Каталитическая система для гетерогенных реакций


 


Владельцы патента RU 2607950:

Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (RU)

Изобретение относится к каталитической системе для гетерогенных реакций, представляющей собой геометрически структурированную систему, включающую микроволокна высококремнеземистого носителя диаметром 5-20 мкм, который характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом ν=3620-3650 см-1 и полушириной 65-75 см-1. Носитель имеет гелеобразный поверхностный слой толщиной от 1 до 500 нм, который характеризуется вязкостью 3000-30000 сП и удельной поверхностью, измеренной методом БЭТ по тепловой десорбции аргона, SAr=0,5-350 м2/г и, по крайней мере, один активный компонент. Технический результат - высокая активность, селективность и высокая стойкость к дезактивации в агрессивных средах. 3 з.п. ф-лы, 6 пр.

 

Изобретение относится к области химической и нефтехимической промышленности, к новым каталитическим системам, которые могут использоваться, в частности, в реакциях глубокого окисления органических соединений, парциального окисления низших парафинов (C14) до спиртов и альдегидов (оксигенатов), в процессах очистки олефинов и диолефинов от ацетиленовых углеводородов путем селективного каталитического гидрирования. Изобретение может найти применение в процессах получения ценных химических продуктов и полупродуктов, а также при переработке разнообразных газообразных и жидких отходов.

Известна каталитическая система для гетерогенных реакций, представляющая собой геометрически структурированную систему, включающую микроволокна высококремнеземистого волокнистого носителя диаметром 5-20 мкм, который характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом v=3620-3650 см-1 и полушириной 65-75 см-1, имеющий удельную поверхность, измеренную методом БЭТ по тепловой десорбции аргона, SAr=0,5-30 м2/г, величину поверхности, измеренную методом щелочного титрирования, SNa=5-150 м2/г при соотношении SNa/SAr=5-50, и по крайней мере один активный элемент, последний выполнен с возможностью формирования заряженных либо металлических либо биметаллических кластеров, характеризующихся в УФ-Вид спектре диффузного отражения специфическими полосами в области 34000-42000 см-1 и отношением интегральной интенсивности полосы, относящейся к заряженным либо металлическим, либо биметаллическим кластерам, к интегральной интенсивности полосы, относящейся соответственно либо к металлическим, либо к биметаллическим частицам, не менее 1.0. При этом металлические кластеры сформированы из атомов либо платины, либо палладия, либо родия, либо иридия, либо серебра, либо никеля, либо меди, либо олова, либо золота, а биметаллические кластеры сформированы из соединения атомов либо палладия, либо платины с атомами либо серебра, либо кобальта, либо никеля, либо меди, либо олова, либо золота (Патент RU №2292950, B01J 21/08, В01J 23/38, B01J 23/70, B01J 23/14, 10.02.2007).

Недостатками известной каталитической системы являются более низкие активность и селективность превращений в ряде реакций, например в глубоком окислении органических и хлорорганических соединений, селективном гидрировании ацетиленовых углеводородов, парциального окисления углеводородов. Кроме того высококремнистый волокнистый носитель не выдерживал длительного воздействия агрессивных реакционных сред, что приводило к дезактивации катализаторов на их основе.

Изобретение решает задачу разработки эффективной каталитической системы для гетерогенных реакций, процессов окисления углеводородов, хлорорганических соединений, парциального окисления легких парафинов, селективного гидрирования ацетиленовых углеводородов.

Задача решается тем, что в каталитической системе для гетерогенных реакций, представляющей собой геометрически структурированную систему, включающую микроволокна высококремнеземистого носителя диаметром 5-20 мкм, который характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом ν=3620-3650 см-1 и полушириной 65-75 см-1 и имеет гелеобразный поверхностный слой толщиной от 1 до 500 нм, который характеризуется вязкостью 3000-30000 сП и удельной поверхностью, измеренной методом БЭТ по тепловой десорбции аргона, SAr=0,5-150 м2/г и содержит, по крайней мере, один активный компонент. При этом активный компонент выполнен с возможностью формирования заряженных, либо металлических, либо биметаллических кластеров. При этом металлические кластеры сформированы из атомов либо железа, либо кобальта, либо никеля, либо рутения, либо родия, либо иридия, либо ванадия, либо хрома, либо марганеца, либо цинка, либо меди, либо олова, либо серебра, либо золота, либо палладия, либо платины, и/или их оксидов, и/или их солей, а биметаллические кластеры сформированы из соединения атомов либо палладия, либо платины с атомами либо серебра, либо кобальта, либо никеля, либо меди, либо цинка, либо олова, либо золота.

Технический результат заявляемого изобретения заключается в более высокой активности и повышенной селективности каталитической системы в процессах парциального окисления низших C14 парафинов до спиртов, альдегидов и кислот (оксигенатов) и в процессах очистки олефинов и диолефинов от ацетиленовых углеводородов путем их селективного каталитического гидрирования, глубокого окисления органических и хлорорганических соединений, а также повышенной устойчивости к дезактивации в агрессивных средах.

Это происходит благодаря использованию каталитической системы состоящей из высококремнеземистого волокнистого носителя с заявленным набором физико-химических и геометрических свойств и включающей либо железо, либо кобальт, либо никель, либо рутений, либо родий, либо иридий, либо ванадий, либо хром, либо марганец, либо цинк, либо медь, либо олово, либо серебро, либо золото, либо палладий, либо платину, либо их оксиды, либо их соли, что приводит к формированию активного элемента в виде металлических и/или оксидных и/или металл-оксидных кластеров размером 0,5-3 нм. Кроме того, введением дополнительных элементов, таких как Со, Ag, Ni, Cu, Zn, Sn, Au и др. формируются биметаллические кластеры.

Высококремнеземистый носитель данной предлагаемой каталитической системы, включающий 75.0-96.6 мас. % диоксида кремния, и, по крайней мере, один элемент, выбранный из группы, включающей щелочные, щелочноземельные, редкоземельные элементы, алюминий, молибден, титан, цирконий, характеризуется набором следующих физико-химических свойств:

• - на поверхности высококремнеземистого носителя формируется гелеобразный слой толщиной от 1 до 500 нм, который характеризуется вязкостью 3000-30000 сП;

• - в инфракрасном спектре высококремнеземистого носителя с гелеобразным поверхностным слоем имеется полоса поглощения четвертичного аммонийного катиона [R1R2R3R4N]+с волновым числом 1485-1495 см-1, где: R1, R2, R3, R4 - это органические радикалы;

• - в инфракрасном спектре высококремнеземистого носителя с гелеобразным поверхностным слоем имеется полоса поглощения гидроксильных групп с волновым числом 3620-3650 см-1 и полушириной 65-75 см-1;

• - высококремнеземистого носителя с гелеобразным поверхностным слоем имеет удельную поверхность, измеренную методом БЭТ по тепловой десорбции аргона, SAr=0,5-350 м2/г.

Совокупность признаков высококремнеземистого носителя с гелеобразным поверхностным слоем обеспечивает его специфическое строение, а также возможность формирования в нем активных высокодисперсных состояний наносимого компонента. Например, наличие в инфракрасном спектре полосы поглощения ОН групп в области волновых чисел 3620-3650 см-1 и малая полуширина этой полосы свидетельствует о наличии в носителе значительного количества ОН групп, локализованных не на внешней поверхности, как для традиционных силикагелей, а в узких и достаточно однородных по геометрии полостях. Аналогичные полосы описаны в литературе для силикатных материалов, содержащих ОН группы в объеме глобул или в очень мелких порах (Айлер Р. Химия кремнезема. М.: Мир, 1982. Т. 2. С. 870; Чукин Г.Д., Апретова А.И., Сильверстова И.В. // Кинетика и катализ. 1994. Т. 35. С. 426; Симонова Л.Г., Барелко В.В., Лапина О.Б., Паукштис Е.А., Терских В.В., Зайковский В.И., Бальжинимаев Б.С. // Кинетика и катализ. 2001. Т. 42. С. 762). Кроме того, в данном изобретении заявляется низкая вязкость поверхностного гелеобразного слоя 3000-30000 сП, толщиной от 1 до 500 нм.

Наличие этих признаков обусловливает формирование большего числа мелкодисперсных высокоактивных кластеров в поверхностном гелеобразном слое, что приводит к повышенной активности в процессах глубокого окисления органических и хлорорганических соединений, парциального окисления низших парафинов (C14) до спиртов, альдегидов и кислот (оксигенатов), а также в реакциях селективного гидрирования ацетиленовых углеводородов в среде олефинов и диолефинов, к повышенной селективности в процессах очистки олефинов и диолефинов от ацетиленовых углеводородов путем их селективного каталитического гидрирования, в процессах парциального окисления низших парафинов (C14) в оксигенаты, а также к повышенной устойчивости к дезактивации в агрессивных средах.

Наличие в носителе заявляемых модифицирующих элементов изменяет состав и строение ближайшего окружения наносимых активных элементов и, соответственно, может дополнительно влиять на их свойства: размер и электронное состояние кластеров.

Микроволокна высоко кремнеземистого носителя диаметром 5-20 мкм должны быть структурированы в виде нетканого либо прессованного материала типа ваты и войлока, или в виде нитей диаметром 0.5-5.0 мм, или в виде тканей из этих нитей с плетением типа сатин, полотно, сетка с ячейкой размером 0.5-5.0 мм. Такое геометрическое строение способствует улучшению тепло- и массообмена и может давать дополнительный вклад в увеличение активности и селективности. Кроме того, это значительно снижает гидравлическое сопротивление катализатора, что важно для уменьшения времени контакта и, как следствие, роста производительности процесса.

Входящие в носитель модифицирующие элементы, выбранные из группы, включающей щелочные, щелочноземельные, редкоземельные элементы, алюминий, молибден, титан, цирконий, вводятся в волокнистый носитель либо на стадии приготовления носителя, либо непосредственно перед введением активных элементов.

Каталитическая система, заявляемая в изобретении, может быть приготовлена, например, пропиткой высококремнеземного волокнистого носителя, предварительно обработанного водным раствором четвертичного аммонийного соединения, например, основания [R1R2R3R4N]OH, где: R1, R2, R3, R4 - это органические радикалы, с концентрацией четвертичного аммонийного основания в растворе от 0.1 до 25 об. %, pH раствора от 7 до 14 и температуре 70-200°С для формирования поверхностного гелеобразного слоя с заявляемыми свойствами, водными растворами солей активных элементов при концентрациях (в пересчете на металл), варьирующихся в пределах 0,1-5,0 г/л, с последующей термообработкой каталитической системы в воздухе и/или в водороде, и/или в инертной атмосфере при температурах 100-600°С, и/или обработкой раствором восстановителя, например, гидразина, либо боргидрида натрия с концентрацией восстановителя 0,1-10%. об.

Каталитическая система, используемая в заявляемом изобретении, может быть приготовлена, например, совместной обработкой высококремнеземного волокнистого носителя водным раствором четвертичного аммонийного соединения, например, основания [R1R2R3R4N]OH, где: R1, R2, R3, R4 - это органические радикалы, с концентрацией четвертичного аммонийного основания в растворе от 0.1 до 25 об. %, pH раствора от 7 до 14 и температуре 70-200°С с водными растворами солей активных элементов при концентрациях (в пересчете на металл), варьирующихся в пределах 0,1-5,0 г/л, с последующей термообработкой каталитической системы в воздухе и/или в водороде, и/или в инертной атмосфере при температурах 200-600°С, и/или обработкой раствором восстановителя, например гидразина, либо боргидрида натрия с концентрацией восстановителя 0,1-10 об. %.

Примеры использования каталитической системы

Пример 1

Производят селективное гидрирование этилен-ацетиленовой смеси, для чего газовую смесь, содержащую 0.5 об. % ацетилена, 0.75 об. % водорода, 60 об. % этилена, остальное аргон, пропускают через каталитическую систему при 55°С, давлении 20 атм и объемной скорости 3500 ч-1.

Носитель каталитической системы представляет собой микроволокна высококремнеземистого носителя, включающего, мас. %: 95.8 SiO2, а также 1.6 Аl, 0.08 Fe, 0.07 Na, 0.05 Са, 0.04 K, характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом v=3630 см-1 и полушириной 70 см-1. Носитель имеет удельную поверхность, измеренную методом БЭТ по тепловой десорбции аргона, S=2,5 м2/г. Каталитическая система содержит 0.02 мас. % Pd.

Носитель имеет структуру ткани сетчатого плетения, в которой волокна с диаметром 5-7 мкм, имеющие гелеобразный слой толщиной 100 нм, спрядены в нити диаметром 1.0 мм, из которых соткана сетка с квадратной ячейкой 3.0×3.0 мм и размером отверстий 1.5×1.5 мм.

Образец по примеру 1 показал высокую конверсию ацетилена 87% и селективность 82%.

Пример 2

Производят селективное гидрирование этилен-ацетиленовой смеси, для чего газовую смесь, содержащую 0.5 об. % ацетилена, 0.75 об. % водорода, 60 об. % этилена, остальное аргон, пропускают через каталитическую систему при 55°С, давлении 20 атм и объемной скорости 3500 ч-1.

Носитель каталитической системы представляет собой микроволокна высококремнеземистого носителя, включающего мас. %: 83.4 SiO2, а также 0.01 Na, 0.05 K, 0.08 Са, 0.1 Fe, 0.32 Аl, и редкоземельные элементы: 1.84 Ce, 4.29 Dy, 0.89 Er, 2.12 Gd, 0.57 Ho, 0.67 La, 0.43 Nd, 0.19 Pr, 0.19 Sm, 0.83 Tb, 0.69 Y, 0.40 Yb, характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом v=3630 см-1 и полушириной 70 см-1. Носитель имеет удельную поверхность, измеренную методом БЭТ по тепловой десорбции аргона, S=2,1 м2/г. Каталитическая система содержит 0.02 мас. % Pd.

Носитель имеет структуру ткани сетчатого плетения, в которой волокна с диаметром 5-7 мкм, имеющие гелеобразный слой толщиной 150 нм, спрядены в нити диаметром 1.0 мм, из которых соткана сетка с квадратной ячейкой 3.0×3.0 мм и размером отверстий 1.5×1.5 мм.

Образец по примеру 2 показал высокую конверсию ацетилена 76% и селективность 75%.

Пример 3

Производят глубокое окисление пропана, пропуская смесь, содержащую 0.2 об. % пропана в воздухе, через каталитическую систему при температуре 300°С и объемной скорости 10000 ч-1.

Носитель каталитической системы представляет собой микроволокна высококремнеземистого носителя, включающего, мас. %: 95.8 SiO2, а также 1.6 Аl, 0.08 Fe, 0.07 Na, 0.05 Ca, 0.04 K, характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом v=3630 см-1 и полушириной 70 см-1. Носитель имеет удельную поверхность, измеренную методом БЭТ по тепловой десорбции аргона, S=2,5 м2/г. Каталитическая система содержит 0.01 мас. % Pt.

Носитель имеет структуру ткани сетчатого плетения, в которой волокна с диаметром 5-7 мкм, имеющие гелеобразный слой толщиной 100 нм, спрядены в нити диаметром 1.0 мм, из которых соткана сетка с квадратной ячейкой 3.0×3.0 мм и размером отверстий 1.5×1.5 мм.

Образец по примеру 3 показал высокую конверсию пропана 90.1%, при этом не обнаружено никаких других продуктов реакции кроме диокисда углерода и воды. В аналогичных условиях способ с использованием известного платинового катализатора обеспечивает конверсию пропана не выше 30-40%.

Пример 4

Производят глубокое окисление пропана, пропуская смесь, содержащую 0.2 об. % пропана в воздухе, через каталитическую систему при температуре 300°С и объемной скорости 10000 ч-1.

Носитель каталитической системы представляет собой микроволокна высококремнеземистого носителя, включающего, мас. %: 81.9 SiO2, а также 11.8 Zr, 0.56 Al, 0.05 Na, 0.06 K, 0.07 Ca, 0.06 Fe, характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом v=3630 см-1 и полушириной 70 см-1. Носитель имеет удельную поверхность, измеренную методом БЭТ по тепловой десорбции аргона, S=1,8 м2/г. Каталитическая система содержит 0.01 мас. % Pt.

Носитель имеет структуру ткани сетчатого плетения, в которой волокна с диаметром 5-7 мкм, имеющие гелеобразный слой толщиной 100 нм, спрядены в нити диаметром 1.0 мм, из которых соткана сетка с квадратной ячейкой 3.0×3.0 мм и размером отверстий 1.5×1.5 мм.

Образец по примеру 4 показал конверсию пропана 76.5% и при этом не обнаружено никаких продуктов реакции, кроме диоксида углерода и воды.

Пример 5

Производят глубокое окисление пропана, пропуская смесь, содержащую 0.2 об. % пропана в воздухе, через каталитическую систему при температуре 300°С и объемной скорости 10000 ч-1.

Носитель каталитической системы представляет собой микроволокна высококремнеземистого носителя, включающего, мас. %: 81.9 SiO2, а также 11.8 Zr, 0.56 Al, 0.05 Na, 0.06 K, 0.07 Ca, 0.06 Fe, характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом v=3630 см-1 и полушириной 70 см-1. Носитель имеет удельную поверхность, измеренную методом БЭТ по тепловой десорбции аргона, S=54 м2/г. Каталитическая система содержит 0.12 мас. % Pt.

Носитель имеет структуру ткани сетчатого плетения, в которой волокна с диаметром 5-7 мкм, имеющие гелеобразный слой толщиной 300 нм, спрядены в нити диаметром 1.0 мм, из которых соткана сетка с квадратной ячейкой 3.0×3.0 мм и размером отверстий 1.5×1.5 мм.

Образец по примеру 5 показал высокую конверсию пропана 38.2%.

Пример 6

Производят утилизацию дихлорэтана, для чего пары дихлорэтана смешивают с воздухом (объемная концентрация дихлорэтана составляет 0.1-0.3 об. %) и пропускают через слой катализатора.

Носитель каталитической системы представляет собой микроволокна высококремнеземистого носителя, включающего, мас. %: 81.9 SiO2, а также 11.8 Zr, 0.56 Al, 0.05 Na, 0.06 K, 0.07 Ca, 0.06 Fe, характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом v=3630 см-1 и полушириной 70 см-1. Носитель имеет удельную поверхность, измеренную методом БЭТ по тепловой десорбции аргона, S=2,0 м2/г. Каталитическая система содержит 0.02 мас. % Pt.

Носитель имеет структуру ткани сетчатого плетения, в которой волокна с диаметром 5-7 мкм, имеющие гелеобразный слой толщиной 100 нм, спрядены в нити диаметром 1.0 мм, из которых соткана сетка с квадратной ячейкой 3.0×3.0 мм и размером отверстий 1.5×1.5 мм.

В температурном диапазоне 400-500°С и объемной скорости подачи реакционной смеси 20000-25000 ч-1 достигается полная конверсия дихлорэтана в хлористый водород, пары воды и углекислый газ. Прочие продукты окисления (продукты неполного окисления, элементарный хлор, CO, фосген, диоксины) не обнаруживаются при пороге чувствительности анализа не менее 1 ppm, что свидетельствует о высокой активности и селективности предлагаемой каталитической системы. Проведение эксперимента в указанных условиях в течение 100 часов показывает отсутствие снижения активности и селективности каталитической системы, что свидетельствует о высокой устойчивости предлагаемого катализатора к таким агрессивным газам как влажный хлористый водород.

В аналогичных условиях способ с использованием известного платинового катализатора обеспечивает конверсию дихлорэтана не выше 60%.

Использование других известных катализаторов приводит к образованию нежелательных побочных продуктов (хлорвинил, CO), кроме того, они подвергаются сильной дезактивации в указанных условиях.

1. Каталитическая система для гетерогенных реакций, представляющая собой геометрически структурированную систему, включающую микроволокна высококремнеземистого носителя диаметром 5-20 мкм, который характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом ν=3620-3650 см-1 и полушириной 65-75 см-1, отличающаяся тем, что носитель имеет гелеобразный поверхностный слой толщиной от 1 до 500 нм, который характеризуется вязкостью 3000-30000 сП и удельной поверхностью, измеренной методом БЭТ по тепловой десорбции аргона, SAr=0,5-350 м2/г и, по крайней мере, один активный компонент.

2. Каталитическая система по п. 1, отличающаяся тем, что активный компонент выполнен с возможностью формирования заряженных, либо металлических, либо биметаллических кластеров, при этом металлические кластеры сформированы из атомов либо железа, либо кобальта, либо никеля, либо рутения, либо родия, либо иридия, либо ванадия, либо хрома, либо марганеца, либо цинка, либо меди, либо олова, либо серебра, либо золота, либо палладия, либо платины, и/или их оксидов, и/или их солей, а биметаллические кластеры сформированы из соединения атомов либо палладия, либо платины с атомами либо серебра, либо кобальта, либо никеля, либо меди, либо цинка, либо олова, либо золота.

3. Каталитическая система по п. 1, отличающаяся тем, что микроволокна высококремнеземистого носителя структурированы в виде нетканого либо прессованного материала типа ваты и войлока, или в виде нитей диаметром 0,5-5,0 мм, или в виде тканей из нитей с плетением типа сатин, полотно, ажур с диаметром ячеек 0,5-5,0 мм.

4. Каталитическая система по п. 1, отличающаяся тем, что исходный высококремнеземистый носитель содержит 75.0-96.6 мас.% SiO2 и, по крайней мере, один элемент, выбранный из группы, включающей металлы: железо, алюминий, молибден, титан, цирконий, хром, марганец, щелочные, щелочноземельные и редкоземельные элементы.



 

Похожие патенты:

В данной заявке описана каталитическая дегидратация молочной кислоты в акриловую кислоту, отличающаяся высокой конверсией молочной кислоты, высокой селективностью получения акриловой кислоты, высоким выходом акриловой кислоты и соответственно низкой селективностью получения и мольными выходами нежелательных побочных продуктов.

Представлены катализаторы для дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси с высоким выходом и селективностью, коротким временем пребывания и без значительной конверсии в нежелательные побочные продукты, такие как, например, ацетальдегид, пропионовая кислота и уксусная кислота.

Изобретение относится к способу получения композитов, содержащих оксид алюминия и смешанные оксиды церия и циркония (и необязательно редкоземельного элемента), включающему следующие стадии: (a) приготовление суспензии, содержащей бемит в качестве предшественника оксида алюминия, и установление значения рН в диапазоне от 8 до 11,5; (b) приготовление водного раствора солей металлов, содержащего соли металлов церия и циркония; (c) объединение суспензии из стадии (а) с раствором солей металлов из стадии (b) при температурах от 5°C до 95°C или при воздействии на полученную взвесь такими температурами; (d) извлечение твердого вещества из стадии (с); и (e) кальцинирование твердого вещества из стадии (d), причем i) бемиты, полученные в суспензии на стадии (а), находятся в водной суспензии и модифицированы органическими соединениями, которые содержат по меньшей мере одну карбоксигруппу (-СОО или -СООН) и одну или более дополнительных групп, выбранных из гидрокси- (-ОН), оксо- (О), карбокси (-СОО или -СООН) и/или амино- (-NH или NH2) групп; или ii) суспензию из стадии (с) в водной среде гидротермически состаривают при температуре, равной по меньшей мере 90°C, и в течение по меньшей мере 1 ч, или iii) используют оба действия согласно i) и ii).

Представлены катализаторы для дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси с высоким выходом и селективностью, коротким временем пребывания, и без значительной конверсии в нежелательные побочные продукты, такие как, например, ацетальдегид, пропионовая кислота и уксусная кислота.

Изобретение относится к способам получения акриловой кислоты, производных акриловой кислоты или их смесей, где, в частности, способ включает стадию, на которой вводят в контакт поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, с катализатором, содержащим (a) по меньшей мере один анион конденсированного фосфата, который выбирают из группы, состоящей из формул (I), (II) и (III), где n составляет по меньшей мере 2 и m составляет по меньшей мере 1; и (b) по меньшей мере два различных катиона, причем указанные катионы включают: (i) по меньшей мере, один одновалентный катион и (ii) по меньшей мере один многовалентный катион; при этом катализатор, по существу, нейтрально заряжен; и дополнительно при этом мольное соотношение фосфора и указанных по меньшей мере двух различных катионов составляет от 0,7 до 1,7, с получением таким образом акриловой кислоты, производных акриловой кислоты или их смесей в результате приведения в контакт указанного потока с указанным катализатором.

Изобретение относится к пористому катализатору для получения водорода путем парового реформинга. Предлагаемый пористый катализатор содержит алюминий и магний, а также дополнительно содержит бор и никель.

Изобретение относится к полученной в плазме каталитической наночастице. Данная наночастица имеет границу раздела фаз для закрепления каталитического наноактивного материала на наноподложке, причем указанная граница раздела фаз содержит соединение, предназначенное для ограничения перемещения каталитического наноактивного материала на поверхности наноподложки.

Изобретение относится к способу получения серебряного катализатора на пористом носителе - пемзе. Данный способ включает пропитку носителя водным раствором нитрата серебра и восстановление серебра.

Изобретение относится к способу получения носителя на основе активного оксида алюминия для катализаторов гидроочистки. Данный способ включает осаждение гидроксида алюминия из раствора алюмината натрия азотной кислотой, его стабилизацию, обработку кислотой, формовку, сушку и прокаливание.

Изобретение относится к композиции на основе оксида циркония и по меньшей мере одного оксида редкоземельного элемента, отличного от церия, для обработки выхлопных газов от двигателей внутреннего сгорания при массовой доле оксида циркония по меньшей мере 50%.

Изобретение относится к области приготовления палладиевых катализаторов, которые могут быть использованы для гидрирования органических электролитов с ненасыщенными С-С связями в молекулах, в частности, для селективного гидрирования малеиновой кислоты в янтарную кислоту в водной среде.

Изобретение относится к предшественникам катализаторов Фишера-Тропша, содержащим носитель и кобальт на данном носителе, к катализаторам Фишера-Тропша, способу получения предшественников катализаторов и к применению карбоновой кислоты в указанном способе.

Изобретение относится к катализатору на носителе, предназначенному для селективного окисления соединений серы в остаточном газе от процесса Клауса или в потоках с эквивалентным содержанием элементарной серы или диоксида серы (SO2).

Изобретение относится к способу бескислородного сочетания метана в олефины, в котором: метан в качестве исходного газа можно напрямую конвертировать в олефины и совместно получать ароматические соединения и водород; указанные катализаторы представляют собой катализаторы, в которых элементы-металлы легированы в каркас аморфных материалов в расплавленном состоянии, изготовленных из Si, связанного с одним или более атомами из С, N и О; количество легирующих металлов в легированном каркасе катализаторов составляет более чем 0,001 массового %, но менее чем 10 массовых % от общей массы катализатора.

Изобретение относится к химической промышленности, в том числе нефтехимии и газохимии, и может быть использовано при приготовлении катализаторов для процесса получения углеводородов из СО и H2 по методу Фишера-Тропша.

Изобретение относится к электрохимическому способу получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы, в котором каталитические системы получают из расплава 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3 в импульсном потенциостатическом режиме при перенапряжении не выше 300 мВ с использованием платинового анода, притом что электроосаждение ведут на угольную подложку.
Изобретение относится к способу приготовления катализатора для дегидрирования циклогексанола в циклогексанон. Данный способ включает нанесение активного компонента - меди из водного раствора аммиачно-карбонатного комплекса на оксидный твердый носитель, термическую обработку и гранулирование.

Изобретение относится к способам формирования катализатора и к катализатору для облегчения протекания реакции и ее ускорения. Способ формирования катализатора включает диспергирование большого числа частиц подложки, которые связаны с каталитическими частицами, в дисперсии жидкости, диспергирование большого числа частиц, ингибирующих мобильность, в дисперсии жидкости, смешивание диспергированных частиц подложки с диспергированными частицами, ингибирующими мобильность, с образованием смеси диспергированных частиц подложки и диспергированных частиц, ингибирующих мобильность, и связывание большого числа частиц, ингибирующих мобильность, с большим числом частиц подложки, в котором частицы, ингибирующие мобильность, содержат нитрид бора, карбид титана или диборид титана и предотвращают перемещение каталитических частиц от одной частицы подложки к другой частице подложки.

Изобретение относится к подложке катализатора, содержащей пористый оксид алюминия. Данная подложка обладает высокой удельной поверхностью и высоким объемом пор.
Изобретение относится к способу получения модифицированного диоксидом кремния носителя катализатора. Данный способ включает: (i) нанесение алкилсиликата формулы Si(OR)4, где R представляет собой С1-С4-алкильную группу, на поверхность материала пористого носителя в количестве, обеспечивающем получение содержания диоксида кремния в модифицированном диоксидом кремния носителе катализатора, выраженного как Si, в интервале 0,25-15 мас.%, (ii) обработку модифицированного диоксидом кремния носителя водой для усиления гидролиза алкилсиликата на носителе, вызывая его сшивку, тем самым увеличивая его молекулярную массу и снижая его летучесть, (iii) сушку полученного обработанного водой носителя и (iv) прокаливание высушенного материала с образованием модифицированного диоксидом кремния носителя катализатора.

Изобретение может быть использовано в химической промышленности. Для получения сфероидальных частиц оксида алюминия готовят суспензию, содержащую воду, кислоту и по меньшей мере один порошок бемита. При этом отношение размеров кристаллитов по направлениям [020] и [120], полученных по формуле Шеррера для дифракции рентгеновских лучей, составляет от 0,7 до 1. К суспензии добавляют порофор, поверхностно-активное вещество и, возможно, воду или эмульсию, содержащую по меньшей мере один порофор, поверхностно-активное вещество и воду. Содержание порофора, выраженное как отношение массы порофора к общей массе воды, введенной в полученную суспензию, находится в интервале от 0,2 до 30%. Суспензию перемешивают и формируют сфероидальные частицы коагуляцией в капле. Полученные частицы сушат и прокаливают. Частицы имеют средний диаметр от 1,2 до 3 мм, удельную поверхность БЭТ от 150 до 300 м2/г, величину плотности заполнения с уплотнением от 0,5 до 0,6 г/мл. Изобретение позволяет получить частицы оксида алюминия, обладающие хорошей механической прочностью при низкой плотности. 4 н. и 11 з.п. ф-лы, 1 ил., 1 табл., 11 пр.
Наверх