Набор синтетических олигонуклеотидов для диагностики болезни крона и неспецифического язвенного колита путем выявления маркерных участков бактериальной днк методом полимеразной цепной реакции

Изобретение относится к биохимии. Описан набор синтетических олигонуклеотидов для выявления маркерных участков генов бактерий кишечника человека, ассоциированных с развитием воспалительных заболеваний кишечника (болезни Крона и неспецифического язвенного колита) методом полимеразной цепной реакции в режиме реального времени. Данный набор включает специфичные олигонуклеотиды к фрагментам генов микроорганизма Escherichia coli, а именно праймеры:

1. 5′-TATGAGCAGTCGCTTACCCG-3′ и 5′-GTCGTCGGTATGTCCTGCTT-3′

2. 5′-CGTTAACCCGCTGTGGTAGT-3′ и 5′-CTACCGAGCCATCTTCCAGC-3′

3. 5′-GCGTTCAGAGCAAAACCCAG-3′ и 5′-TAAAAGACGGGAAGCAGCCA-3′

4. 5′-GGGCCGATATACAGGTGGTG-3′ и 5′-TCCTCAGGCATAAAGACGGC-3′

5. 5′-GTATCTCGTCTCCTGGCTGC-3′ и 5′-GCCAGCCATCCACCAGTAAT-3′

6. 5′-GTATAGATCCGTCAGGTGCAT-3′ и 5′-ACCTTCTGTTCCTGAAGCCC-3′

В качестве флуоресцентной метки используется интеркалирующий краситель SYBR GREEN I. Предлагаемое изобретение является достоверным способом обнаружения присутствия в микробиоте кишечника человека маркеров, ассоциированных с развитием болезни Крона и неспецифического язвенного колита.

 

Изобретение относится к области биохимии и может быть использовано в медицине для диагностики воспалительных заболеваний кишечника.

Воспалительные заболевания кишечника представлены двумя основными формами - болезнь Крона и язвенный колит. Оба этих заболевания относятся к хроническим с аутоиммунным компонентом, манифестирующим в трудоспособном возрасте. Вследствие сложностей диагностики обеих форм на ранних стадиях пациенты с такой патологией попадают в поле зрения гастроэнтеролога обычно уже на поздних стадиях, имея явно выраженные симптомы и тяжелое протекание болезни вплоть до необходимости скорейшего оперативного вмешательства с невозможностью органосохраняющих операций. Диагностика на ранних стадиях обеспечивает высокую вероятность выхода в ремиссию и сохранение качества жизни наряду со снижением затрат на лечение как со стороны государства, так и со стороны граждан.

Согласно современным представлениям состав микробиоты кишечника человека при данных заболеваниях претерпевает существенные изменения. При этом состав микробиоты может измениться еще до наступления клинических признаков заболевания. Таким образом, определяя наличие определенных бактериальных маркеров в микробиоте кишечника, можно спрогнозировать начало развития патологии и ее течение. В последние годы разрабатываются различные методы молекулярно-генетической диагностики воспалительных заболеваний кишечника, которые позволяют выявлять последовательности ДНК, являющиеся характерными для определенного вида бактерий. Принцип ПЦР заключается в многократном копировании (амплификации) определенного фрагмента ДНК, являющегося маркерным для данного вида микроорганизма. Благодаря высокой специфичности ПЦР происходит амплификация исключительно ДНК искомого микроорганизма - любая сопутствующая флора не может оказать влияние на эффективность диагностики.

Из уровня техники известны следующие аналоги данного изобретения.

В патенте РФ 2362808 (C1) [1] описан способ диагностики общего дисбаланса микробиоты при помощи ПЦР в реальном времени. На основе ПЦР подсчитывается общая численность бактерий, численность представителей непатогенных и условно-патогенных видов. Для того чтобы признать отсутствие дисбаланса микробиоты авторы предлагают использовать следующий критерий: численность непатогенных видов должна в 1000 раз превышать численность условно-патогенных видов. В случае, если представленность условно-патогенных микроорганизмов в 10 и более раз выше, чем представленность непатогенных видов, авторы предлагают диагностировать выраженную степень дисбаланса микробиоты. К недостаткам данного метода также можно отнести низкую чувствительность: он позволяет диагностировать стадии заболевания, когда микробитный состав уже значительно изменился, а именно значительно возросло число патогенных организмов.

В патенте РФ 2391667 (А) [2] описан способ ранней диагностики воспалительных заболеваний кишечника на основе детекции антител к дрожжам Saccharomyces cerevisiae и антител к бактерицидному белку, увеличивающему проницаемость клеток наряду с эндоскопическим, электрофизиологическим, морфологическим исследованием и исследованием слизистой оболочки толстой кишки. Авторы предлагают диагностировать раннюю стадию дивертикулярной болезни в случае, если наряду с морфологическими и электрофизиологическими показателям концентрация антител к бактерицидному белку, увеличивающему проницаемость клеток, находится в диапазоне от 4 до 18 ЕД/мл и антител к Saccharomyces cerevidiae от 7 до 22 ЕД/мл. К недостаткам подобного подхода, основанного на применении антител, относятся его высокая стоимость, трудоемкость и возможные погрешности при получении антител.

Наиболее близким техническим решением, выбранным в качестве прототипа заявляемого изобретения, является техническое решение по заявке на патент WO 2012080753 (A1) [3], в котором описан способ диагностики болезни Крона за счет селективной гибридизации олигонуклеотидов к последовательностям, встречающимся у представителей Proteobacteria и Flavobacteriaceae. Повышенное связывание праймеров, свидетельствующее о повышенной представленности бактерий из данных таксонов, является, по мнению авторов, индикатором заболевания. Предлагается брать образцы из желудочно-кишечного тракта людей. В патенте приведены последовательности четырех подобных праймеров. Недостатком описанного способа является его вероятная низкая специфичность и чувствительность вследствие наблюдения изменений на очень высоком таксономическом уровне (типов и семейств). Изменения состава микробиоты на таких высоких уровнях предполагает значительную выраженность заболевания. В сравнении с этим в заявляемом изобретении использовались праймеры на гены Е. coli, которые, как было показано, коррелируют с развитием заболевания, что позволит проводить диагностику на ранних этапах заболевания, когда изменения еще не затронули микробиотный состав в целом.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является достоверное обнаружение присутствия бактериальных генов являющихся маркерами развития болезни Крона и неспецифического язвенного колита, а именно генов, кодирующих бета-лактамазу, фимбриальный белок, 3 гипотетических белка и ген LrgA. Данный результат достигается путем использования при постановке ПЦР-набора синтетических олигонуклеотидов для выявления маркерных участков ДНК микроорганизма Escherichia coli. Система детекции маркерных участков генов включает в себя праймеры:

1. 5′-TATGAGCAGTCGCTTACCCG-3′ и 5′-GTCGTCGGTATGTCCTGCTT-3′

2. 5′-CGTTAACCCGCTGTGGTAGT-3′ и 5′-CTACCGAGCCATCTTCCAGC-3′

3. 5′-GCGTTCAGAGCAAAACCCAG-3′ и 5′-TAAAAGACGGGAAGCAGCCA-3′

4. 5′-GGGCCGATATACAGGTGGTG-3′ и 5′-TCCTCAGGCATAAAGACGGC-3′

5. 5′-GTATCTCGTCTCCTGGCTGC-3′ и 5′-GCCAGCCATCCACCAGTAAT-3′

6. 5′-GTATAGATCCGTCAGGTGCAT-3′ и 5′-ACCTTCTGTTCCTGAAGCCC-3′ и интеркалирующий краситель SYBR GREEN I.

Указанный набор синтетических олигонуклеотидов является составной частью набора следующих веществ:

1) Пробирки с реакционной смесью, запаянной парафином. В данную смесь входят указанные праймеры с интеркалирующим красителем, смесь дезоксирибонуклеотидтрифосфатов четырех типов, реакционный буфер (100 мМ Tris-HCl (рН 8.8 при 25°С), 500 мМ KCl, 0.8% Nonidet Р40, 20 мМ MgCl2). В каждую пробирку при постановке реакции амплификации добавляется образец бактериальной ДНК, выделенной из образца кала человека. В случае наличия в ДНК специфических маркеров, комплементарных праймерам, происходит наработка ПЦР-продукта и возрастание уровня флуоресценции, что фиксируется специальными приборами - детектирующими амплификаторами. Интенсивность флуоресценции свидетельствует о количестве образующегося продукта.

2) Раствор фермента Taq-полимеразы.

3) Положительный контрольный образец - ДНК рекомбинантной плазмиды с клонированными фрагментами, последовательности которых комплементарны указанным праймерам, и позволяющие синтезировать продукт длинной 105-206 пар нуклеотидов при добавлении их в реакционную смесь

4) Отрицательный контрольный образец - образец, который вводится в эксперимент для контроля возможного загрязнения реактивов продуктами ранее проведенных реакций. Положительный результат в этом образце свидетельствует о необходимости заменить реагенты и переставить эксперимент.

Осуществление изобретения

1) Из биологического материала (кал человека) выделяется бактериальная ДНК с помощью набора реагентов, предназначенных для этих целей (набор реагентов для выделения ДНК из кала человека не является предметом данного патента).

2) На 1 определение генетических маркеров заболевания для 1 образца используется 6 пробирок с подготовленной реакционной смесью, содержащей специфические синтетические олигонуклеотидные праймеры и интеркалирующий краситель SYBR GREEN I.

3) Во все подготовленные пробирки, не повреждая слой парафина, добавляется раствор Taq-полимеразы.

4) Во все подготовленные пробирки (кроме пробирок K- (отрицательный контрольный образец), К+ (положительный контрольный образец)) вносится выделенная согласно п. 1 ДНК.

5) В пробирку, маркированную K-, вносится 1 мкл чистой воды.

6) В пробирку, маркированную К+, вносится положительный контрольный образец.

7) Все пробирки устанавливаются в блок амплификатора, амплификация проводится согласно режимам, прописанным в инструкции к набору. Детекция результатов осуществляется детектирующим амплификатором автоматически во время амплификации. Анализ результатов проводится в соответствии с инструкцией к прибору.

Источники информации

1. Патент RU 2362808. Способ диагностики дисбаланса микробиоты различных биотопов человека и степени его выраженности.

2. Патент RU 2201636. Способ ранней диагностики дивертикулярной болезни ободочной кишки.

3. Заявка на патент WO 2012080753. Способ диагностики болезни Крона.

Набор синтетических олигонуклеотидов для диагностики болезни Крона и неспецифического язвенного колита путем выявления маркерных участков бактериальной ДНК методом полимеразной цепной реакции, отличающийся тем, что включает в себя праймеры:

1. 5′-TATGAGCAGTCGCTTACCCG-3′ и 5′-GTCGTCGGTATGTCCTGCTT-3′

2. 5′-CGTTAACCCGCTGTGGTAGT-3′ и 5′-CTACCGAGCCATCTTCCAGC-3′

3. 5′-GCGTTCAGAGCAAAACCCAG-3′ и 5′-TAAAAGACGGGAAGCAGCCA-3′

4. 5′-GGGCCGATATACAGGTGGTG-3′ и 5′-TCCTCAGGCATAAAGACGGC-3′

5. 5′- GTATCTCGTCTCCTGGCTGC-3′ и 5′-GCCAGCCATCCACCAGTAAT-3′

6. 5′-GTATAGATCCGTCAGGTGCAT-3′ и 5′-ACCTTCTGTTCCTGAAGCCC-3′
и интеркалирующий краситель SYBR GREEN I для детекции в режиме реального времени.



 

Похожие патенты:

Изобретение относится к биохимии. Описаны способы количественного определения специфического продукта в реакции амплификации с внесением одноцепочечных разрывов и достройкой и способ контроля в режиме реального времени реакции амплификации с внесением одноцепочечных разрывов и достройкой.

Изобретения относятся к области генетики, молекулярной биологии и медицины и касаются способа для анализа генетического полиморфизма в локусах ДНК ApoE, ApoJ и GAB2 и набора олигонуклеотидных праймеров и зондов.

Изобретение относится к области биотехнологии. В изобретении описан способ идентификации пар фрагментов ДНК или РНК, исходно присутствующих в одних и тех же живых или фиксированных клетках, в частности, способ идентификации нативных пар генов легких и тяжелых цепей антител, а также нативных пар генов альфа- и бета-цепей Т-клеточных рецепторов (ТКР).
Изобретение относится к области медицины и предназначено для диагностики предрасположенности к посттравматическому остеоартрозу коленного сустава. У пациентов существляют генотипирование полиморфизма rs2276109 (A-82G) гена ММР-12.

Изобретение относится к области медицины и предназначено для определения риска развития артериальной гипертензии. Осуществляют забор венозной крови, выделение генетического материала, проведение полимеразной цепной реакции (ПЦР) в режиме реального времени и определение инсерции/делеции (I- и D-аллели) Alu-фрагмента гена ангиотензинпревращающего фермента.

Изобретение относится к области медицины и предназначено для определения степени гетероплазмии мутаций митохондриального генома. Проводят полимеразную цепную реакцию в режиме реального времени, вычисляют значение ΔCt, определяют коэффициент эффективности амплификации и рассчитывают степень гетероплазмии мутаций митохондриального генома по формуле.

Изобретение относится к области медицины, в частности к медицинской генетике и онкогинекологии, и предназначено для прогнозирования риска развития рака яичников.

Изобретение относится к биохимии. Предоставлена композиция для осуществления реакции замещения цепей нуклеиновых кислот, содержащая первый и второй комплексы нуклеиновых кислот, каждый из которых содержит первую, вторую, третью и четвертую цепи нуклеиновых кислот, где каждая из цепей содержит последовательно первый, второй и третий фрагменты.

Изобретение относится к области биотехнологии. Описаны способ и система для определения того, существует ли аномалия генома.

Изобретение относится к биохимии. Описаны выделенные моноклональные антитела, которые специфически связываются с PD-1 с высокой аффинностью.

Изобретение относится к биохимии. Описан способ для проведения пиросеквенирования нуклеиновых кислот. Способ включает этапы обеспечения вращающейся платформы, имеющей по меньшей мере одну открытую ячейку, предназначенную для содержания по меньшей мере одной несущей поверхности, причем указанная ячейка имеет такие форму или размеры, чтобы реагент, находящийся в ней, можно было удалить центрифугированием из указанной открытой ячейки и из указанной платформы при достаточном вращении указанной платформы; обеспечения по меньшей мере одной указанной несущей поверхности в форме магнитной частицы в каждой указанной открытой ячейке, где указанная несущая поверхность приспособлена для иммобилизации полинуклеотидной молекулы или на которой полинуклеотидная молекула была иммобилизирована; отжига олигонуклеотидного праймера с отдельной цепью указанной полинуклеотидной молекулы; количественного внесения в каждую указанную открытую ячейку из точки, расположенной за пределами платформы, серии реагентов для пиросеквенирования, при этом после внесения платформу вращают со скоростью, достаточной для того, чтобы любой остаточный или непрореагировавший указанный реагент был практически удален центрифугированием из каждой открытой ячейки и из платформы, при этом во время вращения каждую указанную магнитную частицу удерживают в указанной открытой ячейке за счет сил магнитного взаимодействия; анализа на присутствие пирофосфатной группы в каждой указанной ячейке; и повторения указанных этапов количественного внесения и анализа, таким образом секвенируя указанную полинуклеотидную молекулу. 22 з.п. ф-лы, 15 ил., 1 пр.

Группа изобретений относится к области биотехнологии. Способ одновременной генодиагностики двух мутантных аллелей, вызывающих CVM и BLAD у крупного рогатого скота, включает выделение ДНК из биологического материала, постановку полимеразной цепной реакции в режиме реального времени с использованием реакционной смеси (тест-системы) с CVM/BLAD, содержащей 50 мМKСl, 50 mMTRIS-HCl, 250 нMdNTP, 2,5 мMMgCl2, праймеры - в концентрации 200 нМ, аллель-специфические зонды - в концентрации 100 Нм, имеющие следующие последовательности: CVM_up - gattctcaagagcttaattctaagga, CVM_low - aagtaaaccccagcaaagccac, CVM_Wt - (FAM) aggtctcatggcagttct-(BHQ1), CVM_m - (R6G) catggcatttctcacagcat-(BHQ2), BLAD_up - ttaggcagttgcgttc, BLAD_low - acgttgacgaggtcatccacca, BLAD_Wt - (ROX) accccatcgacctgtacta-(BHQ1), BLAD_m (Cy5) ccatcggcctgtactacct-(BHQ2), разбавитель, 2,5 ед. Taq ДНК-полимеразы, три положительных и один отрицательный контрольных образца. При подготовке к проведению реакции рассчитывают необходимый объем компонентов, исходя из количества исследуемых образцов плюс 4, реактивы смешивают, затем в подготовленные для ПЦР пробирки вносят по 20 мкл приготовленной ПЦР-смеси, в каждую ПЦР пробирку добавляют по 5 мкл контрольных и исследуемых образцов, пробирки помещают в амплификатор, отжиг праймеров проходит на этапе циклирования при 64°С в течение 30 с при числе циклов амплификации равном 40. Анализ полученных данных проводят путем сравнения амплифицированных участков генов, результаты интерпретируют на основании наличия или отсутствия пересечения кривой флуоресценции с установленной на соответствующем уровне пороговой линией. Данные изобретения обеспечивают возможность диагностики одновременно двух мутантных аллелей, вызывающих CVM и BLAD у крупного рогатого скота, способствуют сокращению времени выполнения ПЦР-РВ. 2 н.п. ф-лы, 3 ил., 4 табл.
Изобретение относится к медицине, а именно к хирургии, и касается способа прогнозирования эффективности профилактики альбендазолом послеоперационного рецидива цистного эхинококкоза. Сущность способа заключается в том, что из лимфоцитов периферической венозной крови выделяют ДНК, проводят генотипирование полиморфизма *1F(163A/C) гена цитохрома Р450 CYP1A2 методом анализа полиморфизма длин рестрикционных фрагментов продуктов полимеразной цепной реакции синтеза ДНК. При обнаружении генотипа CYP1A2F1*C/C прогнозируют высокую эффективность профилактики альбендазолом послеоперационного рецидива цистного эхинококкоза. Использование изобретения дает возможность прогнозировать эффективность профилактики альбендазолом рецидива цистного эхинококкоза с высокой точностью. 2 пр.

Предложенная группа изобретений относится к области медицины. Предложен способ получения ДНК-праймеров и зондов для малоинвазивной пренатальной ПЦР-диагностики трисомии 21-й хромосомы у плода по крови беременной женщины, характеризующийся тем, что выбирают сайт дифференциального метилирования фетальной ДНК 21-й хромосомы и ДНК 21-й хромосомы взрослого человека, чувствительный к эндонуклеазам, синтезируют прямой и обратный праймер, соответствующие ампликону длиной от 60 до 300 п.н., а также зонд, соответствующий этому ампликону, проводят ПЦР в реальном времени смеси образцов после их обработки эндонуклеазой рестрикции, отбирают пары праймеров и зонды, обеспечивающие эффективность реакции ПЦР в реальном времени выше 90% и линейность при изменении относительной концентрации образцов выше 90%. Предложены также набор и малоинвазивный способ пренатальной ПЦР-диагностики в реальном времени трисомии 21-й хромосомы у плода по крови беременной женщины. Предложенная группа изобретений обеспечивает эффективные средства и методы определения трисомии хромосомы 21 плода по крови беременной женщины. 3 н. и 13 з.п. ф-лы, 15 ил., 3 табл., 1 пр.

Изобретение относится к области медицины, и касается способа прогнозирования эффективности монотерапии пероральным сахароснижающим препаратом метформином у больных сахарным диабетом 2 типа. Сущность способа заключается в том, что у больных сахарным диабетом 2 типа выделяют ДНК из периферической венозной крови с последующим проведением полимеразной цепной реакции (ПЦР) и проведением анализа на выявление полиморфизма А>С rs 622342 гена ОСТ1. При выявлении генотипа АА в участке rs 622342 гена ОСТ1 прогнозируют эффективность монотерапии метформином в качестве сахароснижающего препарата у больных сахарным диабетом 2 типа, а при выявления генотипа АС или СС в участке rs 622342 гена ОСТ1 прогнозируют неэффективность монотерапии метформином в качестве сахароснижающего препарата у данной категории больных. Испоотзование способа позволяет повысить точность и специфичность прогнозирования эффективности монотерапии пероральным сахароснижающим препаратом метформином у больных сахарным диабетом 2 типа. 2 табл., 3 пр.

Изобретение относится к области молекулярной биологии, вирусологии, ветеринарии и медицине и касается способа идентификации РНК вирусов гриппа А и В с одновременным определением вариантов гемагглютинина и нейраминидазы вируса гриппа А, а также генетических маркеров патогенности и устойчивости к противогриппозным препаратам, на биологических микрочипах. Способ основан на проведении реакции обратной транскрипции для получения кДНК с использованием вирусной РНК в качестве матрицы, полимеразной цепной реакции (ПЦР) и последующей гибридизации полученного одноцепочечного флуоресцентно-меченного ПЦР-продукта на биологическом микрочипе. Биологический микрочип представляет собой подложку с упорядоченно расположенными гидрогелевыми элементами, содержащими ковалентно иммобилизованные олигонуклеотидные зонды, которые обеспечивают гибридизацию со специфическими участками генома вируса гриппа, определяющими его тип, субтип и генетические маркеры, включая детерминанты устойчивости к противовирусным препаратам. 3 н. и 2 з.п. ф-лы, 27 ил., 4 табл., 3 пр.

Изобретение относится к области биохимии, в частности к способу идентификации растения, способного восстанавливать фертильность при цитоплазматической мужской стерильности С-типа, содержащего функциональный ген-восстановитель для цитоплазматической мужской стерильности С-типа кукурузы, включающему выделение молекул нуклеиновой кислоты из растения и скрининг выделенных молекул нуклеиновых кислот с использованием ПЦР в отношении молекулы нуклеиновой кислоты, содержащей нуклеотидную последовательность, выбранную из группы, состоящей из SEQ ID NO: 1-197 и маркеров, обозначаемых как полиморфизмы ID №№1-106 в таблице 3. Изобретение также относится к способу восстановления фертильности в кукурузе, предусматривающему стадии скрещивания, маркер-ассоциированной селекции, а также размножения растения кукурузы. Изобретение позволяет эффективно восстанавливать фертильность в кукурузе. 2 н. и 12 з.п. ф-лы, 11 ил., 4 табл., 6 пр.

Группа изобретений относится к области биотехнологии. В группу изобретений входят нуклеиновая кислота, которая кодирует флуоресцентный биосенсор для регистрации изменения рН, аминокислотная последовательность которого показана в SEQ ID No: 4, а также кассета экспрессии и эукариотическая клетка, продуцирующая биосенсор. Группа изобретений направлена на биосенсоры для регистрации изменения рН в живых клетках, обладающих повышенной яркостью флуоресценции. 3 н.п. ф-лы, 6 ил., 4 пр.

Настоящее изобретение относится к способам и продуктам для локализованной или пространственной детекции нуклеиновой кислоты в образце ткани и, в частности, к способу локализованной детекции нуклеиновой кислоты в образце ткани, включающему: (а) предоставление чипа, содержащего подложку, на которой непосредственно или опосредованно иммобилизованы многочисленные разновидности захватывающих зондов, так что каждая разновидность занимает определенное положение на чипе и ориентирована таким образом, что имеет свободный 3′-конец, позволяющий указанному зонду действовать в качестве праймера в реакции удлинения или лигирования праймера, где каждая разновидность указанного захватывающего зонда содержит молекулу нуклеиновой кислоты, имеющую в направлении от 5′ к 3′: (1) позиционную область, которая соответствует положению захватывающего зонда на чипе, и (2) захватывающую область; (б) приведение указанного чипа в контакт с образцом ткани таким образом, что положение захватывающего зонда на чипе может быть сопоставлено с положением в образце ткани, и предоставление возможности нуклеиновой кислоте образца ткани гибридизоваться с захватывающей областью в указанных захватывающих зондах; (в) синтез молекул ДНК на основе захваченных молекул нуклеиновой кислоты с использованием указанных захватывающих зондов в качестве праймеров удлинения или лигирования, где указанные удлиненные или лигированные молекулы ДНК являются мечеными благодаря позиционной области; (г) возможно синтез комплементарной нити указанной меченой ДНК и/или возможно амплификацию указанной меченой ДНК; (д) высвобождение по меньшей мере части меченых молекул ДНК и/или их комплементов или ампликонов с поверхности чипа, где указанная часть включает позиционную область или ее комплемент; и (е) прямой или опосредованный анализ последовательности высвобожденных молекул ДНК. 3 н. и 52 з.п. ф-лы, 31 ил., 2 табл., 12 пр.

Группа изобретений относится к области биотехнологии и представляет собой варианты способов создания совокупности смежных фрагментов исследуемой области генома. При этом способ включает фрагментацию перекрестно-сшитой ДНК, лигирование фрагментированной перекрестно-сшитой ДНК, реверсию перекрестного сшивания, определение по меньшей мере части последовательностей лигированных фрагментов ДНК, включающих нуклеотидную последовательность-мишень, и использование определенных последовательностей для создания совокупности смежных фрагментов исследуемой области генома. Использование данных способов позволяет получать контиги и детектировать мутации, находящиеся в одной области генома, но отстоящие друг от друга на большие расстояния. 3 н. и 15 з.п. ф-лы, 3 ил., 2 табл., 1 пр.
Наверх