кислоты (Пример 3, фиг. 6). Таким образом, используя диизобутилсульфон в качестве экстрагента, можно селективно извлекать азотную кислоту из смесей с HCl, H2SO4 или MsOH.

Существенным недостатком ТБФ и МиБК является образование стойких эмульсий после перемешивания с растворами соляной кислоты. Время расхождения эмульсий МиБК с 3M, 4М и 5М соляной кислотой и эмульсий ТБФ с 1М соляной кислотой составляло приблизительно сутки.

В случае диизобутилсульфона время расхождения эмульсии во всем диапазоне исследованных концентраций составляло 3-5 минут.

Таким образом, важным преимуществом диалкилсульфонов как экстрагентов для селективного извлечения азотной кислоты является то, что диалкилсульфоны не образуют стойких эмульсий с соляной кислотой, в отличие от ТБФ и МиБК.

Результаты показывают, что экстракционная способность диалкилсульфонов по отношению к азотной кислоте близка к таковой для МиБК.

Так, при исходной концентрации азотной кислоты 5М коэффициенты распределения составили для диизобутилсульфона и МиБК 0,363 и 0,381, а при концентрации 2М - 0,199 и 0,197 соответственно.

Настоящее изобретение предлагает новый экстрагент для извлечения азотной кислоты, обладающий достаточно высокой экстракционной способностью, сравнимой с экстракционной способностью используемых в настоящее время экстрагентов, высокой селективностью по отношению к азотной кислоте, превышающей селективность ТБФ.

Заявляемый экстрагент устойчив в сильнокислых средах, позволяет осуществлять экстракцию при низких температурах, делает возможным селективное извлечение азотной кислоты из смесей с другими кислотами.

Техническим результатом является расширение создание новых экстрагентов, для жидкостной экстракции и повышение селективности извлечения азотной кислоты из водных растворов, содержащих другие кислоты, такие как соляная, серная и метансульфоновая.

Изобретение иллюстрируется приведенными ниже примерами и фигурами.

Пример 1

Для проведения эксперимента готовили исходный раствор азотной кислоты заданной концентрации. Экстракцию проводили при перемешивании равных объемов кислоты и экстрагента встряхиванием с помощью шейкера в сосуде объемом 20 мл в течение 3 минут при комнатной температуре (20-25°C), затем эмульсии давали возможность расслоиться. Для n-Bu(i-Bu)SO2 эксперимент проводили при температуре 10°C. Концентрацию кислоты в водной и органической фазах определяли титрованием. По результатам измерений рассчитывали коэффициенты распределения (D) для азотной кислоты.

D(HNO3)=C(HNO3)o/C(HNO3)в,

где C(HNO3)o - концентрация азотной кислоты в органической фазе, C(HNO3)в - концентрация азотной кислоты в водной фазе.

На фиг. 1 представлены изотермы экстракции азотной кислоты из водных растворов различными сульфонами. Рассчитанные на основании эксперимента коэффициенты распределения (D) для азотной кислоты представлены в таблице 3.

На фиг. 2 представлены результаты, полученные при использовании диизобутилсульфона в качестве экстрагента для извлечения HNO3, и для сравнения приведены результаты, полученные для ТБФ и МиБК в аналогичных условиях.

Показано, что экстракционная способность диалкилсульфонов по отношению к азотной кислоте близка к таковой для МиБК, но несколько ниже экстракционной способности ТБФ.

Так, при исходной концентрации азотной кислоты 5М коэффициенты распределения составили для диизобутилсульфона и МиБК 0,363 и 0,381, а при концентрации 2М - 0,199 и 0,197, соответственно.

Пример 2

Для оценки селективности экстрагентов по отношению к азотной кислоте были построены изотермы экстракции азотной и соляной кислот из водных растворов (фиг. 3-5). Экстракцию проводили так же, как и в Примере 1, используя исходные растворы азотной и соляной кислот заданных концентраций. По результатам экспериментов были рассчитаны коэффициенты распределения (D) для азотной и соляной кислот и фактор разделения (SF), [SF=D(HNO3)/D(HCl)] (Табл. 3 и 4).

Так, при концентрации кислоты 2М коэффициент распределения азотной кислоты при экстракции диизобутилсульфоном в 66 раз больше коэффициента распределения соляной кислоты, для МиБК в 26 раз больше, тогда как для ТБФ всего в 8,6 раз больше, при концентрации азотной кислоты 3M отношение коэффициентов распределения кислот составляют, соответственно 22, 66 и 4,8. Показано, что в отличие от заявляемых экстрагентов, ТБФ и МиБК образуют стойкие эмульсии после перемешивания с растворами соляной кислоты. Время расхождения эмульсии с увеличением концентрации кислоты для МиБК увеличивалось, а для ТБФ уменьшалось. Время расхождения эмульсий МиБК с 3M, 4М и 5М соляной кислотой и эмульсий ТБФ с 1М соляной кислотой составляло приблизительно сутки. В случае диизобутилсульфона время расхождения эмульсии во всем диапазоне исследованных концентраций составляет 3-5 минут.

Пример 3.

Эксперимент, аналогичный описанному в Примере 2, был проведен для большего набора кислот. На фиг. 6 показаны изотермы экстракции азотной, соляной, серной и метансульфоновой кислот из водных растворов диизобутилсульфоном.

Коэффициенты распределения соляной, серной и метансульфоновой кислот существенно ниже коэффициента распределения азотной кислоты. Так, при концентрации кислоты 2М коэффициенты распределения для азотной, соляной, серной и метансульфоновой кислот составили 0,199, 0,003, 0,006 (при конц. 20%, что соответствует 2,3M) и 0,005 соответственно, для концентрации 5М - 0,363, 0,01, 0,051 (при конц. 40%, что соответствует 5,3M) и 0,047 соответственно (Таблица 5).

Таким образом, используя диизобутилсульфон в качестве экстрагента можно селективно извлекать азотную кислоту из смесей с HCl, H2SO4 или MsOH.

Пример 4.

На фиг. 7 и 8 представлены изотермы экстракции азотной кислоты чистым диизобутилсульфоном, а также смесями диизобутилсульфона с ТБФ, МиБК и различными разбавителями: 2-этилциклогексанолом, хлороформом и керосинами ShelSol D60 (D60) и ShelSol А100 (А100) производства компании ShellChemicals. Условия экстракции аналогичны условиям, указанным в Примере 1. Доля диизобутилсульфона в органической фазе составляла 33% по объему.

Результаты экспериментов показывают, что эффективность экстракции смесью диизобутилсульфона и D60 или смесью диизобутилсульфона и 2-этилгексанола близка к эффективности экстракции чистым диизобутилсульфоном. При исходной концентрации азотной кислоты 3M коэффициенты разделения при использовании в качестве экстрагента чистого диизобутилсульфона и его 33% смеси с 2-этилгексаноломи D60 соответственно составляют 0,261, 0,272 и 0,213 соответственно, при концентрации 5М - 0,363, 0,331 и 0,326 соответственно (Таблица 6).

Эффективность экстракции смесью диизобутилсульфона и D60 или смесью диизобутилсульфона и 2-этилгексанола близка к эффективности экстракции чистым диизобутилсульфоном. Так, при исходной концентрации азотной кислоты 3M коэффициенты разделения при использовании в качестве экстрагента чистого диизобутилсульфона и его 33% смеси с D60 составляют 0,261 и 0,213 соответственно, при концентрации 5М 0,363 и 0,326 соответственно. При использовании диизобутилсульфона в смеси с керосином D60 в процессе экстракции наблюдалось трехфазное расслоение системы на водную фазу, сульфон, содержащий азотную кислоту (тяжелая органическая фаза), и ShelSolD60, содержащий чистый сульфон (легкая органическая фаза). В процессе реэкстракции свободный диизобутилсульфон переходит в керосиновую фазу, объем тяжелой органической фазы уменьшается, при этом концентрация кислоты в этой фазе остается неизменной. Таким образом, образование трехфазной системы в данном случае облегчает процесс реэкстракции.

Примеры 5-22.

Для оценки селективности экстрагентов, включающих сульфоны и смеси сульфонов с известными экстрагентами по отношению к азотной кислоте были проведены следующие эксперименты. Водный 3M раствор азотной кислоты или соляной кислоты добавляли к исследуемым экстрагентам, которые могли включать 3 компонента (А, В и С), (соотношение водной и органической фазы составляло 1:1 по объему) и перемешивали в течение 3 мин при комнатной температуре (20-25°C). Концентрацию кислоты в водной и органической фазе определяли титрованием. По результатам рассчитывали коэффициенты распределения для азотной D(HNO3) и соляной D(HCl) кислот и фактор разделения (SF)(SF=D(HNO3)/D(HCl) (Таблица 7).

Пример 23.

Смесь i-BuSO2n-Am (61 масс.%) и (iBu)2SO2 (39% масс.%) готовили простым смешиванием компонентов. Экстракцию проводили по методике, описанной в примере 1 при температуре 5°C. Состав эвтектической смеси определяли описанным ниже способом.

Термоаналитические измерения проводили на приборе ДСК-500 при скорости нагревания 57 мин в интервале температур -70-30°C.

Образцы взвешивали на аналитических весах ViBRA AF 225DRCE с точностью 1·10-2 мг. Во время съемки использовали следующую температурную программу:

- охлаждение до -70°C со скоростью 5°C/мин;

- изотерма -70°C в течение 3-х минут;

- нагрев до 25-35°C со скоростью 5°C/мин.

Кристаллизация протекает неравновесно (температурный максимум явно зависит от скорости охлаждения, наблюдается сильное переохлаждение (более 20°C), поэтому использовали только участки кривых, соответствующие нагреванию образцов. Температуры плавления исходных сульфонов и образованных ими смесей приведены в таблице 8.

Результаты экспериментов по экстракции кислот полученной эвтектической смесью при 5°C приведены в таблице 9.

Пример 24.

Разделение смеси азотной и соляной кислот проводили при помощи пятиступенчатого противоточного экстракционного каскада (фиг. 14). Каждый экстракционный узел на схеме представляет собой ячейку смеситель-отстойник. Объем каждой ячейки составляет 0,5 л. В качестве экстрагента использовали диизобутилсульфон, скорость подачи экстрагента с систему - 1 л/ч.

Исходный раствор представлял собой смесь азотной и соляной кислот, концентрация каждой из которых составляла 3M. Соотношение водной и органической фазы в ячейках, составила 1:3, его регулировали, изменяя скорость подачи фаз. Перемешивание и разделение проводили при комнатной температуре. Система выходила на стационарный режимв течение 8 часов.

Органическую фазу, получаемую на выходе из каскада, направляли в промывочный узел для удаления HCl. Двухступенчатую промывку водой проводили при комнатной температуре при соотношении органической и водной фазы 1:1. В этих условиях HCl практически полностью удаляется из экстракта, (содержание HCl в водной фазе после реэкстракции приводится ниже). Водную фазу, полученную от промывки и содержащую смесь кислот, добавляли к исходной смеси кислот, подаваемой на вход экстракционного каскада.

Органическая фаза после промывки поступает в реэкстракционный каскад, состоящий из 5 ячеек. Перемешивание экстракта с водой проводили при температуре 40-60°C при соотношении органической и водной фаз 1:1.

Содержание кислот в водных фазах, полученных на выходе из экстракционного каскада и после реэкстракции, определяли при помощи ионообменной хроматографии.

Водная фаза после реэкстракции представляла собой 8,5% раствор азотной кислоты, содержащий менее чем 0,1% соляной кислоты. Коэффициент извлечения HNO3 составил 88,5%. Водная фаза на выходе из экстрактора содержала смесь HCl и HNO3 в соотношении 9:1.

Графики зависимости коэффициентов распределения азотной и соляной кислот от состава экстрагента представлены на фиг. 11-15. Точка 0 на оси абсцисс соответствует чистому сульфону, точка 100 - чистому фосфорсодержащему экстагенту или МиБК.

В целом, добавление диалкилсульфонов к известным экстрагентам приводит к изменению экстракционных характеристик и уменьшению времени расхождения образующихся эмульсий. По сравнению с диалкилсульфонами МиБК обеспечивает лучший фактор разделения азотной и соляной кислот, но является нестабильным в концентрированной азотной кислоте, кроме того, образует трудно расходящиеся эмульсии. Добавление сульфонов к ТБФ и ФОР приводит к значительному увеличению селективности, а также существенному удешевлению образующейся смеси.

1. Экстрагент для извлечения азотной кислоты и нитратов из водных растворов, включающий один или несколько диалкилсульфонов формулы (I)
,
где R1 и R2 каждый независимо представляет собой линейный или разветвленный алкил, содержащий 1-8 атомов углерода, при этом суммарное число атомов углерода в соединении формулы (I) составляет 6-12.

2. Экстрагент по п. 1, отличающийся тем, что включает смесь диалкилсульфонов, получаемых в результате окисления трех продуктов взаимодействия двух алифатических С45 спиртов с сероводородом.

3. Экстрагент по п. 1 или 2, отличающийся тем, что смесь диалкилсульфонов формулы (I) является эвтектической.

4. Экстрагент по п. 1 или 2, дополнительно включающий одно или несколько фосфорсодержащих соединений, выбранных из группы: триалкилфосфаты, диалкилфосфаты, алкилфосфонаты, фосфиновые кислоты, фосфиноксиды.

5. Экстрагент по п. 1 или 2, дополнительно включающий один или несколько С610 кетонов.

6. Экстрагент по п. 1 или 2, дополнительно включающий один или несколько разбавителей, выбранных из группы: керосины, хлороформ, алифатические С610 спирты, галогензамещенные С610 кетоны, линейные или циклические силоксаны.

7. Экстрагент по п. 1, отличающийся тем, что представляет собой дибутилсульфон.

8. Экстрагент по п. 1 или 2, отличающийся тем, что представляет собой смесь следующего состава (мас. ч.):

дибутилсульфон 30-35
бутилизобутилсульфон 65-70

9. Экстрагент по п. 1 или 2, отличающийся тем, что представляет собой смесь следующего состава (мас. ч.):

диизобутилсульфон 4-10
бутилизобутилсульфон 45-48
дибутилсульфон 45-48

10. Экстрагент по п. 1 или 2, отличающийся тем, что представляет собой смесь следующего состава (мас. ч.):

дибутилсульфон 20-30
диизобутилсульфон 20-30
бутилизобутилсульфон 40-60

11. Экстрагент по п. 1 или 2, отличающийся тем, что представляет собой смесь следующего состава (мас. ч.):

диизобутилсульфон 20-30
диизоамилсульфон 20-30
изоамилизобутилсульфон 40-60

12. Экстрагент по п. 1 или 2, отличающийся тем, что представляет собой смесь следующего состава (мас. ч.):

диизопропилсульфон 20-30
диизоамилсульфон 20-30
изоамилизопропилсульфон 40-60

13. Экстрагент по п. 1 или 2, отличающийся тем, что он способен извлекать азотную кислоту из водных растворов, содержащих другие кислоты, такие как соляная, серная или метансульфоновая.

14. Экстрагент по п. 1 или 2, отличающийся тем, что его можно использовать для разделения смесей азотной и соляной кислот путем экстракции из водных растворов.

15. Экстрагент по п. 1 или 2, отличающийся тем, что он может быть использован для извлечения азотной кислоты из сточных вод.



 

Похожие патенты:

Изобретение относится к производным серасодержащих дикарбоновых кислот формулы (1) в которой при: X=NH2, m=1, n=2, 3, 4, 5, 6, 7, 8, 10; X=NH2, m=2, n=1, 2, 3, 4, 5, 6, 7, 8, 10; X=NHNH2, m=1, n=1, 2, 3, 5, 6, 7, 8, 10; X=NHNH2, m=2, n=1, 2, 3, 4, 5, 6, 7, 8, 10. Также изобретение относится к производным серасодержащих дикарбоновых кислот формулы (2) в которой при: m=1, n=2, 3, 4, 5, 6, 7, 8, 10; m=2, n=3, 4, 5, 6, 7, 8, 10; используемым для получения соединений формулы (1).

Изобретение относится к маскировке запаха органических сульфидов и более конкретно сульфидов алкила или диалкила, в частности диметилсульфида, а также их оксидов и, в частности, диметилсульфоксида, путем добавления к указанным органическим сульфидам по меньшей мере одного агента, маскирующего запах, содержащего по меньшей мере один сложный моноэфир, по меньшей мере один сложный ди- или гриэфир, по меньшей мере один спирт, по меньшей мере один кетон и возможно по меньшей мере один терпен.
Изобретение относится к области получения диметилсульфоксида (ДМСО), который широко применяется в органическом синтезе. .
Изобретение относится к имитатору токсичного химиката, являющегося фосфорорганическим веществом, в водных средах, а именно к применению N,N-диэтиланилина в качестве имитатора зомана при изучении динамики его распространения в водной среде проточных и непроточных водоемов в лабораторных условиях.

Изобретение относится к имитаторам отравляющих веществ (ОВ), в частности фосфорорганических отравляющих веществ (ФОВ), а именно к использованию диметилсульфоксида (ДМСО) СН3S(O)СН 3 (I) в качестве имитатора ФОВ при обучении работе на оптических инфракрасных дистанционных средствах химической разведки и проверке их работоспособности.
Изобретение относится к способам получения сульфоксидов, которые могут быть использованы в качестве экстрагентов металлов, флотореагентов и биологически активных веществ.

Изобретение относится к химии сероорганических соединений, а именно к усовершенствованному способу получения бис(2-хлорэтил)сульфоксида формулы ClCH2CHCH2CH2Cl Сульфоксиды в настоящее время используются и широко исследуются как реагенты для гидрометаллургии [Никитин Ю.Е.

Изобретение относится к оборудованию для подготовки попутно добываемой пластовой воды в системе сбора нефти, газа и воды. Установка включает трубопровод 3 подачи добываемой газо-жидкостной смеси (ГЖС) в блок сепарации ГЖС 1, трубопровод отвода ГЖС 10 из блока сепарации ГЖС 1, блок подготовки воды 2, оснащенный фильтром 6 для очистки от механических примесей, трубопровод отвода воды 5.

Изобретение относится к смесительному устройству для водоочистных сооружений с открытым каналом. Устройство содержит основание (2) в виде пластины или полосы для крепления к стенке канала таким образом, чтобы во время эксплуатации нижняя поверхность (6) этой основной части была обращена к стенке канала, а верхняя поверхность (5) - от стенки канала.

Изобретение предназначено для фильтрования и может применяться в сфере очистки природных вод. Фильтрующий элемент изготавливается классическим способом, но заменяют каменный щебень, входящий в основной состав нового фильтрующего элемента, на гранулированные отходы пластмасс, в частности в качестве заполнителей применяется отсев с размером 0,3÷30 мм, наполнитель - кварцевая мука с размером фракций менее 0,15 мм, вяжущее - полиэфирная смола марки ПН-609.

Изобретение относится к водоочистке. Флотационная установка для очистки сточных вод содержит корпус 1 с перегородками 12, 14, 16, камеру очищенной воды 21, устройство для насыщения исходной воды пузырьками воздуха, состоящее из насоса 24, эжектора 27 и пневмогидравлического диспергатора.

Изобретение относится к биотехнологии и может быть использовано для утилизации отходов на животноводческих комплексах. Способ утилизации отходов предусматривает смешивание твердых отходов с водой в определенной пропорции в зависимости от вида отходов.

Изобретение относится к способу получения фотокатализатора на основе висмутата щелочноземельного металла и к способу фотокаталитической очистки воды от органических загрязнителей.

Изобретение относится к области водоочистки. Устройство содержит металлический или пластиковый корпус, соединённый со сборником фильтрата.

Изобретение относится к атомной энергетике, а именно к ионообменной технологии переработки борсодержащих вод в системе регенерации борной кислоты из теплоносителя на АЭС с реакторами типа ВВЭР.

Изобретение относится к области очистки сточных вод от примесей органических веществ - нефтепродуктов, жиров, поверхностно-активных веществ, а также механических примесей и может быть использовано в автохозяйствах, железнодорожном транспорте, предприятиях пищевой, кожевенно-меховой промышленности.

Изобретение может быть использовано для очистки городских сточных вод, а также сточных вод предприятий пищевой и целлюлозно-бумажной промышленности от сульфатов и фосфатов.

Изобретение относится к радиохимической технологии, в частности, к способам регенерации азотной кислоты из хвостовых растворов переработки облученного ядерного топлива с очисткой ее в ходе ректификации от примесей более летучих кислот.
Наверх