Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием, в агар-агаре


 


Владельцы патента RU 2602165:

Кролевец Александр Александрович (RU)

Изобретение относится к способу получения нанокапсул с настойкой боярышника. Указанный способ характеризуется тем, что настойку боярышника добавляют в суспензию агар-агара в гексане в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, затем полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:3, 1:1 или 5:1. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул с настойкой боярышника, а также увеличение их выхода по массе. 1 ил., 1 пр.

 

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В патенте РФ 2173140, МПК А61К 009/50, А61К 009/127, опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В патенте РФ 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009 предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ, предложенный в патенте РФ 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999. В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул лекарственных растений, обладающих кардиотоническим действием, отличающимся тем, что в качестве оболочки нанокапсул используется агар-агар, а в качестве ядра - настойка боярышника.

Отличительной особенностью предлагаемого метода является получение нанокапсул с использованием агар-агара в качестве оболочки частиц и настоек лекарственных растений, обладающих кардиотоническим действием, - в качестве ядра.

Результатом предлагаемого метода является получение нанокапсул лекарственных растений, обладающих кардиотоническим действием.

ПРИМЕР 1. Получение нанокапсул настойки боярышника, соотношение ядро:оболочка 1:3

10 мл настойки боярышника добавляют в суспензию агар-агара в гексане, содержащую 3 г указанного полимера в присутствии 0,01 г препарата Е472c (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул настойки боярышника, соотношение ядро:оболочка 1:1

10 мл настойки боярышника добавляют в суспензию агар-агара в гексане, содержащую 1 г указанного полимера в присутствии 0,01 г препарата Е472c в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул настойки боярышника, соотношение ядро:оболочка 5:1

50 мл настойки боярышника добавляют в суспензию агар-агара в гексане, содержащую 1 г указанного полимера в присутствии 0,01 г препарата Е472c в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Получение нанокапсул настойки боярышника, соотношение ядро:оболочка 1:1

10 мл настойки боярышника добавляют в суспензию агар-агара в гексане, содержащую 5 г указанного полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 5. Определение размеров нанокапсул методом NTA

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM Е2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto, длительность единичного измерения 215 с, использование шприцевого насоса.

Способ получения нанокапсул с настойкой боярышника, характеризующийся тем, что настойку боярышника добавляют в суспензию агар-агара в гексане в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, затем полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:3, 1:1 или 5:1.



 

Похожие патенты:

Изобретение относится к получению эластомерных композиционных материалов. Осуществляют приготовление насыщенного водного раствора формиата металла с добавлением наполнителя.

Изобретение может быть использовано в производстве гетерогенных катализаторов, обладающих высокоразвитой поверхностью, и электродов в литий-ионных батареях. Электрохимический способ получения наноразмерных структур оксида титана (IV) включает анодное окисление титанового электрода в ионной жидкости с добавлением воды или пропиленгликоля в атмосфере воздуха.

Изобретение относится к области гальванотехники и может быть использовано для создания фотокаталитических устройств. Способ включает изготовление детали из спеченного порошка сплава титан-алюминий с размерами гранул 1-10 мкм, промывку детали в этаноле, сушку, промывку в дистиллированной воде, сушку при температуре 80-90°С, формирование нанопористого оксида на поверхности детали анодированием, при этом анодирование проводят в этиленгликоле с добавкой 0,25 % NH4F при комнатной температуре и постоянном напряжении U=60В и термообрабатывают в воздухе при температуре 800-820°С в течение 30-40 мин.
Изобретение относится к строительству и может быть использовано для укрепления грунтовых оснований фундаментов строящихся и восстанавливаемых зданий и сооружений методом инъектирования.

Изобретение может быть использовано в медицине, фармакологии, сельском хозяйстве, в производстве фильтрующих материалов. Композиция, обладающая антимикробным и антитоксическим действием, содержит бинарную смесь коллоидного раствора наноструктурных частиц серебра с размером частиц 2-100 нм и ионов серебра, стабилизатор и растворитель.

Изобретение относится к способу получения каучуковых иономеров и полимерных нанокомпозитов. Способ получения каучуковых иономеров включает стадии подачи в экструдерный узел концентрированной жидкости, содержащей бромированный каучук и летучее соединение, и нуклеофила, содержащего азот и/или фосфор.

Изобретение относится к области нанотехнологии, а именно нанотехнологии интерактивного взаимодействия, датчиков или приведения в действие, например квантовых точек в качестве биомаркеров.

Изобретение относится к химической технологии, а именно к способу очистки промышленных сточных вод от гипохлорит-ионов, образующихся в процессе хлорирования гидрооксидов лития, натрия, кальция.

Изобретение относится к области физики наноразмерных структур, а именно способу получения тонких металлических пленок, которые могут быть использованы в качестве тест объектов оптических приборов.

Изобретение относится к технологии производства высокотвердых жаростойких материалов на основе циркония, а именно к способам получения диборида циркония. Способ получения наноразмерного порошка диборида циркония включает приготовление шихты из порошков диоксида циркония, борной кислоты и углерода в соотношении компонентов, вес.

Изобретение относится к области фармацевтики. Описан способ получения нанокапсул лекарственных растений.

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул экстракта зеленого чая характеризуется тем, что экстракт зеленого чая добавляют в суспензию агар-агара в серном эфире в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, затем приливают этилацетат, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро:оболочка в нанокапсулах составляет 1:3, 1:1, 1:5 или 5:1.

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием, характеризуется тем, что настойку боярышника добавляют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро : оболочка в нанокапсулах составляет 1:3, 1:1, 3:1, 5:1 или 1:5.

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием, характеризуется тем, что 5 мл настойки эхинацеи добавляют в суспензию конжаковой камеди в гексане, содержащую 3 г или 1 г конжаковой камеди в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к медицине и представляет собой фармацевтический противоопухолевый гель, содержащий 0,5 г доксорубицина, 100 мл ПЭГ 12 диметикона, 50 мл гелеобразователя, 20 мл триэтаноламина и воду очищенную до 1000,0 мл.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул зеленого чая, характеризующемуся тем, что в качестве оболочки используется высоко- или низкоэтерифицированный яблочный или цитрусовый пектин, а в качестве ядра используется экстракт зеленого чая, при осуществлении способа экстракт зеленого чая добавляют в суспензию пектина в этаноле в присутствии 0,01 г поверхностно-активного вещества E472c, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:3, затем при перемешивании 1300 об/мин приливают этилацетат, полученную суспензию отфильтровывают и сушат при комнатной температуре Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, обладающих кардиотоническим действием, и описывает способ, характеризующийся тем, что в качестве оболочки используется каррагинан, а в качестве ядра используется настойка боярышника, при осуществлении способа настойку боярышника добавляют в суспензию каррагинана в бензоле в присутствии поверхностно-активного вещества E472c при перемешивании 1300 об/мин, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1, или 1:3, или 3:1, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к области нанотехнологии и медицины. Описан способ получения нанокапсул аминогликозидного антибиотика в оболочке из альгината натрия.

Изобретение относится в области нанотехнологии, в частности к способу получения нанокапсул АСД. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе.

Изобретение относится в области нанотехнологии, в частности фармацевтике и пищевой промышленности. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе.

Изобретение относится к фармацевтической промышленности и может быть использовано для производства лекарственных средств, необходимых в терапии заболеваний органов репродуктивной системы (патологии молочных желез, матки, эндометрия).
Наверх