Устройство стабильного электрораспыления при атмосферном давлении растворов веществ для источников ионов



Устройство стабильного электрораспыления при атмосферном давлении растворов веществ для источников ионов
Устройство стабильного электрораспыления при атмосферном давлении растворов веществ для источников ионов
Устройство стабильного электрораспыления при атмосферном давлении растворов веществ для источников ионов
Устройство стабильного электрораспыления при атмосферном давлении растворов веществ для источников ионов
Устройство стабильного электрораспыления при атмосферном давлении растворов веществ для источников ионов

 


Владельцы патента RU 2608362:

Общество с ограниченной ответственностью "Альфа" (ООО "Альфа") (RU)

Изобретение относится к области ион-дрейфовой и масс-спектрометрии и найдет широкое применение при решении аналитических задач в органической и биоорганической химии, иммунологии, биотехнологии, криминалистике, протеомике при исследовании лабильных веществ с использованием метода «электроспрей». Устройство стабильного электрораспыления при атмосферном давлении растворов веществ для источников ионов выполнено в виде металлического капилляра, по которому подается раствор. На торце этого капилляра образуется мениск жидкости, из которого происходит эмиссия заряженных частиц под воздействием электрического напряжения подаваемого на противоэлектрод. Снаружи металлического капилляра устанавливается коаксиальная насадка из химически стойкого, не-смачиваемого, непористого диэлектрика. Торец насадки со стороны мениска имеет форму усеченного конуса с диаметром сечения и внутренним каналом, равным двум диаметрам капилляра, на котором расположен мениск. Внутренний канал расположен по оси прямого усеченного конуса и имеет переменное сечение, длина внутреннего канала в его узкой части равна диаметру сечения конуса и составляет пять его диаметров. Внутренний канал в его широкой части имеет диаметр много больше диаметра в его узкой части. Вершина конуса имеет угол не более 90 градусов. Плоский противоэлектрод электрически присоединен к высоковольтному источнику питания, а металлический капилляр заземлен. Коаксиальный зазор между капилляром и насадкой подключен к воздушному откачивающему насосу для устранения излишков нераспыленного раствора вместе с лабораторным воздухом. Технический результат - увеличение времени режима стабильного электрораспыления при атмосферном давлении растворов веществ для источников ионов, уменьшение шумов в регистрируемых спектрах, отсутствие ложных пиков в спектрах из-за электрохимической эрозии, повышение электрической прочности узла электрораспыления на пробои. 4 ил.

 

Предлагаемое изобретение относится к области ион-дрейфовой и масс-спектрометрии и найдет широкое применение при решении аналитических задач в органической и биоорганической химии, иммунологии, биотехнологии, криминалистике, протеомике при исследовании лабильных веществ с использованием метода «электроспрей». Метод «электроспрей» является одним из современных методов «мягкой» ионизации, который позволяет переводить в газовую фазу ионы исследуемых лабильных веществ из растворов, например, такие как пептиды, белки, полинуклеотиды, лекарства. Однако у существующих устройств электрораспыления при атмосферном давлении растворов анализируемых веществ для источников ионов имеется ряд факторов, ограничивающих стабильную работу источников ионов. Невозможность точного согласования потоков, подаваемых в область распыления анализируемого раствора в широком диапазоне объемных скоростей (5 мкл/мин-2000 мкл/мин) и его полного распыления с образованием ионов анализируемых веществ без наличия неиспарившихся микрокапель, поступающих в парогазовом потоке в источник ионов, приводят, как правило, к засорению и закупориванию входных диафрагм и транспортирующих систем из области атмосферного давления в высоковакуумную область анализатора ионов, зарядке их элементов, замыканию электродов, находящихся под разными потенциалами, увеличению шумов и появлению ложных сигналов в регистрируемых спектрах.

Известны устройства электрораспыления анализируемых потоков растворов веществ [1, 2], где устройство электрораспыления, система транспортировки ионов источника и вход в анализатор ионов располагаются на одной оси. В этом случае в анализатор ионов попадают крупные капли, образующиеся из жидкости скапливающейся на внешней стороне капилляра, с торца которого из мениска жидкости происходит эмиссия заряженных микрокапель, что связано с несогласованностью потоков поступающего и распыляемого раствора. Попадание крупных капель в транспортирующую систему источника ионов и в анализатор усложняет функционирование прибора и проведение анализа. Также известно устройство ортогонального электрораспыления к оси транспортирующей системы [3]. Это устройство по сравнению с [1, 2] дополнено коаксиальным капилляром, по которому в зону существования факела распыленного раствора подается нагретый газ-испаритель. Нагретый газ-испаритель предназначен для более эффективного испарения образовавшихся микрокапель и, соответственно, увеличения тока анализируемых ионов из раствора. Такое сочетание электрораспыления и стимулированного испарения микрокапель не влияет на существование больших капель, образовавшихся в результате нестационарности процесса распыления. В свою очередь нестационарность процесса электрораспыления анализируемого раствора, в основном, связана с невозможностью согласовать поток распыляемого раствора с потоком раствора, поступающего в область распыления - мениск на торце металлического капилляра. Электрораспыление существенно зависит от проводимости распыляемого раствора - состава растворителя и концентрации анализируемого вещества, кроме того, все эти параметры влияют на величину поверхностного натяжения, а соответственно и на режим электрораспыления. Излишек раствора смачивает внешнюю сторону капилляра, где начинает накапливаться большая капля до тех пор, пока электрическое поле не преодолеет силу смачиваемости раствора и не оторвет ее от капилляра. Такая ориентировка устройства электрораспыления позволяет избежать засорения или закупоривания входной диафрагмы системы транспортировки заряженных частиц в анализатор, так как при использовании такой геометрии расположения узла электрораспыления раствора большие капли по инерции, преимущественно пролетают мимо входа в анализатор.

Ближайшим из известных, выбранным в качестве прототипа, является устройство электрораспыления хроматографических потоков анализируемых растворов веществ для источников ионов [4]. Это устройство по сравнению с [1, 2] дополнено коаксиальным капилляром, по которому из области мениска жидкости откачивается парогазовая смесь, состоящая из лабораторного воздуха и излишков нераспыленного раствора, скапливающегося на внешней стороне внутреннего капилляра, по которому поступает раствор. Процесс образования заряженных частиц в таком устройстве происходит при нормальных условиях. Такое сочетание электрораспыления и стимулированного отвода нераспыленного раствора позволяет достичь относительно долговременной стабильности распыления (десятки минут), но при использовании внешнего коаксиального капилляра из металла происходит его электролиз, на поверхности появляется пленка, изменяется смачиваемость внутренней стенки коаксиального капилляра, что приводит к переходу режима стабильного электрораспыления к нестабильному и крупнокапельному. Существенное влияние смачиваемости внутренней поверхности внешнего капилляра в малом коаксиальном зазоре происходит под действием капиллярных сил, при этом возникает нестационарная жидкая пробка в зазоре, что изменяет стабильность потока отбираемой из области распыления парогазовой смеси и также приводит к некоторой нестабильности распыления. Особенно это сказывается при протяженном коаксиальном канале с малым зазором при поступлении раствора из жидкостного хроматографа в градиенте растворителей, что приводит к переменной смачиваемости и вязкости.

Задачей изобретения является устранение условий нестабильного электрораспыления растворов при возможности увеличения потока и устранения шумов в регистрируемых спектрах, обусловленных нестабильностью распыления.

Поставленная задача решается за счет того, что в известном устройстве стабильного электрораспыления при атмосферном давлении растворов веществ для источников ионов, включающее капилляр, в торце которого расположен мениск распыляемого раствора и коаксиально которому расположен внешний капилляр большего диаметра, плоский противоэлектрод, коаксиальный зазор между капиллярами подключен к воздушному откачивающему насосу, отличающийся тем, что коаксиальный внешний капилляр выполнен в виде коаксиальной насадки из химически стойкого, несмачиваемого, непористого диэлектрика при этом торец насадки со стороны мениска имеет форму усеченного конуса с диаметром сечения и внутренним каналом равным двум диаметрам капилляра, на котором расположен мениск, внутренний канал расположен соосно оси прямого усеченного конуса и имеет переменное сечение, длина внутреннего канала, равная диаметру сечения конуса, составляет пять его диаметров, далее диаметр внутреннего канала много больше начального, вершина конуса имеет угол не более 90 градусов.

Заявляемое устройство стабильного электрораспыления при атмосферном давлении растворов веществ для источников ионов схематично представлено на фигуре 1. По внутреннему металлическому капилляру (1) подается раствор от жидкостного микронасоса (2). Этот капилляр заземлен. Коаксиально к капилляру (1) расположена внешняя диэлектрическая насадка (3). Излишки нераспыленного раствора, стекающие по внешней стенке капилляра (1), вместе с лабораторным воздухом откачиваются воздушным насосом (4) через зазор между капилляром (1) и коаксиальной насадкой (3). Использование внутреннего канала переменного сечения в коаксиальной насадке позволяет в начале в его узкой части получить высокую скорость газового потока, что эффективно уносит нераспыленную жидкость с внешней стороны внутреннего капилляра, а потом в широкой части уменьшить линейную скорость воздушного потока, не меняя его объемной скорости и снизить сопротивление во внутреннем канале. Это позволяет более тонко регулировать воздушный поток в коаксиальном зазоре, а следовательно и режим стабильного распыления. Напротив торца внутреннего капилляра (1) расположен плоский противоэлектрод (5) с центральным отверстием, электрически соединенный с высоковольтным источником питания (6).

В целом отвод нераспыленной или сконденсировавшейся жидкости из области распыления и симметрия факела распыления позволяют получить заряженные частицы атомарных размеров, что в свою очередь позволяет локализовать область экстракции ионов из раствора при нормальных условиях и эффективно транспортировать ионы в анализатор. На фигуре 2 показана верхняя часть коаксиальной насадки, используемой в устройстве. Коаксиальная насадка выполнена из химически стойкого, несмачиваемого, непористого диэлектрика, например, PEEK. Торец насадки со стороны мениска имеет форму усеченного конуса (1) с диаметром сечения и внутренним каналом (2), равным двум диаметрам капилляра, на котором расположен мениск, внутренний канал расположен соосно оси прямого усеченного конуса и имеет переменное сечение, длина внутреннего канала, равная диаметру сечения конуса, составляет пять его диаметров (3), далее диаметр внутреннего канала много больше начального (4), вершина конуса имеет угол не более 90 градусов.

На фигуре 3 показана форма мениска соответствующего режиму стабильного электрораспыления раствора, полученного при соблюдении требований описываемого устройства. При несоблюдении требований, форма мениска имеет вид, представленный на фигуре 4 - капельный режим распыления, отличающийся крайней нестабильностью и широким разбросом размеров микрокапель, соответственно, в спектре присутствуют случайные сигналы.

Источники информации

1. Александров М.Л., Галь Л.Н., Краснов Н.В., Николаев В.И., Павленко В.Α., Шкуров В.А. Экстракция ионов из растворов при атмосферном давлении - метод масс-спектрометрического анализа биоорганических веществ. // ДАН, 1984, Т.277, №2. Физическая химия, с. 379-383.

2. Tang X., Bruce J.E., Hill Н.Н. Characterizing electrospray ionization using atmospheric pressure ion mobility spectrometry // Anal. Chem., 2006, v. 78, p. 7751-7760.

3. www.agilent.com

4. H.B. Краснов, M.З. Мурадымов, Самокиш В.А. Патент на изобретение №2530783 от 15.08.2014 г. Устройство электрораспыления хроматографических потоков анализируемых растворов веществ для источников ионов.

Устройство стабильного электрораспыления при атмосферном давлении растворов веществ для источников ионов, включающее капилляр, в торце которого расположен мениск распыляемого раствора и коаксиально которому расположен внешний капилляр большего диаметра, плоский противоэлектрод, коаксиальный зазор между капиллярами подключен к воздушному откачивающему насосу, отличающийся тем, что коаксиальный внешний капилляр выполнен в виде коаксиальной насадки из химически стойкого, несмачиваемого, непористого диэлектрика, при этом торец насадки со стороны мениска имеет форму усеченного конуса с диаметром сечения и внутренним каналом, равным двум диаметрам капилляра, на котором расположен мениск, внутренний канал расположен соосно оси прямого усеченного конуса и имеет переменное сечение, длина внутреннего канала, равная диаметру сечения конуса, составляет пять его диаметров, далее диаметр внутреннего канала много больше начального, вершина конуса имеет угол не более 90 градусов, плоский противоэлектрод электрически присоединен к высоковольтному источнику питания, а металлический капилляр заземлен.



 

Похожие патенты:

Изобретение относится к области химического анализа примесных соединений и ионов в растворах. Основой изобретения является экстракция ионов или их образование из раствора, просачивающегося в вакуумную часть газодинамического интерфейса через трековую мембрану под действием атмосферного давления и электрического поля в каналах мембраны.

Изобретение относится к области спектрометрии ионной подвижности. Технический результат - увеличение разрешающей способности анализатора, например, по ионной подвижности в широком диапазоне времени открывающего затвор основного импульса.

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор 6, измерительный резонатор 7 с элементом перестройки его резонансной частоты 8, УПЧ опорного 9 и сигнального 10 каналов, фазочастотные дискриминаторы 11 и 12, делители частоты 13 и 14, синхронные детекторы 15 и 16, опорный генератор 17, устройство синтеза частот 18, трехпозиционный переключатель 19, импульсный модулятор фазы 20, усилитель переменного тока 21 и импульсный демодулятор 22.

Изобретение относится к области энергетики, а именно к технологии получения заряженных частиц больших энергий, и предназначено для применения в области ядерной физики и технологии.

Изобретение относится к приборостроению, средствам автоматизации и системам управления, а именно к области космических исследований, и может быть использовано в ходе натурного эксперимента для измерения элементного состава собственной внешней атмосферы космического аппарата.

Изобретение относится к области анализа смесей химических соединений на основе разделения ионов, выведенных из приосевой зоны, в линейной радиочастотной ловушке с газовым потоком вдоль оси этой ловушки по отношениям массы к заряду и на базе различий в устойчивости ионов к столкновительно-индуцированной диссоциации.
Метод масс-спектрометрического секвенирования пептидов и определения их аминокислотных последовательностей основан на фрагментировании в ионном источнике масс-спектрометра между соплом и скиммером молекулярных ионов пептидов под воздействием электрического поля управляемой величины и на последующем анализе масс-спектров фрагментов.

Изобретение относится к области электронной и ионной оптики и масс-спектрометрии, где используется движение заряженных частиц в статических и переменных двумерных линейных электрических полях, и может быть использовано для усовершенствования конструкций и технологий изготовления устройств пространственно-временной фокусировки и масс-разделения заряженных частиц.

Изобретение относится к области масс-анализа потоков ионов, эмиттируемых с поверхности твердого тела под воздействием первичного излучения, и может быть использовано для улучшения аналитических свойств масс-спектрометров, используемых для исследования объектов твердотельной микро- и нано-электроники методами вторично-ионной и лазерной масс-спектрометрии.

Изобретение относится к области ион-дрейфовой и масс-спектрометрии и найдет широкое применение при решении аналитических задач органической и биоорганической химии, иммунологии, биотехнологии, криминалистике, протеомике, метаболомике при электрораспылении растворов исследуемых лабильных веществ.

Изобретение относится к исследованию или анализу паров веществ путем измерения их физических свойств с использованием метода масс-спектрометрии и масс-спектрометрии отрицательных ионов резонансного захвата электронов, в том числе в сочетании с методом хроматографии.

Изобретение относится к области ион-дрейфовой и масс-спектрометрии и найдет широкое применение при решении аналитических задач органической и биоорганической химии, иммунологии, биотехнологии, криминалистики, протеомики, метаболомики, медицины, экологии и охраны окружающей среды.

Изобретение относится к области масс-спектрометрии, а именно к источникам ионов с ионизацией при атмосферном давлении (фотоионизация, химическая ионизация при атмосферном давлении в коронном разряде и другие), и найдет широкое применение в масс-спектрометрии, спектрометрии подвижности ионов при решении задач органической и биоорганической химии, иммунологии, медицины, диагностики заболеваний, биохимических исследований, фармацевтике, токсикологии и экологии, проведении анализов в криминалистике и следового анализа наркотиков и их метаболитов.

Изобретение относится к области аналитической химии и касается способа определения амина в образце. Сущность способа заключается в контактировании образца, содержащего амин, с раствором соли, содержащей 2,2',2”,6,6',6”-гексаметокситритильный карбокатион, и последующем определении конъюгатов методами высокоэффективной жидкостной хроматографии и масс-спектрометрии.

Изобретение относится к высокочувствительному способу определения количества глицирризина, глицирретиновой кислоты и их фармакологически приемлемых солей, присутствующих в плазме крови человека.

Изобретение относится к области аналитической химии, а именно к масс-спектрометрии, к способам осуществления дейтеро-водородного обмена в ионном источнике масс-спектрометра и может быть использовано для проведения структурного экспресс-анализа биомакромолекул.

Предлагаемое изобретение относится к области ион-дрейфовой и масс-спектрометрии и найдет широкое применение при решении аналитических задач органической и биоорганической химии, иммунологии, биотехнологии, криминалистике, протеомике, метаболомике и медицины, метабономики и посттрансляционной модификации.

Изобретение относится к области аналитической химии, а именно к инструментальным оптическим методам анализа. .

Изобретение относится к исследованию или анализу материалов путем определения их химических или физических свойств, конкретно путем разделения на составные части (компоненты) с использованием адсорбции и их масс-спектрометрического исследования.

Изобретение относится к области медицины, в частности к способу получения стандартного образца сульфатного скипидара. Способ получения стандартного образца сульфатного скипидара, включающий отбор пробы воды, двукратную экстракцию сульфатного скипидара диэтиловым эфиром, эфирные вытяжки, полученные после экстракций, объединяют, колбу, в которой экстрагировали образцы воды, промывают диэтиловым эфиром и присоединяют полученную вытяжку к вытяжкам, полученным ранее, собранные эфирные вытяжки промывают дистиллированной водой, затем полученный эфирный слой отделяют от воды и осуществляют его сушку сульфатом натрия, после чего отгоняют диэтиловый эфир из полученного сульфатного скипидара и готовят стандартный раствор путем внесения 0,00005-0,0001 грамм сульфатного скипидара в виалу на 1,5 мл, разбавляют хлористым метиленом до метки и определяют содержание компонентов сульфатного скипидара методом хромато-масс-спектрометрии. Вышеописанный способ позволяет получить стандартный образец сульфатного скипидара. 1 табл., 4 пр.
Наверх