Способ идентификации и полуколичественного определения диоктилфталата в смеси соединений, выделяющихся из пвх-пластизоля

Изобретение относится к аналитической химии и может быть использовано для определения диоктилфталата в равновесной газовой фазе над изделиями из ПФХ-пластизоля. Для этого применяют способ идентификации и полуколичественного определения диоктилфталата в смеси соединений, выделяющихся из ПВХ-пластизоля. Для определения диоктилфталата используют частотомер с массивом из 2-х пьезокварцевых резонаторов с собственной частотой колебаний 10 МГц, электроды которых модифицируют нанесением на них из индивидуальных растворов многослойных углеродных нанотрубок (МУНТ) массой пленки 3-5 мкг и полифенилового эфира (ПФЭ) массой 15-20 мкг. Модифицированные пьезокварцевые резонаторы помещают в закрытую ячейку детектирования и выдерживают в течение 5 мин для установления стабильного нулевого сигнала. Затем в пробоотборник помещают образец мягкого изделия из ПВХ-пластизоля массой 1,00 г, плотно закрывают пробкой и выдерживают при температуре 20±1°С в течение 15 мин для насыщения газовой фазы парами диоктилфталата. 5 см3 равновесной газовой фазы отбирают шприцем и инжектируют ее в закрытую ячейку детектирования и фиксируют в течение 120 с изменение частоты колебаний пьезосенсоров. Каждую секунду автоматически фиксируются отклики сенсоров, после чего регенерируют систему в течение 2 мин осушенным воздухом. Затем пробу в пробоотборнике нагревают в сушильном шкафу до 30±1°С в течение 10 мин, отбирают шприцем 5 см3 равновесной газовой фазы и повторно инжектируют в закрытую ячейку детектирования, фиксируют в течение 120 с изменение частоты колебаний пьезосенсоров при 20 и 30°С. По сигналам сенсоров автоматически рассчитывают площади под кривой для каждого сенсора: S(МУНТ), S(ПФЭ), Гц·с, и рассчитывают соотношение площадей при 20°С и 30°С соответственно - параметр . По указанным параметрам делают выводы о наличии диоктилфталата в образцах: если А30/20>20, то диоктилфталат присутствует в образцах изделий из ПВХ-пластизоля с концентрацией больше допустимого количества миграции (ДКМ, мг/дм3), если А30/20≤1, то содержание диоктилфталата на уровне допустимого количества миграции и его содержание меньше содержания других легколетучих соединений, присутствующих в пробе. Изобретение обеспечивает идентификацию и полуколичественное определение диоктилфталата, выделяющегося из ПВХ-пластизоля. 1 пр.

 

Изобретение относится к аналитической химии газовых и воздушных сред и может быть использовано для определения диоктилфталата в равновесной газовой фазе над изделиями из ПФХ-пластизоля.

Технической задачей изобретения является разработка способа идентификации и полуколичественного определения диоктилфталата в смеси соединений, выделяющихся из ПВХ-пластизоля, позволяющего без предварительного концентрирования и другой многостадийной пробоподготовки определять диоктилфталат с помощью пьезокварцевых резонаторов с тонкопленочными покрытиями, характеризующимися высокой чувствительностью, точностью, экспрессностью и селективностью определения, точностью измерения и принятия решения.

Для решения технической задачи изобретения предложен способ идентификации и полуколичественного определения диоктилфталата в смеси соединений, выделяющихся из ПВХ-пластизоля, характеризующийся тем, что в качестве устройства для определения диоктилфталата используют частотомер с массивом из 2-х пьезокварцевых резонаторов с собственной частотой колебаний 10 МГц, электроды которых модифицируют нанесением на них из индивидуальных растворов многослойных углеродных нанотрубок (МУНТ) массой пленки 3-5 мкг, полифенилового эфира (ПФЭ) - массой 15-20 мкг, модифицированные пьезокварцевые резонаторы помещают в закрытую ячейку детектирования и выдерживают в нем в течение 5 мин для установления стабильного нулевого сигнала, затем в пробоотборник помещают образец мягкого изделия из ПВХ-пластизолямассой 1,00 гплотно закрывают пробкой, выдерживают при температуре 20±1°С в течение 15 мин для насыщения газовой фазы парами диоктилфталата, отбирают шприцем 5 см3 равновесной газовой фазы и инжектируют ее в закрытую ячейку детектирования, фиксируют в течение 120 с изменение частоты колебаний пьезосенсоров, при этом в программе автоматически фиксируются отклики сенсоров каждую секунду, регенерируют систему в течение 2 мин осушенным воздухом, затем пробу в пробоотборнике нагревают в сушильном шкафу до 30±1°С в течение 10 мин, отбирают 5 см3 равновесной газовой фазы и инжектируют вторично в закрытую ячейку детектирования, фиксируют в течение 120 с изменение частоты колебаний пьезосенсоров, при двух температурных режимах 20 и 30°С по полученным в программе сигналам сенсоров автоматически рассчитываются площади под кривой для каждого сенсора: S(МУНТ), S(ПФЭ),Гц·с, и рассчитывают соотношение площадей при 20°С и 30°С соответственно - параметр и по этим параметрам делают выводы о наличии диоктилфталата в образцах: если А30/20>20, то диоктилфталат присутствует в образцах изделий из ПВХ-пластизоля с концентрацией больше допустимого количества миграции (ДКМ, мг/дм3), если А30/20≤ 1, то содержание диоктилфталата на уровне допустимого количества миграции и его содержание меньше содержания других легколетучих соединений, присутствующих в пробе.

Технический результат изобретения заключается в возможности определения диоктилфталата в смесях, в экспрессности измерений, высокой чувствительности, точности, селективности определения, точности измерения и принятия решения.

Способ идентификации и полуколичественного определения диоктилфталата в смеси соединений, выделяющихся из ПВХ-пластизоля, заключается в следующем.

На электроды 2-х пьезокварцевых резонаторов, используемых в качестве устройств, наносят из индивидуальных растворов многослойные углеродные нанотрубки (МУНТ) массой пленки 3-5 мкг и полифениловый эфир (ПФЭ) - массой 15-20 мкг. Модифицированные пьезокварцевые резонаторы с пленкой помещают в закрытую ячейку детектирования частотомера и фиксируют исходный («нулевой») отклик сенсоров - частоту колебания. Затем в пробоотборник помещают образец мягкого изделия из ПВХ-пластизоля массой 1,00 г плотно закрывают пробкой, выдерживают при температуре 20±1°С в течение 15 мин для насыщения газовой фазы парами диоктилфталата. Отбирают шприцем 5 см3 равновесной газовой фазы и инжектируют ее в закрытую ячейку детектирования, фиксируют в течение 120 с изменение частоты колебаний пьезосенсоров. В программе автоматически фиксируются отклики сенсоров каждую секунду, регенерируют систему в течение 2 мин осушенным воздухом, затем пробу в пробоотборнике нагревают в сушильном шкафу до 30±1°С в течение 10 мин, отбирают 5 см3 равновесной газовой фазы и инжектируют вторично в закрытую ячейку детектирования, фиксируют в течение 120 с изменение частоты колебаний пьезосенсоров. При двух температурных режимах 20 и 30°С по полученным в программе сигналам сенсоров автоматически рассчитываются площади под кривой для каждого сенсора: S(МУНТ), S(ПФЭ), Гц·с, и рассчитывают соотношение площадей при 20°С и 30°С соответственно - параметр и по этим параметрам делают выводы о наличии диоктилфталата в образцах: если А30/20>20, то диоктилфталат присутствует в образцах изделий из ПВХ-пластизоля с концентрацией больше допустимого количества миграции (ДКМ, мг/дм3), если А30/20≤1, то содержание диоктилфталата на уровне допустимого количества миграции и его содержание меньше содержания других легколетучих соединений, присутствующих в пробе. Все измерения проводят в закрытой ячейке детектирования многоканального анализатора газов с инжекторным вводом пробы в статических условиях.

Способ поясняется следующим примером.

Пример.

На обезжиренные этиловым спиртом электроды пьезокварцевых резонаторов с собственной частотой колебаний 10 МГц наносят микрошприцем из индивидуальных растворов многослойные углеродные нанотрубки, полифениловый эфир и удаляют свободный растворитель в сушильном шкафу в течение 20 мин при температуре 45°С, располагая резонаторы строго горизонтально в держателе. Масса пленок после сушки и охлаждения для сорбента пчелиный клей составляет около 15 мкг, для многослойных углеродных нанотрубок - 3 мкг. Подготовленные пьезокварцевые резонаторы с пленкой помещают в закрытую ячейку детектирования частотомера и фиксируют исходный («нулевой») отклик сенсоров - частоту колебания. Дрейф «нулевой» линии после сушки составляет ±2 Гц/мин. При большем отклонении резонатор с пленкой повторно сушат. Для исследования берут 3 образца мелко измельченных изделий из ПВХ-пластизоля массой 1,00 г. Вкалывают в детектор шприцем равновесную газовую фазу над образцами, содержащую диоктилфталат и другие соединения, которые могут выделяться из изделий из ПВХ-пластизоля. Измерения проводят при 2-х температурных режимах: 20 и 30°С. Фиксируют с помощью компьютера с программой изменения отклика сенсора (частота колебаний) в течение 120 с. При двух температурных режимах 20 и 30°С по полученным в программе сигналам сенсоров автоматически рассчитываются площади под кривой для каждого сенсора: S(МУНТ), S(ПФЭ), Гц·с и находят соотношение площадей при 20°С и 30°С соответственно - параметр и по этим параметрам делают выводы о наличии диоктилфталата в образцах. Для первого образца А30/20 = 22,6, следовательно, концентрация диоктилфталата в равновесной газовой фазе над данным образцом больше допустимого количества миграции. Для второго образца А30/20 = 0,4 - содержание диоктилфталата на уровне допустимого количества миграции и меньше содержания других легколетучих соединений. Для третьего образца А30/20 = 4, следовательно, концентрация диоктилфталата и других соединений равны. Первый и третий образцы изделий из ПВХ-пластизоля не соответствуют рекомендуемой концентрации диоктилфталата в данных изделиях.

При реализации способа идентификации и полуколичественного определения диоктилфталата в смеси соединений, выделяющихся из ПВХ-пластизоля достигается экспрессность измерений, высокая чувствительность, точность, селективность анализа, объективность измерения и принятия решения.

Способ осуществим.

Как видно из примера, предложенный способ идентификации и полуколичественного определения диоктилфталата в смеси соединений, выделяющихся из ПВХ-пластизоля с использованием пьезосенсоров позволяет определить содержание диоктилфталата в изделиях из ПВХ-пластизоля при применении в качестве устройств пьезокварцевых резонаторов, модифицированных многослойными углеродными нанотрубками (МУНТ) массой пленки 3-5 мкг, полифениловым эфиром (ПФЭ) - массой 15-20 мкг, содержание диоктилфталата находят по значениям отношения параметров

Способ экспрессный, характеризующийся точностью определения, надежностью, высокой чувствительностью, минимальным количеством стадий и затрат на реактивы, легко осуществим, высокоселективный, применим для оценки безопасности изделий из ПВХ-пластизоля.

Разработанный способ идентификации и полуколичественного определения диоктилфталата в смеси соединений, выделяющихся из ПВХ-пластизоля:

- минимальным количеством стадий;

- минимальными затратами на реактивы;

- высокой чувствительностью;

- экспрессностью;

- селективностью анализа;

- точностью (погрешность анализа 5%);

- объективностью измерения и принятия решения.

Способ идентификации и полуколичественного определения диоктилфталата в смеси соединений, выделяющихся из ПВХ-пластизоля, характеризующийся тем, что в качестве устройства для определения диоктилфталата используют частотомер с массивом из 2-х пьезокварцевых резонаторов с собственной частотой колебаний 10 МГц, электроды которых модифицируют нанесением на них из индивидуальных растворов многослойных углеродных нанотрубок (МУНТ) массой пленки 3-5 мкг, полифенилового эфира (ПФЭ) - массой 15-20 мкг, модифицированные пьезокварцевые резонаторы помещают в закрытую ячейку детектирования и выдерживают в нем в течение 5 мин для установления стабильного нулевого сигнала, затем в пробоотборник помещают образец мягкого изделия из ПВХ-пластизоля массой 1,00 г, плотно закрывают пробкой, выдерживают при температуре 20±1°С в течение 15 мин для насыщения газовой фазы парами диоктилфталата, отбирают шприцем 5 см3 равновесной газовой фазы и инжектируют ее в закрытую ячейку детектирования, фиксируют в течение 120 с изменение частоты колебаний пьезосенсоров, при этом в программе автоматически фиксируются отклики сенсоров каждую секунду, регенерируют систему в течение 2 мин осушенным воздухом, затем пробу в пробоотборнике нагревают в сушильном шкафу до 30±1°С в течение 10 мин, отбирают 5 см3 равновесной газовой фазы и инжектируют вторично в закрытую ячейку детектирования, фиксируют в течение 120 с изменение частоты колебаний пьезосенсоров, при двух температурных режимах 20 и 30°С по полученным в программе сигналам сенсоров автоматически рассчитываются площади под кривой для каждого сенсора: S(МУНТ), S(ПФЭ), Гц·с, и рассчитывают соотношение площадей при 20°С и 30°С соответственно - параметр и по этим параметрам делают выводы о наличии диоктилфталата в образцах: если А30/20>20, то диоктилфталат присутствует в образцах изделий из ПВХ-пластизоля с концентрацией больше допустимого количества миграции (ДКМ, мг/дм3), если А30/20≤ 1, то содержание диоктилфталата на уровне допустимого количества миграции и его содержание меньше содержания других легколетучих соединений, присутствующих в пробе.



 

Похожие патенты:

Изобретение относится к измерению качества различных видовых комплексов трав и травянистых растений на пробах, преимущественно на пойменных лугах, и может быть использовано в экологическом мониторинге территорий с травяным покровом.

Изобретение относится к экотоксикологии, а именно к исследованию особенностей развития оксидативного стресса у двухстворчатых моллюсков, и может быть использовано для выявления влияния техногенного загрязнения среды на состояние популяций речных и морских моллюсков.

Изобретение относится к области экологии, а именно к оценке качества атмосферного воздуха населенных мест по состоянию эпифитной лихенофлоры. Для этого вычисляют индекс загрязнения воздуха (ИЗА) по жизненности лишайников в пределах 89%, сравнивая его с комплексным показателем, определяемым на учетной площадке, и коэффициента толерантности лихенофлоры по отношению к индексу загрязнения воздуха, который исчисляется по формуле ИЗА=(0,89-G/89)/0,298, где 0,89 - максимальная относительная жизненность лихенофлоры в чистом воздухе; G% - комплексный показатель жизненности лихенофлоры на площадке лихеноиндикации; 89% - теоретически возможное максимальное значение жизненности лихенофлоры в чистом воздухе, выраженное в процентах; 0,298 - коэффициент толерантности лихенофлоры к ИЗА.

Изобретение относится к экологии, а именно способу одновременного определения пестицидов разных химических классов в биологическом материале. Для этого печень рыбы гомогенизируют с безводным сульфатом натрия и гидроцитратом натрия, экстрагируют ацетонитрилом, встряхивают и отстаивают.

Изобретение относится к аналитической химии и касается способа определения селена в воде. Сущность способа заключается в том, что к анализируемому раствору добавляют 0,4 мл раствора 3%-ного щелочного борогидрида натрия восстановителя, закрывают пробкой, встряхивают и оставляют на 5 мин для восстановления селена до селеноводорода.

Изобретение относится к ветеринарной эпизоотологии, в частности к способу прогнозирования фасциолеза жвачных животных. Способ включает обследование пастбища.
Изобретение относится к области неразрушающего контроля материалов и изделий по условиям прочности и предназначено для контроля процесса трещинообразования хрупких тензоиндикаторов при изменении уровня напряженности в исследуемых зонах конструкции.

Изобретение относится к сельскому хозяйству и может быть использовано для раннего прогнозирования качества корнеобразования срезанных зеленых черенков плодово-ягодных культур.

Изобретение относится к области биохимии и касается способа получения аналитической тест-системы (MRM-теста) для мультиплексной идентификации и количественного измерения содержания интересующих белков в биологическом образце по содержанию соответствующих им протеотипических маркерных пептидов, включающего выявление уникальных для белка протеотипических маркерных пептидных последовательностей; отбор по меньшей мере двух маркерных протеотипических пептидных последовательностей белка; предсказание фрагментов пептидов; предсказание MRM-теста в виде перечня маркерных пептидов, их фрагментов и наилучших параметров детекции; синтез маркерных пептидов; определение профиля переходов синтетических маркерных пептидов; оптимизацию MRM-теста в соответствии с полученными профилями; очистку пептидов; подготовку биологического образца; идентификацию белка в биологическом образце с заколом синтетических пептидов; определение значений времени удержания маркерных пептидов с внесением установленных значений в MRM-тесты; проведение мультиплексных калибровочных измерений; количественное измерение содержания маркерных пептидов в биологическом образце; и суждение о содержании интересующих белков в биологическом образце.

Изобретение относится к аналитической химии, а именно к способу определения микропримесей мышьяка и сурьмы в лекарственном растительном сырье. Способ заключается в переводе соединений мышьяка и сурьмы в соответствующие гидриды путем восстановления смесью, содержащей 40%-ный раствор иодида калия, 10%-ный раствор аскорбиновой кислоты, 4 M раствор соляной кислоты и цинк металлический.

Изобретение относится к способу получения нанокапсул кинетина. Указанный способ характеризуется тем, что к каррагинану в петролейном эфире добавляют сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, смесь перемешивают, добавляют порошок кинетина, после образования самостоятельной твердой фазы медленно по каплям добавляют бензол, полученную суспензию нанокапсул отфильтровывают, промывают бензолом и сушат, при этом массовое соотношение ядро/оболочка в нанокапсулах составляет 1:3, или 1:1, или 5:1.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул адаптогенов. Способ характеризуется тем, что кверцетин или дигидрокверцетин добавляют в суспензию ксантановой камеди в гексане в присутствии 0,01 г поверхностно-активного вещества E472c, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1 либо 1:3, затем при перемешивании 1000 об/мин приливают ацетонитрил, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул адаптогенов. Способ характеризуется тем, что экстракты элеутерококка, женьшеня, лимонника китайского, аралии или родиолы розовой добавляют в суспензию агар-агара в изопропаноле в присутствии Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее приливают 1,2-дихлорэтан в качестве осадителя, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1, 1:3 или 5:1, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Настоящее изобретение относится к концентрату антифрикционной присадки, содержащему порошок наноалмазов, полученный детонационным синтезом, трансформаторное масло, дополнительно содержит керосин авиационный марки Т-1 и олеиновую кислоту при следующем соотношении компонентов, масс.

Настоящее изобретение относится к антифрикционной присадке, содержащей порошок наноалмазов, полученный детонационным синтезом, трансформаторное масло, дополнительно содержит керосин авиационный марки Т-1 и олеиновую кислоту при следующем соотношении компонентов, масс.

Изобретение может быть использовано при изготовлении элементов памяти для вычислительных машин, микропроцессоров, электронных паспортов и карточек. Измельчают природный очищенный графит, в полученный порошок интеркалируют растворитель, не приводящий к химическому окислению графита, но способствующий расслоению графита, например диметилформамид или N-метилпирролидон.

Изобретение относится к датчикам давления разреженного газа, а также к способам изготовления таких датчиков. Способ изготовления датчиков давления включает образование гетероструктуры, формирование в ней тонкопленочного полупроводникового резистора, имеющего вид сетчатой наноструктуры (SiO2)50%-c(SnO2)50%(In2O3)c (где c - массовая доля In2O3, 1%≤с≤15%), закрепление указанной гетероструктуры в корпусе датчика, и соединение контактных площадок гетероструктуры с выводами корпуса при помощи контактных проводников.

Изобретение относится к способу получения полимерного композита с наномодифицированным наполнителем. Способ получения полимерного композита с наномодифицированным наполнителем включает растворение полимера в первом растворителе при температуре 90°С, обработку ультразвуком находящихся во втором растворителе углеродных нанотрубок (УНТ), смешивание растворенного полимера с раствором УНТ, обработку ультразвуком полученного раствора и термообработку, способ отличается тем, что раствор УНТ содержит конические углеродные нанотрубки, предварительно функционализированные путем термохимической обработки в смеси азотной и серной кислот гидроксильными и карбоксильными группами.

Изобретение может быть использовано в производстве эффективных электродных материалов в химических источниках тока, сорбентов. Для получения композита диоксид титана/углерод TiO2/C проводят термическое разложение титансодержащего прекурсора в инертной атмосфере.

Изобретение относится к способам получения высокодисперсных коллоидных частиц или наночастиц металлического серебра, которые могут быть использованы в биотехнологии, медицине и ветеринарии в составе препаратов с антимикробным действием.

Изобретение относится к способу получения кристаллических нанопорошков металлов с размером кристаллитов менее ≤10 нм и может быть использовано в химической промышленности, для производства полупродуктов для мелкозернистых керамических материалов. Синтез проводят в водно-органической среде, используя в качестве источников металлов нитраты, хлориды или ацетаты. Для формирования и стабилизации золя используют ацетилацетон-спиртовые растворы N,N-диметилоктиламина, гексаметилентетрамина или моноэтаноламина. В качестве комплексообразователя используют ацетилацетон. Полученный золь через струйную форсунку диспергируют в жидкий азот, где при скорости охлаждения >30° происходит криогрануляция. Полученные гранулы подвергают вакуум-сублимационной сушке с образованием криоаэрогеля, который затем прокаливают при 500°C на воздухе в течение 3 ч. Предлагаемый способ обеспечивает технологичный и экологически приемлемый способ получения нанокристаллических оксидов металлов. 3 з.п. ф-лы, 8 ил., 1 табл., 6 пр.
Наверх