Способ получения топливной композиции



Способ получения топливной композиции
Способ получения топливной композиции

 


Владельцы патента RU 2602076:

Ефимова Наталья Леонидовна (RU)
Кумар Анил (RU)
Зубакин Сергей Иванович (RU)
Покровский Александр Владимирович (RU)
Пименов Юрий Александрович (RU)

Изобретение раскрывает способ получения топливной композиции, включающий смешение бензина с бутиловым и этиловым спиртами, при этом этиловый спирт предварительно смешивают с бутиловым спиртом в соотношении 1:1 - 1:0,2, осуществляют гомогенизацию полученной смеси в виброкавитационном гомогенизаторе с вращающимся рабочим элементом ротором с перфорированной поверхностью и неподвижным рабочим элементом статором при удельном расходе смеси не более 2,5 г/см2 рабочей поверхности ротора в секунду и окружной скорости его вращения не менее 20 м/с, после чего полученную смесь этилового спирта с бутиловым спиртом смешивают с бензином в соотношении : смесь этилового спирта с бутиловым спиртом (90-30) об. %, бензин (10-70) об. % и повторно подают в упомянутый гомогенизатор с объемной скоростью 5-500 л/мин. Технический результат заключается в получении стабильных топливных композиций с равномерным распределением компонентов по объему топливной композиции, устойчивых в течение не менее шести месяцев в широком диапазоне температур. 6 табл., 3 пр.

 

Изобретение относится к производству моторных топлив, а именно к технологии получения высокооктановых стабильных автомобильных топлив.

Ужесточение экологических требований к автомобильным двигателям вынуждает автомобилестроительные компании всего мира искать все новые и новые технические решения, чтобы уложиться в утверждаемые нормативы. Так как современные машины становятся все сложнее, а их выходная мощность увеличивается, то состав отработавших газов (ОГ) регламентируется более строго. При этом важной целью становится экономия горючего. Движущей же силой этого прогресса являются рынок и охрана окружающей среды.

Прогресс в области конструкции автомобильных двигателей постоянно диктует и новые требования к качеству топлив. Во всем мире законы о защите окружающей среды предусматривают переход на экологически чистые автотранспортные средства, для эксплуатации которых необходимы соответствующие топлива.

Известно, что введение в автомобильные бензины оксигенатов повышает их детонационную стойкость, т.к. увеличение концентрации кислорода в топливе способствует более полному сгоранию углеводородов, снижает теплоту сгорания топливовоздушной смеси, происходит более быстрый отвод тепла из камеры сгорания, и в результате снижается максимальная температура горения. К оксигенатам относятся алифатические спирты С1-С4 и диалкиловые эфиры, обладающие антидетонационными свойствами. Преимуществами использования оксигенатов является повышение октанового числа бензина без увеличения содержания в нем аренов, снижение токсичности отработавших газов

Реальный экологический эффект может быть получен за счет применения кислородсодержащих добавок в составе автомобильных бензинов.

Машины, эксплуатируемые на бензине, содержащем оксигенаты, выбрасывают значительно меньше токсичных продуктов. Более полное сгорание топлив с кислородсодержащими добавками позволяет снизить эмиссию оксида углерода на 32,5% и углеводородов на 14,5%. Наиболее перспективной октаноповышающей добавкой является этиловый спирт.

Высокая детонационная стойкость, низкая токсичность, возможность производства из возобновляемых источников сырья, имеющиеся в России свободные мощности для производства - все это делает этанол более привлекательным по сравнению с другими оксигенатами.

Основным недостатком бензиново-спиртовых топлив является их фазовая нестабильность, обусловленная наличием в них небольших количеств воды и, как следствие, ограниченной взаимной растворимостью компонентов. Введением в спиртовые топлива соответствующих модификаторов и стабилизаторов удается преодолеть возникающие трудности. Наибольшее влияние на расслаиваемость спиртовых бензинов оказывает содержание воды. Для обеспечения стабильности бензинов со спиртами при производстве, хранении и применении необходимо предотвращать попадание в них воды, а также использовать стабилизирующие добавки или сорастворители, гомогенизирующие систему бензин-вода-спирт. Также рекомендуется вводить спирт в бензин непосредственно перед заправкой автомобиля.

Способность бензино-спиртовых смесей к расслаиванию зависит от состава бензина, содержания спирта и содержания воды в композиции. С увеличением концентрации ароматических соединений в бензине и увеличением содержания в топливе спирта температура помутнения понижается. Однако количество воды в системе является значительно более важным фактором.

С энергетической точки зрения преимущества спиртов заключаются в высоком КПД рабочего процесса и высокой детонационной стойкости. Величина КПД спиртового двигателя выше бензинового во всем диапазоне рабочих смесей, благодаря чему удельный расход энергии на единицу мощности снижается.

Известен патент на изобретение РФ №2246526 МКИ С10L 1/18, от 05.11.2003, в котором способ получения высокооктанового автомобильного топлива включает смешение исходного прямогонного бензина или бензина А-76 с этиловой жидкостью. В качестве этиловой жидкости берут этиловый спирт концентрацией 92-96%, смешение бензина и этилового спирта проводят в соотношении 75-85 об. % и 15-25 об. % или 15-25 об. % и 75-85 об. % соответственно, полученную смесь нагревают до 40-90°С и выдерживают при этой температуре 20-30 минут, затем охлаждают и выдерживают в течение 10-15 минут.

Недостатком известного способа является сложность технологического процесса получения высокооктанового автомобильного топлива и недостаточно высокая устойчивость спиртово-бензиновой смеси.

Известен способ получения высокооктанового топлива (Патент РФ 2326933 от 20.06.2008 C10L 1/182)

Способ получения высокооктанового топлива включает смешение низкооктанового бензина с этиловой жидкостью, отличающийся тем, что этиловую жидкость смешивают с поверхностно-активным веществом, дополнительно вводят бутиловый спирт, смешанный с бензином, далее полученную смесь диспергируют в течение от 5 до 20 мин с помощью ультразвука.

Смешение бензина с бутиловым спиртом и смешение этилового спирта с поверхностно-активным веществом проводят в соотношении 70-80 и 20-30 об. % соответственно. Время фазовой стабильности смеси составляет более 6 месяцев при комнатной температуре.

Недостатками известного способа получения высокооктанового топлива являются сложность рецептуры и технологии, а также низкая производительность.

Задачей изобретения является разработка способа получения стабильного высокооктанового автомобильного топлива из доступных компонентов.

Техническим результатом от использования разработанного способа является повышение производительности и стабильности автомобильного топлива в широком диапазоне изменения температур от +20°С до -33°С.

Задача решается, а технический результат достигается тем, что этиловый спирт смешивают с бутиловым спиртом в соотношении 1:1 - 1:0,2, осуществляют гомогенизацию полученной смеси, которую проводят в виброкавитационном гомогенизаторе с вращающимся рабочим элементом ротором с перфорированной поверхностью и неподвижным рабочим элементом статором при удельном расходе смеси не более 2,5 г/см2 рабочей поверхности ротора в секунду и окружной скорости его вращения не менее 20 м/с, после чего полученную смесь повторно подают в виброкавитационный гомогенизатор с объемной скоростью 5 до 500 л/мин при соотношении: этиловый спирт в смеси с бутиловым 90:30 об. % и бензин 10-70 об. % соответственно.

Использование виброкавитационного гомогенизатора позволяет получить стабильные топливные эмульсии с равномерным распределением компонентов по объему топливной композиции, и устойчивые в течение не менее шести месяцев в широком диапазоне температур. Получаемые таким способом топливные композиции обеспечивают стабильную работу двигателей внутреннего сгорания. При применении такого топлива наблюдается существенное улучшение экологических характеристик работы двигателей благодаря значительному снижению окислов азота и практически полному устранению дымления.

В качестве добавок к бензинам были выбраны алифатические спирты (этиловый и бутиловый) с низкой токсичностью, возможностью производства из возобновляемых источников сырья, на имеющихся в России свободных мощностей для производства.

В работе использовался стандартный 96° этиловый спирт (спирт этиловый технический) ГОСТ Р 55878-2013 и спирт бутиловый ГОСТ 5208-81. Результаты исследований приведены в таблицах.

Вязкость бензина А-95 - 11,0 сек, бензина А-80 - 13,6 сек, спирта этилового - 13,8 сек. Вязкость бутилового спирта - Обработка проводилась на виброкавитационном гомогенизаторе ВКГ-60. Для замера вязкости использовался вискозиметр В3-4 ГОСТ 9070-75.

Примеры осуществления способа.

ПРИМЕР 1

Этиловый спирт крепостью 96° ГОСТ Р 55878-2013 смешивают с бутиловым спиртом при комнатной температуре в соотношении 1:1 и подают в виброкавитационный гомогенизатор с вращающимся рабочим элементом ротором с перфорированной поверхностью и неподвижным рабочим элементом статором при удельном расходе смеси 2,5 г/см2 рабочей поверхности ротора в секунду и окружной скорости его вращения не менее 20 м/с.

Полученную гомогенную смесь этилового спирта с бутиловым повторно подают в виброкавитационный гомогенизатор с объемной скоростью 500 л/мин, смешивая с бензином А95 в соотношении смесь спиртов 30-90 об. %, бензин 10-70 об. % и бензином А80 в соотношении смесь спиртов 60-90 об. %, бензин 10-40 об. % (таблицы 1, 2).

ПРИМЕР 2

Этиловый спирт крепостью 96° ГОСТ Р 55878-2013 смешивают с бутиловым при комнатной температуре в соотношении 1:0,2 и подают в виброкавитационный гомогенизатор с вращающимся рабочим элементом ротором с перфорированной поверхностью и неподвижным рабочим элементом статором, при удельном расходе смеси 2,0 г/см2 рабочей поверхности ротора в секунду и окружной скорости его вращения не менее 20 м/с.

Полученную гомогенную смесь этилового спирта с бутиловым повторно направляют в виброкавитационный гомогенизатор с объемной скоростью 250 л/мин, смешивая с бензином бензином А95 в соотношении смесь спиртов 30-90 об. %, бензин 10-70 об. % и бензином А80 в соотношении смесь спиртов 60-90 об. %, бензин 10-40 об. % (таблицы 3, 4).

ПРИМЕР 3

Этиловый спирт крепостью 96° ГОСТ Р 55878-2013 смешивают с бутиловом при комнатной температуре в соотношении 1:0,5 и подают в виброкавитационный гомогенизатор с вращающимся рабочим элементом ротором с перфорированной поверхностью и неподвижным рабочим элементом статором, при удельном расходе смеси 2,5 г/см2 рабочей поверхности ротора в секунду и окружной скорости его вращения не менее 20 м/с.

Полученную гомогенную смесь этилового спирта с бутиловым повторно направляют в виброкавитационный гомогенизатор с объемной скоростью 500 л/мин, смешивая с бензином А95 в соотношении смесь спиртов 30-90 обю %, бензин 10-70 об. % и бензином А80 в соотношении смесь спиртов 60-90 об. %, бензин 10-40 об. % (таблицы 5, 6).

Анализ данных, приведенных в табл. 1-6, показывает, что при температуре +20°С этиловый спирт крепостью 96° смешивают с бутиловым спиртом в объемном соотношении (1:1), (1:0,5), (1:0,2) и после обработки в виброкавитационном гомогенизаторе добавляют от 10 до 70 об. % бензина А-95 и до 40 об. % бензина А-80. Полученные топливные композиции стабильны при температуре +20°С. При понижении температуры до -33°С стабильность композиции не уменьшается.

В результате был разработан способ получения топлива с более высокими октановыми числами и низким содержанием ароматических углеводородов, в котором содержится меньшее количество СO2 и окислов азота в отработанных газах. При этом значительно увеличилось время фазовой стабильности и гомогенности спирто-бензиновой смеси. К несомненным преимуществам спиртосодержащего бензина относится и возможность использования стандартного 96° этанола, позволяющего увеличить степени сжатия, а следовательно, и КПД двигателя.

Способ получения топливной композиции, включающий смешение бензина с бутиловым и этиловым спиртами, отличающийся тем, что этиловый спирт предварительно смешивают с бутиловым спиртом в соотношении 1:1 - 1:0,2, осуществляют гомогенизацию полученной смеси в виброкавитационном гомогенизаторе с вращающимся рабочим элементом ротором с перфорированной поверхностью и неподвижным рабочим элементом статором при удельном расходе смеси не более 2,5 г/см2 рабочей поверхности ротора в секунду и окружной скорости его вращения не менее 20 м/с, после чего полученную смесь этилового спирта с бутиловым спиртом смешивают с бензином в соотношении: смесь этилового спирта с бутиловым спиртом (90-30) об. %, бензин (10-70) об. %. и повторно подают в упомянутый гомогенизатор с объемной скоростью 5 до 500 л/мин.



 

Похожие патенты:

Изобретение описывает устройство для переработки нефтеотходов, включающее узел подготовки сырьевой смеси, диспергатор, резервуар готовой эмульсии, соединенный трубопроводом через обратный клапан с узлом подготовки сырьевой смеси, при этом резервуар готовой эмульсии снабжен обогревом, в частности резервуар готовой эмульсии обмотан нихромом, по которому пропускают электрический ток.
Изобретение описывает жидкий концентрат для защиты жидких топлив от загрязнения водой, по существу состоящий из: (A) от 0,5 до 5% масс. одного или нескольких жирно-(C8-C24)-амидо-(C1-С6)-алкилбетаиновых эмульгирующих агентов; (B) от 45 до 75% масс.
Изобретение относится к области нефтедобывающей и нефтеперерабатывающей промышленности. Изобретение касается способа переработки жидких нефтесодержащих отходов с получением водоэмульсионного топлива, включающего нагрев жидких нефтесодержащих отходов, очистку с последующей подачей очищенной смеси углеводородов с водой на трехкратную гомогенизацию смеси.
Изобретение относится к водно-топливной композиции для применения в тепловых и ракетных двигателях, работающих на жидком углеводородном топливе, которая включает дисперсионную среду - углеводородное топливо и дисперсионную фазу - водосодержащую композицию, при этом устойчивость водно-топливной композиции достигается путем установления равенства плотностей водосодержащей композиции и углеводородного топлива за счет соотношения компонентов, при этом в качестве водосодержащей композиции используется водно-спиртовой раствор.

Изобретение относится к топливной эмульсии для дизелей на основе дизельного топлива с добавлением спирта, эмульгатора, смеси мыл диэтаноламина и олеиновой кислоты и воды, при этом топливная эмульсия дополнительно содержит смазывающую присадку ДПА-ЛубриКор при следующих соотношениях компонентов, %: этанол 5,0-50,0; вода 0,5-5,0; алкенилсукцинимид 0,25-1,0; смесь мыл диэтаноламина и олеиновой кислоты 0,2; смазывающая присадка 0,02; дизельное топливо - до 100.
Изобретение описывает топливный гель, который включает поверхностно-активное вещество - продукт обработки смеси моно- и диалкилфенолов окисью этилена - и керосин, при этом он дополнительно содержит перекись водорода, при следующем соотношении компонентов, об.% Поверхностно-активное вещество 0,05 Перекись водорода 0,95 Керосин остальное до 100.

Изобретение относится к способу получения жидкого угольного топлива, который включает гомогенизирование продуктов термического передела угля, при этом осуществляют совместное гомогенизирование полукокса, смольной фракции и подсмольной воды таким образом, что полукокс фракции 3-5 мкм суспендируется в микрокапли смольной фракции, которые являются дисперсной фазой эмульсии с дисперсной средой в виде подсмольной воды, а получаемое топливо приобретает кинематическую вязкость 10-40 cSt при температуре 50°С.

Изобретение описывает жидкое угольное топливо, состоящее из тонкодисперсной смеси твердой части в виде микрочастиц полукокса/кокса и жидкой части в виде смольной фракции, полученных после термического передела угля-сырца, где тонкодисперсная смесь представляет собой двойную суспензионно-эмульсионную систему, в которой в качестве твердой части используют совместно микрочастицы угля-сырца и продукты его термического передела в виде микрочастиц полукокса/кокса, а в качестве жидкой части используют жидкие продукты термического передела того же угля-сырца, при этом смольная фракция используется для капсулирования групп твердых микрочастиц угля-сырца и полукокса/кокса в микрокапли эмульсии, а подсмольная вода используется в качестве дисперсной среды.

Изобретение описывает эмульгирующую композицию для гомогенизации и реэмульгирования топлива, которая содержит в пересчете на общий вес композиции первую смесь i), содержащую а) от 5% до 40% N-олеил-1,3-пропилендиамина, б) от 60% до 95% по весу N,N′,N′-полиоксиэтилен-N-таллового пропилендиамина и ii) от 5% до 40% изопропилбензола или керосина, добавляемого в первую смесь.

Изобретение относится к применению, по меньшей мере, одного (С6-C15)этоксилата спирта и, по меньшей мере, одного (С8-С24)алкиламидо (C1-С6)алкилбетаина в жидком углеводородном топливе, содержащем меньше чем 50 м.д.

Изобретение описывает противоизносную присадку к углеводородному топливу на основе сложных эфиров органических кислот, которая представляет собой продукт, полученный в результате смешения щавелевой кислоты с кубовым остатком производства бутиловых спиртов (КОБС) при следующем соотношении компонентов, % мас: Кубовый остаток   производства бутиловых спиртов 77,0-91,0 Щавелевая кислота остальное до 100 и последующего отделения из реакционной массы смеси паров легких углеводородных фракций и воды.

Изобретение относится к топливной композиции авиационного неэтилированного бензина с октановым числом не менее 93,0 ед., определенным по моторному методу, которая содержит алкилбензин, ароматические углеводороды и монометиланилин, при этом в качестве алкилбензина используется алкилбензин, имеющий температуру конца кипения до 200°С, в качестве ароматических углеводородов композиция содержит толуол или его смесь с п-ксилолом при массовом соотношении толуол:п-ксилол от 1:1 до 5:1 и дополнительно содержит гексановый изомеризат при следующем соотношении компонентов, % масс.: толуол или его смесь с п-ксилолом 30,0-32,0; изомеризат гексановый 10,0-37,0; монометиланилин 1,0-3,0; алкилбензин с Ткк до 200°С до 100.

Изобретение описывает депрессорную присадку к дизельным топливам, которая содержит сополимер низкомолекулярного полиэтилена и стирола, при этом в качестве растворителя она включает органический растворитель и фракцию дизельного топлива с диапазоном температур кипения 200-360ºС, мас.%: сополимер - 10-30 мас.%; органический растворитель - 70-90 мас.%; соотношение раствор сополимера:дизельное топливо - 1:3 или 1:5.

Настоящее изобретение относится к применению растворимого в масле моно-, ди- или триглицерида по крайней мере одной многоосновной гидроксикарбоновой кислоты или его производного, в качестве противоизносной присадки и/или модификатора трения в безводной смазочной композиции и/или в топливной композиции, в котором глицерид представляет собой глицерид по крайней мере одной многоосновной гидроксикарбоновой кислоты и по крайней мере одной другой карбоновой кислоты, которая представляет собой насыщенную, мононенасыщенную или полиненасыщенную, разветвленную или прямую, одноосновную карбоновую или многоосновную карбоновую кислоту, имеющую 4-22 атома углерода, или его производное.

Изобретение раскрывает способ повышения удельной эффективности жидких углеводородных топлив, в котором размельчающее и смешивающее средство включает устройство, подвергающее смесевую жидкость, включающую воду и углеводород, воздействию давления, заставляя ее течь и ускоряться для прохода через отверстия, где она размельчается и смешивается, причем пропускают потоки воды с углеводородами в соотношении 0,12/1,00-0,15/1,00, через пять чередующихся зон в корпусе роторно-дискового аппарата: всасывание воды и углеводородов и смешивание в I зоне - между внутренней поверхностью цилиндрического корпуса, входной крышкой корпуса и плоскостью вращающегося диска, с давлением Р=0,4 атм, размельчение смесевой жидкости во II зоне - через кольцевые сверхузкие зазоры шириной h=0,15…0.2 мм, образованные периферией вращающегося с частотой 10000 об/мин диска и внутренней цилиндрической поверхностью корпуса, где происходит синтез спиртов и эфиров при смешении воды и углеводородов путем деструкции углеводородных и водных молекул за счет сдвиговых напряжений, разрыв молекулярных связей с образованием радикалов и групп радикалов, которые при взаимодействии между собой и фрагментами молекул воды образуют новые углеводородные и гидроксил-углеводородные соединения; смешение в III зоне - между двумя поверхностями вращающихся дисков, внешней поверхностью вала, внутренней цилиндрической поверхностью.

Изобретение раскрывает присадку к углеводородному топливу, которая представляет собой раствор активного комплекса в органическом растворителе, при этом активный комплекс состоит из: хирального сложного эфира С4-С9 и монокарбоновой кислоты C1-С6.

Изобретение раскрывает топливную композицию для двигателя внутреннего сгорания с впрыском топлива, которая содержит: большее количество топлива и небольшое эффективное количество соли четвертичного аммония из реакции третичного амина и гидрокарбил-замещенного алкилгидроксибензоата, где R6 представляет гидрокарбильную группу, и n означает целое число от 1 до 3, где сумма атомов углерода всех групп R6 равна по меньшей мере 8 вплоть до около 200, и R6 не содержит атомов N, S или О, и R7 представляет алкильную группу, содержащую от 1 до 4 атомов углерода.

Изобретение описывает многофункциональную эфирную присадку к углеводородсодержащему топливу, которая включает смесь высокооктановых N-замещенных эфиров анилина - N-метил-пара-анизидина и/или N-метил-пара-фенетидина и высокооктановых эфиров анилина - пара-фенетидина и/или пара-анизидина.

Изобретение относится к сополимеру, который применяют для улучшения свойств текучести среднедистиллятных топлив при низких температурах . Сополимеризат состоит из (i) от 10 до 90 мол.% повторяющихся звеньев структуры W1: в которой переменные значения R1 и R2 представляют собой водород, алкил с 1-4 атомами углерода или карбоксильные сложноэфирные группировки формулы -COOR9, причем R9 означает углеводородный остаток с 6-30 атомами углерода, и одно из переменных значений R1 или R2 представляет собой водород или алкил с 1-4 атомами углерода, а другое означает карбоксильную сложноэфирную группировку формулы -COOR9 и переменные значения R3 и R4 представляют собой водород, алкил с 1-4 атомами углерода, карбоксильную сложноэфирную группировку формулы -COOR9, причем R9 означает углеводородный остаток с 6-30 атомами углерода, или карбоксильные группы, которые могут находиться в форме их солей со щелочными и щелочноземельными металлами или в форме аммониевых солей, при этом одно из переменных значений R3 или R4 представляет собой водород или алкил с 1-4 атомами углерода, а другое представляет собой карбоксильную сложноэфирную группировку формулы -COOR9 и/или карбоксильную группу, которая также может находиться в форме ее солей со щелочным металлом, щелочноземельным металлом или в форме аммониевой соли, и (ii) от 90 до 10 мол.% повторяющихся звеньев структуры W2: в которой переменное значение R5 представляет собой остаток эфира карбоновой кислоты формулы в которой переменное значение А представляет собой алкиленовую группу с 1-20 атомами углерода, а переменное значение R10 представляет собой углеводородный остаток с 1-30 атомами углерода и переменные значения R6, R7 и R8, независимо друг от друга, представляют собой водород или алкил с 1-8 атомами углерода, причем сумма повторяющихся звеньев W1 и W2 составляет 100 мол.%.

Изобретение раскрывает антидетонационную добавку к топливу для двигателей внутреннего сгорания на основе бензина, которая содержит следующие компоненты: (I) 2,4-ксилидин, 2,5-ксилидин, 2,6-ксилидин или их смесь; (II) пара-анизидин или N-метил-пара-анизидин; (III) анилин, (IV) агидол-1 или агидол-12, при следующем содержании компонентов (масс.
Изобретение раскрывает топливную композицию, которая включает этиловый спирт, бутиловый спирт и бензин, при этом композиция содержит смесь этилового и бутилового спиртов, взятых в соотношении, об. % (80-20) - (50-50), предварительно обработанную в виброкавитационном гомогенизаторе с вращающимся рабочим элементом - ротором с перфорированной поверхностью и неподвижным рабочим элементом - статором при удельном расходе смеси не более 2,5 г/см2 рабочей поверхности ротора в секунду и окружной скорости его вращения не менее 20 м/с, а в качестве присадки в составе композиции дополнительно используют карбамид, об. %: смесь этилового и бутилового спиртов 20-80; карбамид 0,5-2,0; бензин - остальное. Технический результат заключается в упрощении ингредиентного состава топливной композиции и обеспечении стабильности композиции при широком диапазоне изменения температур от +20°C до -33°C. 3 пр.
Наверх