Способ получения водного коллоидного раствора наночастиц сульфида серебра



Способ получения водного коллоидного раствора наночастиц сульфида серебра
Способ получения водного коллоидного раствора наночастиц сульфида серебра
Способ получения водного коллоидного раствора наночастиц сульфида серебра
Способ получения водного коллоидного раствора наночастиц сульфида серебра
Способ получения водного коллоидного раствора наночастиц сульфида серебра

 

C01G1/12 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2600761:

Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук (RU)

Изобретение может быть использовано в оптоэлектронике и медицине при получении источников излучения и флуоресцентных меток. Способ получения водного коллоидного раствора наночастиц сульфида серебра включает получение смеси водных растворов нитрата серебра, сульфида натрия и стабилизатора. К водному раствору нитрата серебра добавляют водный раствор стабилизатора. Затем к полученному раствору добавляют водный раствор сульфида натрия при контролируемом значении рН и комнатной температуре. В качестве стабилизатора используют цитрат натрия Na3C6H5O7 при мольном соотношении компонентов нитрат серебра : сульфид натрия : цитрат натрия = 1:(0,5÷1):(0,4÷20) и значении рН, равном 5,2-6,1. Изобретение позволяет упростить получение стабильных до года водных коллоидных растворов наночастиц сульфида серебра с размером частиц от 6 до 20 нм при условии их хранения при комнатной температуре. 3 ил., 1 табл., 3 пр.

 

Изобретение относится к способам получения коллоидного раствора, содержащего наночастицы полупроводникового соединения и может быть использовано в оптоэлектронике и медицине. Коллоидные растворы наноструктурированных частиц сульфида серебра являются перспективными материалами для использования в различных областях наноэлектроники и медицины как источников излучения и флуоресцентных меток.

Известен способ получения квантовых точек (наночастиц) Ag2S в микроэмульсиях. Нанокристаллы Ag2S со средним диаметром 5.9 нм синтезированы в обратной микроэмульсии типа "вода - сверхкритичный диоксид углерода", используя стандартное поверхностно-активное вещество (ПАВ) 1,4-бис-(2-этилгексил)сульфосукцинат натрия (догузат натрия) и сопутствующее ПАВ 2,2,3,3,4,4,5,5-октафтор-1-пентанол (F-пентанол).

Наночастицы Ag2S были получены взаимодействием нитрата серебра и сульфида натрия в ячейках обратной микроэмульсии. Обратная микроэмульсия, выступающая в качестве нанореактора для выращивания квантовых точек (наночастиц) Ag2S, получена смешиванием растворов догузата натрия (0.016 М), F-пентанола (0.24М), воды и диоксида углерода при температуре 38°С и давлении 34.5 МПа. Водный раствор сульфида натрия (0.05 М) впрыскивали в ячейку с микроэмульсией при помощи насоса высокого давления, пока не были достигнуты соотношение ионов Ag:S=2:1 и давление в системе 34.5 МПа. Находясь в эмульсии, наночастицы демонстрируют стабильность к агрегации или осаждению в течение длительного времени (Juncheng Liu, Poovathinthodiyil Raveendran, Zameer Shervania, Yutaka Ikushima. Synthesis of Ag2S quantum dots in water-in-CO2 microemulsions. Chemical Communications. 2004. P. 2582-2583).

Необходимость использования нескольких поверхностно-активных веществ (ПАВ) вследствие сложного механизма стабилизации обратной мицеллы является существенным недостатком метода. Полученные предлагаемым методом коллоидные наночастицы в микроэмульсии стабильны лишь при определенных значениях температуры и давлении, при понижении давления происходит осаждение наночастиц Ag2S. Недостатком известного способа также является необходимость использования дополнительного оборудования, связанного с приготовлением обратной микроэмульсии и впрыскиванием ионов серы в ячейку с микроэмульсией.

Известен способ получения коллоидных квантовых точек (наночастиц) сульфида серебра в желатиновой матрице золь-гель методом. В известном способе сначала раздельно готовят растворы сульфида натрия, азотнокислого серебра и желатина. Полученный желатиновый раствор нагревают до 90°С и добавляют в него 96% этанол. Затем осуществляют двухструйное сливание приготовленных растворов сульфида натрия и азотнокислого серебра, нагревают до получения золя коллоидных квантовых точек (наночастиц) сульфида серебра и охлаждают в течение 10 часов. Полученный студень измельчают и промывают дистиллированной водой, лишнюю воду сцеживают и гранулы нагревают до температуры свыше 40°С (патент RU 2538262, МПК C09K 11/56, C09K 11/58, В82В /00, B82Y 40/00; 2015 г.).

Главными недостатками известного способа являются сложность, трудоемкость и длительность процесса, которые обусловливают необходимость использования дополнительного оборудования для нагрева и заморозки растворов, а также наличие оборудования для поддержания температуры в процессе получения наночастиц.

Наиболее близким к предлагаемому техническому решению является известный способ получения водных квантовых точек (водных растворов наночастиц) Ag2S. Коллоидно стабильные квантовые точки Ag2S получают одностадийным способом в водном растворе с использованием 2-меркаптопропионовой кислоты (2МПК) в качестве стабилизатора. В известном способе 2МПК растворяют в 75 мл ненасыщенной кислородом деионизорованной воде. Основность раствора доводят до 7.5, используя растворы NaOH и СН3СООН (2 М). Затем добавляют 42.5 мг нитрата серебра, рН снова доводят до 7.5 и раствор нагревают до необходимой температуры (30, 50, 90°С). Далее в реакционную смесь при сильном перемешивании медленно добавляют 25 мл раствора Na2S в дегазированной воде. Готовые растворы квантовых точек промывали деионизованной водой и хранили в темноте при 4°С. Синтезированные растворы стабильны в течение года (Ibrahim Hocaoglu, М. Natali Cizmeciyan, Rengin Erdem, Can Ozen, Adnan Kurt, Alphan Sennarogluad and Hawa Yagci Acar. Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots. Journal of Materials Chemistry. 2012. V. 22. P. 14674-14681).

К недостаткам известного способа относится необходимость хранения образцов при низких температурах (4°С) для сохранения их стабильности во времени. Существенным недостатком известного способа является использование 2-меркаптопропионовой кислоты (2МПК), которая относится к веществам класса 6.1 (токсичные вещества, способные вызвать смерть, или серьезную травму, или причинить вред здоровью человека при вдыхании, всасывании через кожу или проглатывании). Использование кислоты 2МПК вызывает развитие профессиональных патологий и увеличивает риск возникновения хронической заболеваемости. Кроме того, недостатком является необходимость поддержания постоянных значений рН 7.5.

Таким образом, перед авторами стояла задача разработать способ получения коллоидных растворов наночастиц сульфида серебра, используя в качестве исходных реагентов для проведения процесса безвредные и экологически чистые вещества и, главное, обеспечить не только длительную стабильность коллоидных растворов во времени, но и удобные условия хранения.

Поставленная задача решена в предлагаемом способе получения водного коллоидного раствора наночастиц сульфида серебра, включающем получение смеси водных растворов нитрата серебра, сульфида натрия и стабилизатора путем добавления к водному раствору нитрата серебра водного раствора стабилизатора, а затем водного раствора сульфида натрия при контролируемом значении рН и комнатной температуре, в котором в качестве стабилизатора используют цитрат натрия Na3C6H5O7 при соотношении компонентов нитрат серебра : сульфид натрия : цитрат натрия=1:0.5÷1:0.4÷20 и значении рН, равном 5,2-6,1.

В настоящее время из патентной и научно-технической литературы не известен способ получения водного коллоидного раствора наночастиц сульфида серебра, в котором в качестве стабилизатора используют цитрат натрия при определенном соотношении исходных компонентов в предлагаемых авторами условиях.

Исследования, проведенные авторами предлагаемого технического решения, позволили выявить возможность получения стабильных во времени водных коллоидных растворов сульфида серебра при использовании в качестве стабилизатора цитрата натрия в определенном количестве по отношению к исходным компонентам. Исследования показали, что цитрат натрия играет двойную роль: является одновременно комплексообразователем и стабилизатором. Вначале ионы цитрата Cit3- образуют комплексы с ионами серебра Ag+, далее при введении в раствор ионов серы S2- комплексные соединения цитрата и серебра распадаются с образованием наночастиц сульфида серебра Ag2S. Освобожденные ионы цитрата Cit3- за счет трех карбоксильных групп -COONa, которые имеют большое сродство с ионами серебра, способствуют присоединению цитратных групп к поверхности наночастиц сульфида серебра и препятствуют их объединению в большие агломерированные частицы, т.е. выполняют роль стабилизатора.

При сливании реагентов образование сульфида серебра происходит практически мгновенно, в результате чего образуется темно-черный коллоидный раствор, остающийся стабильным 6-12 месяцев. При использовании реагентов вне заявленного диапазона концентраций исходных реагентов и их соотношений в полученных растворах в течение различного времени (от нескольких часов до 30 суток) частицы Ag2S оседают, раствор постепенно теряет свою окраску и становится прозрачным.

В реакционной ванне, в которой соотношение ионов серебра к стабилизатору [Ag+]:[Cit3-] меньше чем 1:0.4, стабильные растворы не образуются, наночастицы Ag2S выпадают в осадок менее чем за четверо суток. Если в реакционной ванне соотношение ионов серебра к цитрату натрия [Ag+]:[Cit3-] больше чем 1:20, т.е. , наночастицы сульфида серебра не образуются.

Способ получения стабильных водных коллоидных растворов наночастиц сульфида серебра Ag2S заключается в следующем. В качестве источника ионов серебра Ag+ и серы S2- используют водный раствор нитрата серебра AgNO3 и водный раствор сульфид натрия Na2S с добавлением водного раствора цитрата натрия Na3C6H5O7≡Na3Cit. Исходные растворы AgNO3, Na2S, Na3Cit имеют одинаковую концентрацию 50 ммоль л-1. Мольное соотношение концентраций реагентов в смесях варьируется [Ag2+]:[S2-]:[Cit3-]=1:0.5-1:0.4-20. Синтез проводят при температуре 20-30°С, рН растворов в реакционной ванне варьируется от 5,2 до 6,1.

На фиг. 1 представлены синтезированные в заявленном диапазоне соотношения исходных реагентов стабильные коллоидные водные растворы наночастиц сульфида серебра. Исходные концентрации растворов, приведенных на фиг. 1, и размер частиц в них указаны в таблице.

После приготовления исходных водных растворов окончательный состав реакционной ванны получают последовательным прибавлением к раствору соли серебра сначала - цитрата натрия, а затем раствора сульфида натрия.

При смешивании растворов реагентов в реакционной ванне концентрация нитрата серебра варьируется от 0.6 до 11 ммоль л-1, концентрация сульфида натрия варьируется от 0.3 до 11 ммоль л-1, а концентрация цитрата натрия Na3Cit в реакционных смесях меняется от 0.12 до 20 ммоль л-1, то есть концентрация ионов серы составляет , а концентрация ионов цитрата лежит в диапазоне .

Предлагаемым способом реализуется возможность получения стабильных (не коагулирующихся, не агломерирующихся и не оседающих) коллоидных наночастиц различного размера в водных растворах.

Для определения размера (гидродинамического диаметра) частиц сульфида серебра непосредственно в растворе использовали метод динамического рассеяния света. Для воспроизводимости результатов рассеяние света в каждом растворе измеряли не менее трех раз. Для установления стабильности растворов измеряли их мутность и дзета-потенциал. Измерение мутности проводили в формализованных единицах мутности (FTU), которые соотносятся с нефелометрическими (NTU) как 1:1.

При использовании цитрата натрия с концентрацией 0.12-5 ммоль л-1 размер наночастиц в растворе изменяется от 9 до 15 нм. Дальнейшее уменьшение концентрации реагентов вплоть до 20 ммоль л-1 почти не влияет на размер частиц в коллоидном растворе. В зависимости от соотношения исходных компонентов в реакционной смеси средний размер частиц в растворах, оцененный методом динамического рассеяния света, меняется от 6 до 20 нм.

На фиг. 2 приведены три распределения наночастиц по размерам в стабильных водных коллоидных растворах, полученных по конкретным примерам 1-3. На фиг. 2А приведено распределение наночастиц по размеру непосредственно после получения стабильных водных коллоидных растворов, на фиг. 2Б - после 30 суток хранения при комнатной температуре. Приведенные графики доказывают, что размер частиц в растворах с течением времени изменяется в пределах ошибки измерения.

Для определения стабильности растворов авторы использовали показатель мутности растворов, гидродинамический диаметр наночастиц и дзета-потенциал. Если мутность полученного раствора отличалась от нулевого значения, то считалось, что раствор утратил стабильность. Наряду с этим, если максимальное количество частиц в растворе изменяло свой размер более чем на 50%, то такой раствор так же считали утратившим стабильность. Если значение дзета-потенциала коллоидной системы было в диапазоне от 0 до ± 30 мВ, то устойчивость раствора считалась плохой и в нем, возможно, протекали процессы коагуляции или флокуляции. Такой раствор так же считали утратившим стабильность.

На фиг. 3 показаны просвечивающая электронная микроскопия нанокристаллических частиц Ag2S, взятых из коллоидного раствора: (А) микрофотография нанокристаллических частиц Ag2S; (Б) общий элементный (EDX) анализ наночастицы Ag2S; (В) таблица с указанием химических элементов и их количества, присутствующих в наночастице.

Предлагаемый способ иллюстрируется следующими примерами конкретного исполнения.

Пример 1. Готовят водный раствор 1.25 мл (50 ммоль л-1) нитрата серебра AgNO3 и водный раствор 0.625 мл (50 ммоль л-1) сульфида натрия Na2S. Затем к водному раствору нитрата серебра добавляют 50 мл дистиллированной воды, к водному раствору сульфида натрия добавляют 45.625 мл дистиллированной воды. Далее к разбавленному водному раствору нитрата серебра добавляют 2.5 мл (50 ммоль л-1) водного раствора цитрата натрия Na3Cit и разбавленный раствор сульфида натрия. Конечный объем полученного коллоидного раствора составляет 100 мл. При этом рН раствора равно 5.2. Соотношение исходных компонентов равно нитрат серебра : сульфид натрия : цитрат натрия=1:0.5:2. Синтез раствора осуществляют при температуре 24°С. Мутность раствора 0 FTU. Среднее значение дзета-потенциала равно ζ=-63 мВ. Стабильность раствора составляет год. Данные по размеру частиц приведены в табл. (образец 1).

Пример 2. Готовят водный раствор 2.5 мл (50 ммоль л-1) нитрата серебра AgNO3 и водный раствор 1.25 мл (50 ммоль л-1) сульфида натрия Na2S. Затем к водному раствору нитрата серебра добавляют 50 мл дистиллированной воды, к водному раствору сульфида натрия добавляют 43.75 мл дистиллированной воды. Далее к разбавленному водному раствору нитрата серебра добавляют 2 мл (50 ммоль л-1) водного раствора цитрата натрия Na3Cit и разбавленный раствор сульфида натрия. Конечный объем полученного коллоидного раствора составляет 100 мл. При этом рН раствора равно 5.5. Соотношение исходных компонентов равно нитрат серебра : сульфид натрия : цитрат натрия=1:0.5:0.8. Синтез раствора осуществляют при температуре 24.6°С. Мутность раствора 0 FTU. Среднее значение дзета-потенциала равно ζ=-40 мВ. Стабильность раствора составляет год. Данные по размеру частиц приведены в табл. (образец 3).

Пример 3. Готовят водный раствор 2.5 мл (50 ммоль л-1) нитрата серебра AgNO3 и водный раствор 1.25 мл (50 ммоль л-1) сульфида натрия Na2S. Затем к водному раствору нитрата серебра добавляют 60 мл дистиллированной воды, к водному раствору сульфида натрия добавляют 33.25 мл дистиллированной воды. Далее к разбавленному водному раствору нитрата серебра добавляют 3 мл (50 ммоль л-1) водного раствора цитрата натрия Na3Cit и разбавленный раствор сульфида натрия. Конечный объем полученного коллоидного раствора составляет 100 мл. При этом рН раствора равно 6.1. Соотношение исходных компонентов равно нитрат серебра : сульфид натрия : цитрат натрия=1:0.5:0.8. Синтез раствора осуществляют при температуре 23°С. Мутность раствора 0 FTU. Среднее значение дзета-потенциала равно ζ=-49 мВ. Стабильность раствора составляет 6 месяцев. Данные по размеру частиц приведены в табл. (образец 6).

Таким образом, предлагаемый способ позволяет реализовать простой управляемый технологический процесс получения стабильных до года водных коллоидных растворов наночастиц сульфида серебра с размером частиц от 6 до 20 нм при условии их хранения при комнатной температуре и нормальном давлении.

Способ получения водного коллоидного раствора наночастиц сульфида серебра, включающий получение смеси водных растворов нитрата серебра, сульфида натрия и стабилизатора путем добавления к водному раствору нитрата серебра водного раствора стабилизатора, а затем водного раствора сульфида натрия при контролируемом значении рН и комнатной температуре, отличающийся тем, что в качестве стабилизатора используют цитрат натрия Na3C6H5O7 при соотношении компонентов нитрат серебра : сульфид натрия : цитрат натрия = 1:(0,5÷1):(0,4÷20) и значении рН, равном 5,2-6,1.



 

Похожие патенты:

Изобретение относится к квантовым точкам сульфида серебра, излучающим в ближней инфракрасной области спектра, и их применению в биологии. Квантовые точки сульфида серебра содержат присоединенные к поверхности гидрофильные группы из меркаптосодержащего гидрофильного реагента.

Изобретение относится к технологии получения порошкового материала, содержащего наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине.

Изобретение относится к коллоидной химии и может быть использовано в люминесцентных метках, а также при изготовлении материалов для лазеров, светодиодов, солнечных батарей, фотокатализаторов.

Изобретение относится к химической промышленности и дозиметрии излучений. Для получения прозрачного тканеэквивалентного детектора излучений на основе Li2B4O7 осуществляют следующие этапы: a) смешивают компоненты исходного реагента детектора, включающие деионизированную воду, борную кислоту H3BO3, примесь Mn и связующий материал двуокись кремния SiO2; b) повышают температуру смеси до 75-85°C, добавляют карбонат лития Li2CO3 и побочную примесь Be2+, которая не уменьшает прозрачность детектора в диапазоне длин волн 320-750 нм; c) осуществляют старение, сушку и предварительный обжиг полученного исходного реагента; d) измельчают, шлифуют и просеивают исходный реагент; e) формуют под давлением; f) спекают сформованные корпуса детектора.

Изобретение относится к способам создания нанокомпозитного люминофора в виде кварцевого стекла SiO2, включающего нанокластеры меди Cu+ и титана Ti+, который может быть использован при создании светоизлучающих и светосигнальных устройств, например, плазменных дисплейных панелей, световых матричных индикаторов, светофоров.

Изобретение относится к способам создания нанокомпозитного люминофора в виде кварцевого стекла SiO2, включающего нанокластеры меди Сu+, который может быть использован при создании светоизлучающих и светосигнальных устройств, например плазменных дисплейных панелей, световых матричных индикаторов, светофоров.

Изобретение относится к новому соединению, конкретно к сложному ванадату серебра состава Ag2M(VO 3)4, где М - Са или Sr, который может быть использован в качестве люминофора в индикаторах и сенсорах электронного излучения в устройствах и системах индикации и визуализации ионизирующих излучений, особо в системах индикации и визуализации, оснащенных чувствительными в красной и ближней инфракрасной областях спектра фотодиодными регистраторами люминесцентных потоков, а также к способу его получения.

Изобретение относится к составам для получения электролюминесцентных слоев, которые могут применяться в электролюминесцентных приборах, устройствах отображения информации, индикаторной и конденсаторной технике.

Изобретение относится к химической промышленности и может быть использовано в радиолокационных трубках, сигнальных устройствах, предназначенных для электронной, лакокрасочной и полиграфической промышленности при создании рекламных устройств, а также в средствах для отображения информации.

Изобретение относится к люминесцентным материалам для конверсии вакуумного ультрафиолетового излучения в излучение видимого диапазона, предназначенным для создания функциональных элементов фотонных приборов нового поколения, а также для контроля жесткого ультрафиолетового излучения в вакуумных технологических процессах.

Изобретение может быть использовано в химии, биологии и медицине в целях визуализации и диагностики. Неорганические коллоидные полупроводниковые нанокристаллы переносят из органической в водную фазу, не смешивающуюся с органической фазой, с помощью катализатора межфазного переноса.

Изобретение относится к квантовым точкам сульфида серебра, излучающим в ближней инфракрасной области спектра, и их применению в биологии. Квантовые точки сульфида серебра содержат присоединенные к поверхности гидрофильные группы из меркаптосодержащего гидрофильного реагента.

Изобретение относится к технологии получения порошкового материала, содержащего наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине.

Изобретение может быть использовано при изготовлении люминесцентных материалов для лазеров, светодиодов, солнечных батарей и биометок. В реактор загружают 2,5-5% раствор желатина в дистиллированной воде при температуре 20-30°C, нагревают его до 40-90°C и заливают 96%-этанол в количестве 2,5% от объема раствора желатина.

Изобретение относится к коллоидной химии и может быть использовано в люминесцентных метках, а также при изготовлении материалов для лазеров, светодиодов, солнечных батарей, фотокатализаторов.

Изобретение относится к области дозиметрии рентгеновского и гамма-излучения с помощью термолюминесцентных детекторов при решении задач персональной дозиметрии, особо при определении дозозатрат персонала рентгеновских кабинетов и обслуживающего персонала мобильных комплексов радиационного контроля, задач радиоэкологического мониторинга в зонах с повышенным радиационным фоном, особо на территориях хвостохранилищ отработанных урановых руд или других радиоактивных материалов и отходов.
Изобретение относится к химической технологии, в частности к способу получения электролюминофоров на основе сульфида цинка. .
Изобретение относится к химической технологии получения электролюминофоров на основе сульфида цинка. .

Изобретение относится к области синтеза соединений серебра, а именно к способу получения высокодисперсного углекислого серебра. Описан способ получения высокодисперсного углекислого серебра, который включает растворение металлического серебра в азотной кислоте и осаждение углекислого серебра карбонатом натрия, где осаждение ведут насыщенным раствором карбоната натрия, содержащего 21.8 г карбоната натрия на 100 г воды, который вносят при непрерывном перемешивании в раствор нитрата серебра, с концентрацией по серебру 0.5 моль/л до достижения конечного значения рН раствора 7-8.
Наверх