Измеритель температуры газа газотурбинного двигателя

Использование - в системах измерения температуры газа газотурбинных двигателей (ГТД). Техническим результатом является повышение точности измерителя температуры газа ГТД на переходных режимах. Сущность изобретения: измеритель температуры газа газотурбинного двигателя дополнительно содержит последовательно соединенные блок гистерезиса, элемент схемы «И», первый переключатель, второй интегратор, второй переключатель, блок памяти ошибок модели, четвертый сумматор, выход которого подключен ко второму входу элемента сравнения, общая шина подключена ко второму входу первого и второго переключателей, кнопка пользователя подключена ко второму входу элемента схемы «И» и управляющему входу второго переключателя, выход модели температуры газа подключен к четвертому сумматору, выход датчика частоты вращения ротора высокого давления подключен ко второму входу блока памяти ошибок модели, выход дифференциатора подключен ко входу блока гистерезиса, выход элемента сравнения подключен к третьему входу первого переключателя, выходы с датчиков температуры окружающей среды, давления окружающей среды и датчика определения высоты полета подключены к третьему, четвертому и пятому его входу соответственно. 8 ил.

 

Изобретение относится к области систем измерения температуры газа газотурбинного двигателя (ГТД).

Известно самонастраивающееся устройство для измерения быстроизменяющихся параметров [Кудрявцев А.В., Петунин В.И., Шаймарданов Ф.А. О повышении динамической точности определения температуры газов за турбиной газотурбинного двигателя. - Тезисы докл. Всесоюзной научн. конференции «Методы и средства машинной диагностики газотурбинных двигателей и их элементов», т. 2, Харьков, 1980, с. 50]. Устройство содержит последовательно соединенные термопреобразователь, второй сумматор, первый дифференциатор, первый блок умножения, первый сумматор, второй вход которого соединен с выходом второго сумматора, выходом которого является значение ( - значение температуры на выходе корректирующего звена), последовательно соединенные блок косвенного определения температуры, блок сравнения, вторым входом которого является выходное значение с первого сумматора, второй дифференциатор, второй блок умножения, второй вход которого является выходом первого дифференциатора, интегрирующий усилитель, выход которого подключен ко второму входу первого блока умножения, последовательно соединенные фильтр, входом которого является выход второго дифференциатора, выход которого подключен ко второму входу второго сумматора.

Устройство формирует значение Tk по закону:

где Tk - значение постоянной времени корректирующего звена;

λ - постоянная величина;

- производная по времени сигнала на выходе термопреобразователя;

- производная величины , где - значение сигнала, вырабатываемого блоком косвенного определения температуры, - выходное значение температуры газа на выходе измерителя температуры газа.

Блок сравнения по сигналам с выхода блока косвенного определения температуры и выхода сумматора, который является одновременно и выходом устройства, формирует сигнал рассогласовании . После дифференцирования во втором дифференциаторе сигнал умножается в блоке на сигнал , поступающий с выхода дифференциатора, и далее поступает на вход интегрирующего усилителя с коэффициентом усиления λ. С выхода усилителя сигнал Tk, пропорциональный величине (определяемой выражением 1), подается на вход блока умножения, при этом постоянная времени корректирующего звена устанавливается равной постоянной времени термопреобразователя.

Выходной сигнал формируется сумматором по сигналам с выхода первого блока умножения и с выхода второго сумматора.

Точность подстройки постоянной времени корректирующего звена зависит от точности формирования сигнала , т.е. от точности формирования модели температуры газа.

Известно также другое самонастраивающееся устройство для измерения быстроизменяющихся температур, содержащее последовательно соединенные термопреобразователь, второй сумматор, первый дифференциатор, первый блок умножения, первый сумматор, второй вход которого соединен с выходом второго сумматора, выходом которого является значение температуры газа на выходе измерителя, последовательно соединенные блок косвенного определения температуры, блок сравнения, вторым входом которого является выходное значение с первого сумматора, второй дифференциатор, второй блок умножения, второй вход которого является выходом первого дифференциатора, интегрирующий усилитель, выход которого подключен ко второму входу первого блока умножения, последовательно соединенные фильтр, входом которого является выход второго дифференциатора, выход которого подключен ко второму входу второго сумматора. В этом устройстве самонастройка осуществляется по сигналу с выхода устройства и сигналу от блока косвенного определения температуры (модели температуры газа) [Кудрявцев А.В., Петунин В.И., Шаймарданов Ф.А. О повышении динамической точности определения температуры газов за турбиной газотурбинного двигателя. - Тезисы докл. Всесоюзной научн. конференции «Методы и средства машинной диагностики газотурбинных двигателей и их элементов», т. 2, Харьков, 1980, с. 50].

Известные устройства обладают невысоким качеством переходных процессов подстройки постоянной времени корректирующего звена при различных начальных условиях. Кроме того, точность устройства зависит от погрешности модели температуры газа.

Наиболее близким по достигаемому техническому результату, выбранным за ближайший аналог, является помехоустойчивое самонастраивающееся устройство для измерения температуры, содержащее последовательно соединенные датчик температуры газа, дифференциатор, первый блок умножения и первый сумматор, второй вход которого соединен с выходом датчика температуры газа, последовательно соединенные датчик частоты вращения ротора высокого давления, блок нелинейных преобразований и второй сумматор, выход которого подключен ко второму входу первого блока умножения, последовательно соединенные датчик частоты вращения ротора низкого давления, модель температуры газа, элемент сравнения, второй блок умножения и интегратор, выход датчика частоты вращения ротора высокого давления подключен ко второму входу модели температуры газа, выход датчика температуры окружающей среды подключен к третьему входу модели температуры газа, выход датчика давления окружающей среды подключен к четвертому входу модели температуры газа, выход первого сумматора подключен ко второму входу элемента сравнения, первое пропорциональное звено, вход которого соединен с выходом дифференциатора, а выход подключен ко второму входу второго блока умножения, последовательно соединенные второе пропорциональное звено, вход которого соединен с выходом второго блока умножения и третий сумматор, второй вход которого соединен с выходом интегратора, а выход подключен ко второму входу второго сумматора [Петунин В.И., Сибагатуллин Р.Р., Фрид А.И. Помехоустойчивый самонастраивающийся измеритель температуры газа газотурбинного двигателя., Вестник УГАТУ, 2015 г., Т. 61 с. 147-152]. Алгоритм цепи самонастройки:

где ε - рассогласование, равное ;

k1 - коэффициент усиления первого пропорционального звена;

k2 - коэффициент усиления интегратора;

k3 - коэффициент усиления второго пропорционального звена;

- значение температуры газа на выходе термопары;

Tk1 - значение постоянной времени корректирующего звена, полученное схемой разомкнутой коррекции;

- значение сигнала, вырабатываемого блоком косвенного определения температуры (модельное значение);

- выходное значение температуры газа на выходе измерителя температуры газа.

Модель температуры газа представляется в виде функции:

где n1 - частота вращения ротора низкого давления;

n2 - частота вращения ротора высокого давления;

- давление на выходе датчика давления окружающей среды;

- температура на выходе датчика температуры окружающей среды;

- функция от четырех параметров;

- модельное значение температуры газа.

Недостатком этого устройства является влияние погрешности вычисления температуры газа в модели температуры газа на точность подстройки постоянной времени корректирующего звена. Эта погрешность негативно сказывается на качестве переходных процессов в измерителе температуры газа.

Таким образом, общим недостатком рассматриваемых измерителей температуры газа ГТД является влияние погрешности модели температуры газа ГТД на качество измерителя газа термопарой.

Задачей, на решение которой направлено заявляемое изобретение, является повышение точности измерения температуры газа путем компенсации аддитивной погрешности модели температуры газа.

Техническим результатом является повышение точности измерителя температуры газа ГТД на переходных режимах.

Решение поставленной задачи и технический результат достигаются тем, что измеритель температуры газа газотурбинного двигателя, содержащий, последовательно соединенные датчик температуры газа, дифференциатор, первый блок умножения и первый сумматор, второй вход которого соединен с выходом датчика температуры газа, последовательно соединенные датчик частоты вращения ротора высокого давления, блок нелинейных преобразований и второй сумматор, выход которого подключен ко второму входу первого блока умножения, последовательно соединенные датчик частоты вращения ротора низкого давления и модель температуры газа, последовательно соединенные элемент сравнения, второй блок умножения, первый интегратор и третий сумматор, выход которого подключен ко второму входу второго сумматора, последовательно соединенные блок «зона нечувствительности» и первое пропорциональное звено, выход которого подключен ко второму входу второго блока умножения, выход дифференциатора подключен ко входу блока «зона нечувствительности», выход первого сумматора подключен ко второму входу элемента сравнения, выход второго блока умножения подключен ко входу второго пропорционального звена, выход второго пропорционального звена подключен ко второму входу третьего сумматора, выход датчика частоты вращения ротора высокого давления подключен ко второму входу модели температуры газа, выход датчика температуры окружающей среды подключен к третьему входу модели температуры газа, выход датчика давления окружающей среды подключен к четвертому входу модели температуры газа, отличающийся тем, что согласно изобретению дополнительно содержит последовательно соединенные блок гистерезиса, элемент схемы «И», первый переключатель, второй интегратор, второй переключатель, блок памяти ошибок модели, четвертый сумматор, выход которого подключен ко второму входу элемента сравнения, общая шина подключена ко второму входу первого и второго переключателей, кнопка пользователя подключена ко второму входу элемента схемы «И» и управляющему входу второго переключателя, выход модели температуры газа подключен к четвертому сумматору, выход датчика частоты вращения ротора высокого давления подключен ко второму входу блока памяти ошибок модели, выход дифференциатора подключен ко входу блока гистерезиса, выход элемента сравнения подключен к третьему входу первого переключателя, выходы с датчиков температуры окружающей среды, давления окружающей среды и датчика определения высоты полета подключены к третьему, четвертому и пятому его входу соответственно.

Существо изобретения поясняется чертежами.

На фиг. 1 представлена блок-схема измерителя температуры газа газотурбинного двигателя.

На фиг. 2, 3, 4, 5 - результаты моделирования переходных процессов прототипа и предлагаемого измерителя (фиг. 1) при различных постоянных времени термопары на фиг. 2, 3 - переходные процессы измерителей температуры газа при погрешности модели температуры газа ±2%, фиг. 4, 5 - переходные процессы измерителей температуры газа при скорректированной погрешности модели температуры газа ±2%.

На фиг. 6 представлены переходные процессы самонастраивающегося измерителя с погрешностью модели температуры газа +2% при изменении температуры газа по синусоидальному закону.

На фиг. 7 показан сигнал на выходе дифференциатора при единичных скачках температуры газа и выделение зоны режима стабилизации применительно к процессу, показанному на фиг. 4.

На фиг. 8 представлен график аппроксимации реальных значений ошибок модели.

Измеритель температуры газа газотурбинного двигателя (фиг. 1) содержит последовательно соединенные датчик температуры газа 1, дифференциатор 2, первый блок умножения 3 и первый сумматор 4, второй вход которого соединен с выходом датчика температуры газа 1, последовательно соединенные датчик частоты вращения ротора высокого давления 5, блок нелинейных преобразований 6 и второй сумматор 7, выход которого подключен ко второму входу первого блока умножения 3, последовательно соединенные датчик частоты вращения ротора низкого давления 8 и модель температуры газа 9, последовательно соединенные элемент сравнения 10, второй блок умножения 11, первый интегратор 12 и третий сумматор 13, выход которого подключен ко второму входу второго сумматора 7, последовательно соединенные блок «зона нечувствительности» 14 и первое пропорциональное звено 15, выход которого подключен ко второму входу второго блока умножения 11, выход дифференциатора 2 подключен ко входу блока «зона нечувствительности» 14, выход первого сумматора 4 подключен ко второму входу элемента сравнения 10, выход второго блока умножения 11 подключен ко входу второго пропорционального звена 16, выход второго пропорционального звена 16 подключен ко второму входу третьего сумматора 13, выход датчика частоты вращения ротора высокого давления 5 подключен ко второму входу модели температуры газа 9, выход датчика температуры окружающей среды 17 подключен к третьему входу модели температуры газа 9, выход датчика давления окружающей среды 18 подключен к четвертому входу модели температуры газа 9, дополнительно содержит последовательно соединенные блок гистерезиса 19, элемент схемы «И» 20, первый переключатель 21, второй интегратор 22, второй переключатель 23, блок памяти ошибок модели 24, четвертый сумматор 25, выход которого подключен ко второму входу элемента сравнения 10, общая шина 26 подключена ко второму входу первого 21 и второго переключателей 23, кнопка пользователя 27 подключена ко второму входу элемента схемы «И» 20 и управляющему входу второго переключателя 23, выход модели температуры газа 9 подключен к четвертому сумматору 25, выход датчика частоты вращения ротора высокого давления 5 подключен ко второму входу блока памяти ошибок модели 24, выход дифференциатора 2 подключен ко входу блока гистерезиса 19, выход элемента сравнения 10 подключен к третьему входу первого переключателя 21, выходы с датчиков температуры окружающей среды, давления окружающей среды и датчика определения высоты полета подключены к третьему, четвертому и пятому входам блока памяти ошибок модели соответственно.

Измеритель температуры газа ГТД (фиг. 1) работает в два этапа:

- обучение, осуществляемое в процессе испытаний и доводки двигателя;

- функционирование на режимах эксплуатации, основанное на результатах этапа обучения.

С помощью термопары измеряется температура газа; постоянная времени термопары компенсируется в соответствии с выражением алгоритма цепи самонастройки (2).

Для того чтобы погрешность модели температуры газа не влияла на процесс настройки постоянной времени корректирующего звена, производится компенсация погрешности модели температуры газа. Вычисление ошибки модели осуществляется лишь на установившихся режимах работы измерителя, т.к. в качестве эталона для подстройки используется сигнал с термопары. Ошибка модели вычисляется в блоке сравнения 10 (). Так как вычисление ошибки модели осуществляется только на установившихся режимах работы, используется переключатель 21, управление которым происходит через блок «зона нечувствительности» 14 по сигналу с выхода дифференциатора 2. Для исключения «дребезга» переключателя включен блок гистерезиса 19.

Дополнительно используется блок памяти ошибок модели (БПОМ) 24, в который записываются значения ошибок модели температуры газа на различных режимах работы, полученные во время испытаний двигателя, начиная от минимального и заканчивая максимальным.

На установившемся режиме работы системы производится вычисление ошибки модели температуры газа, используя разность сигнала с термопары и сигнала с выхода модели. Когда возникает новый динамический режим, полученная разность суммируется с выходом модели, а признаком установившегося режима работы можно считать значение , где ε0 - устанавливаемый порог.

В исходном состоянии на выходе интегратора 22 нулевое значение. Во время первого переходного процесса сигнал на выходе дифференциатора 2 достаточно велик, поэтому вход интегратора 22 соединен через переключатель 21 с общей шиной и интегратор 22 не изменяет своего состояния. Когда сигнал с дифференциатора становится меньше величины ε0, вход интегратора подключается к выходу элемента сравнения 10. Если сигнал с модели на установившемся режиме отличается от сигнала с выхода термопары, то это говорит о наличии ошибки модели. Интегратор 22 отрабатывает эту ошибку до ее полной компенсации. На выходе интегратора 22 запоминается значение аддитивной ошибки модели. При наступлении следующего переходного процесса сигнал с выхода интегратора 22 суммируется с сигналом модели, компенсируя ее ошибку.

С помощью БПОМ 24 осуществляется компенсация ошибок модели температуры газа. На этапе обучения схема работает следующим образом. Выбирается режим «испытание двигателя» с помощью кнопки пользователя 27. На данном режиме происходит запись ошибок модели температуры газа в БПОМ 24. Данные поступают в блок памяти ошибок модели через второй переключатель 23 с выхода второго интегратора 22, где находится накопленная ошибка модели температуры газа. Инвертор предназначен для одновременного срабатывания двух переключателей (включения второго переключателя 23) в тот момент, когда отключается первый переключатель 21. После того как испытания двигателя завершились, кнопка пользователя отжимается и данные в БПОМ больше не записываются, а лишь используются в дальнейшем на режиме эксплуатации.

Во время летных испытаний двигателей получаем зависимость εм=ƒ(T',Н',М',n'), где

εм - ошибка модели температуры газа,

T' - температура окружающего воздуха в текущий момент времени,

Н' - высота полета ЛА в текущий момент времени,

М' - мах ЛА в текущий момент времени,

n' - частота вращения двигателя в текущий момент времени.

В БПОМ закладывается эта функция.

Для получения этой функции используется следующая методика (программа) испытаний на летательном аппарате.

1. Выйти на заданные значения Н', М' и зафиксировать Т'.

2. С помощью кнопки пользователя вычислить разницу εм на установившемся режиме n'.

3. Построить таблицы зависимости εм от n' для конкретных значений Н', М', Т'.

4. После заполнения базы данных схема вычисления ошибок модели отключается и на режиме эксплуатации используется значение из блока БПОМ.

Выбор ошибки модели осуществляется в зависимости от режима работы двигателя и тот момент, когда двигатель работает на произвольном режиме, например между номинальным и максимальным. Используются сигналы с датчиком для получения значений Н', М', Т'. Имея эти значения в базе данных, ищется таблица, соответствующая этим параметрам из БД (базы данных). Найденная таблица содержит зависимость ошибки модели температуры газа ГТД от частоты вращения двигателя.

Выбор значения ошибки модели (λ) определяется с помощью датчика частоты вращения ротора высокого давления 5. В зависимости от частоты вращения (n2) по графику зависимости ошибки модели от частоты вычисляется ошибка модели температуры газа на текущем режиме работы (фиг. 8). Ломаная на фиг. 8 является аппроксимацией реальных значений ошибок модели.

Пример определения погрешности модели температуры газа ГТД при определенном значение частоты вращения ротора высокого давления представлен ниже:

6600 об/мин - минимальный режим (значение ошибки модели +3%);

8500 об/мин - номинальный режим (значение ошибки модели +5%).

Чтобы вычислить значение ошибки между номинальным и максимальным режимом работы, например,, при частоте вращения ротора высокого давления 7700 об/мин, используется формула (4):

На фиг. 2, 3, 4, 5 показаны переходные процессы самонастраивающегося измерителя температуры газа при погрешности модели температуры газа ±2% (фиг. 2, 3) и при коррекции погрешности модели температуры газа ±2% (фиг. 4, 5), из которых видно, что погрешность модели температуры газа негативно сказывается на качестве переходных процессов (кривые 1 и 2 отличаются на фиг. 2 и 3). Это отличие обусловлено тем, что для коррекции постоянной времени термопары используется модель температуры газа (), которая может иметь погрешность. Как только температура газа принимает свое постоянное значение на установившемся режиме работы (на фиг. 2 время выхода составляет приблизительно 4.5 с), подстройка постоянной времени термопары отключается до следующего переходного процесса. Погрешность модели перестает влиять на установившемся режиме работы, так как используются показания термопары без коррекции (на фиг. 2 видно, что кривая 1 постепенно переходит в кривую 2 за время 1-2 с). 1 - переходный процесс на выходе измерителя, соответствующий схеме прототипа [Сибагатуллин Р.Р., Фрид А.И., Петунин В.И. Помехоустойчивый самонастраивающийся измеритель температуры газа газотурбинного двигателя. Вестник УГАТУ, Т. 61 с. 147-152]. Кривая 2 - переходный процесс на выходе измерителя, соответствующий предложенной схеме (фиг. 1). Кривая 3 - сигнал с выхода термопары. Из фиг. 4 и 5 видно, что ошибка модели температуры газа корректируется и при подаче возмущения (следующий переходный процесс с 8 секунды) используется уже скорректированное значение модели температуры газа. Видно, что качество переходных процессов не зависит от погрешности модели температуры газа.

Таким образом, можно сделать вывод, что аддитивная погрешность влияет на переходный процесс лишь на динамическом режиме работы измерителя. Одним из способов устранения этого влияния является коррекция погрешности модели температуры газа.

Из фиг. 6 видно, что вначале погрешность модели температуры газа 2% отразилась на качестве переходных процессов (кривые 1 и 2 имеют расслоение). Затем погрешность модели температуры газа скорректировалась на 3.5 секундах и впоследствии используется уже значение сигнала с модели температуры газа без ошибки (кривые 1 и 2 наложены друг на друга).

На качество коррекции погрешности модели влияют следующие настройки:

1) настройка ширины петли гистерезиса (блок 19), для исключения «дребезга» переключателя (блок 21);

2) настройка коэффициента усиления интегратора (блок 22).

Экспериментальным способом были установлены следующие параметры настройки:

1) значение ширины петли гистерезиса составляет 1% (0.01) от максимального значения сигнала с выхода блока дифференциатора (см. фиг. 7);

2) коэффициент интегратора принят равным 10, при его увеличении качество переходных процессов не меняется.

На фиг. 7 показан сигнал на выходе дифференциатора (блок 2) и зона коррекции погрешности модели температуры газа.

Применение предложенного самонастраивающегося измерителя с коррекцией ошибки модели температуры газа позволяет повысить показатели качества работы канала температуры.

Технический результат изобретения достигается за счет того, что вычисление ошибки модели температуры газа осуществляется при установившихся значениях температуры газа, при переходных процессах вычисление ошибки модели интегратором коррекции не осуществляется. Вычисленная ошибка суммируется с выходом модели и компенсируется во время переходных процессов. Режимы работы схемы коррекции ошибки определяются сигналом с выхода дифференциатора сигнала с термопары. Блок памяти ошибок модели собирает данные во время испытаний по ошибкам модели температуры газа на различных режимах работы. Затем полученные данные используются при коррекции модели температуры газа в режиме эксплуатации.

Итак, заявленное изобретение позволяет повысить точность измерителя температуры газа ГТД на переходных режимах.

Измеритель температуры газа газотурбинного двигателя, содержащий последовательно соединенные датчик температуры газа, дифференциатор, первый блок умножения и первый сумматор, второй вход которого соединен с выходом датчика температуры газа, последовательно соединенные датчик частоты вращения ротора высокого давления, блок нелинейных преобразований и второй сумматор, выход которого подключен ко второму входу первого блока умножения, последовательно соединенные датчик частоты вращения ротора низкого давления и модель температуры газа, последовательно соединенные элемент сравнения, второй блок умножения, первый интегратор и третий сумматор, выход которого подключен ко второму входу второго сумматора, последовательно соединенные блок «зона нечувствительности» и первое пропорциональное звено, выход которого подключен ко второму входу второго блока умножения, выход дифференциатора подключен ко входу блока «зона нечувствительности», выход первого сумматора подключен ко второму входу элемента сравнения, выход второго блока умножения подключен ко входу второго пропорционального звена, выход второго пропорционального звена подключен ко второму входу третьего сумматора, выход датчика частоты вращения ротора высокого давления подключен ко второму входу модели температуры газа, выход датчика температуры окружающей среды подключен к третьему входу модели температуры газа, выход датчика давления окружающей среды подключен к четвертому входу модели температуры газа, отличающийся тем, что дополнительно содержит последовательно соединенные блок гистерезиса, элемент схемы «И», первый переключатель, второй интегратор, второй переключатель, блок памяти ошибок модели, четвертый сумматор, выход которого подключен ко второму входу элемента сравнения, общая шина подключена ко второму входу первого и второго переключателей, кнопка пользователя подключена ко второму входу элемента схемы «И» и управляющему входу второго переключателя, выход модели температуры газа подключен к четвертому сумматору, выход датчика частоты вращения ротора высокого давления подключен ко второму входу блока памяти ошибок модели, выход дифференциатора подключен ко входу блока гистерезиса, выход элемента сравнения подключен к третьему входу первого переключателя, выходы с датчиков температуры окружающей среды, давления окружающей среды и датчика определения высоты полета подключены к третьему, четвертому и пятому входам блока памяти ошибок модели соответственно.



 

Похожие патенты:

Описаны системы и способы обнаружения утечек топлива в газотурбинных двигателях. В соответствии с одним вариантом осуществления изобретения предлагается способ обнаружения утечки топлива в газотурбинном двигателе.

Система управления расходом воздуха для охлаждения турбины двухконтурного турбореактивного двигателя (ДТРД) относится к авиационному двигателестроению. В системе каждый клапан выполнен однопоршневым, его вход размещен со стороны надпоршневой полости, выход - со стороны боковой поверхности поршня, а подпоршневая полость сообщена с наружным контуром и в ней установлена пружина.

Группа изобретений относится к способу и системе регулирования мощности в случае отказа двигателя летательного аппарата. Для регулирования мощности при отказе по меньшей мере одного двигателя летательного аппарата увеличивают пределы работы основной силовой установки типа двигателя (GPP) в соответствии с тремя аварийными режимами, расположенными последовательно в порядке уменьшения уровня мощности.

Изобретение относится к энергетике. Способ работы газотурбинного двигателя для снижения проскока аммиака включает в себя работу двигателя в диапазоне выходных уровней мощности; регулирование массового потока оксидов азота (NOx), производимого в отработавшем газе двигателя, чтобы быть в пределах 10% в диапазоне выходных уровней мощности; и обработку отработавшего газа двигателя в процессе селективного каталитического восстановления таким образом, что генерация NOx и соответствующий поток восстановителя, используемого в процессе селективного каталитического восстановления, остаются относительно постоянными в терминах массового (молярного) потока в диапазоне выходных уровней мощности, и регулируется проскок аммиака.

Изобретение относится к энергетике. Способ передачи топлива включает подачу воды к по меньшей мере одной форсунке главного топливного контура.

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), основанного на программном изменении коэффициента избытка воэдуха в первичной зоне горения.

Использование: в системах измерения температуры газа газотурбинных двигателей (ГТД). Технический результат: повышение помехоустойчивости измерителя температуры газа ГТД.

Изобретение относится к области управления турбореактивным двухконтурным двигателем со смешением потоков ТРДДсм и ТРДДсм с форсажной камерой сгорания ТРДДФсм и позволяет определить с повышенной точностью тягу в полете с учетом реального истечения газа из реактивного сопла.

Изобретение относится к способам регулирования турбореактивного двигателя в зависимости от целей полета самолета, в частности обеспечения максимальной продолжительности и дальности полета.

Изобретение относится к газотурбостроению и авиадвигателестроению, более конкретно - к системам измерения частоты вращения ротора газотурбинных двигателей, имеющих циркуляционную систему смазки подшипниковых опор, включающую системы подачи масла и суфлирования, в частности к системам измерения частоты вращения ротора турбин газотурбинных двигателей наземного использования.

Изобретение относится к энергетике. Термоуправляемый узел для узла газовой турбины газотурбинной системы содержит элемент теплопередачи, имеющий первую часть и вторую часть, при этом первая часть расположена внутри первой полости, имеющей первую температуру, а вторая часть расположена во второй полости, имеющей вторую температуру, причем элемент теплопередачи проходит через полую стенку, и первая температура больше, чем вторая температура. Также имеется термочувствительный элемент, расположенный внутри второй полости и функционально связанный с элементом теплопередачи. Также имеется устройство регулирования потока, расположенное внутри второй полости и выполненное с возможностью смещения в ответ на изменение температуры в первой полости. Изобретение позволяет повысить эффективность работы газотурбинной системы. 3 н. и 17 з.п. ф-лы, 6 ил.

Изобретение относится к энергетике. Способ и устройство предназначены для остановки генератора с целью подготовки его к повторному запуску. Из рабочего состояния инициируют последовательность остановки газовой турбины генератора. Продувочный газ нагнетают в газовую турбину для гашения пламени в камере сгорания газовой турбины. Продувочный газ пропускают через газовую турбину для вытеснения из нее топлива с использованием воздушного потока выбега через газовую турбину во время последовательности остановки с целью подготовки генератора к повторному пуску. Изобретение позволяет повысить эффективность остановки генератора и подготовки его к повторному запуску. 2 н. и 18 з.п. ф-лы, 3 ил.

Изобретение относится к области оборудования для проведения испытаний и может быть использовано для проведения приемосдаточных и других испытаний газотурбинных двигателей различного назначения. Стенд для испытаний газотурбинных двигателей включает нагрузочное устройство, имеющее возможность соединения с валом свободной силовой турбины испытуемого газотурбинного двигателя. В качестве нагрузочного устройства использован синхронный реверсивный турбогенератор, вал ротора которого имеет возможность соединения одним концом с валом свободной силовой турбины испытуемого газотурбинного двигателя, причём другой свободный конец ротора турбогенератора может быть оснащен механическим тормозным устройством. Стенд оснащен системой возбуждения турбогенератора, автономной активной балластной нагрузкой и командным блоком. Статорные электрические цепи турбогенератора имеют возможность подключения к балластной нагрузке, электрические цепи обмоток ротора турбогенератора подключены к системе возбуждения, при этом турбогенератор содержит датчик частоты вращения его вала, связанный с командным блоком, подключенным к системе возбуждения и имеющим возможность подключения к сектору газа испытуемого газотурбинного двигателя. Изобретение позволяет расширить функциональные возможности стенда. 6 з.п. ф-лы, 4 ил.

Изобретение относится к области авиации, в частности к системам регулирования, оптимизирующим параметры турбореактивного двигателя в зависимости от целей полета самолета, в частности обеспечения максимальной продолжительности и дальности полета. Способ регулирования авиационного турбореактивного двигателя, в котором предварительно для данного типа двигателя в рабочем диапазоне углов установки направляющих аппаратов компрессора дополнительно формируют две и более программы регулирования углов установки направляющих аппаратов компрессора в зависимости от его приведенной частоты вращения. При полете самолета, при переходе на крейсерский режим работы двигателя, по сигналу выключения охлаждения турбины производят переключение программы управления направляющими аппаратами компрессора в зависимости от приведенных оборотов на программу, обеспечивающую минимальный расход топлива в заданном диапазоне тяги. Изобретение позволяет повысить надежность переключения регулятором двигателя на программу управления направляющими аппаратами компрессора, обеспечивающую минимальный расход топлива в заданном диапазоне тяги, при переходе на крейсерский режим работы двигателя, и, как следствие, также позволяет снизить расход топлива на указанном режиме. 2 ил., 1 табл.

Изобретение относится к области авиации, в частности к системам регулирования турбореактивного двигателя, оптимизирующим его работу в зависимости от условий полета, в частности обеспечение оптимальных тягово-экономических характеристик во всей области эксплуатации самолета. В способе регулирования авиационного турбореактивного двигателя с форсажной камерой сгорания предварительно проводят испытания двигателя на форсированном режиме при заданных значениях высоты и числа Маха, при которых n-е количество раз изменяют расход топлива, поступающего через топливные коллекторы форсажной камеры, и формируют n-е количество программ поддержания расхода топлива через топливные коллекторы форсажной камеры. Затем по каждой программе изменяют степень расширения на турбине до достижения значения тяги, соответствующего заданным значениям высоты и числа Маха, и измеряют суммарный расход топлива. Далее сравнивают полученные результаты, выделяют наименьший суммарный расход топлива, затем программу с наименьшим суммарным расходом топлива применяют при полете самолета на форсированном режиме при заданных значениях высоты и числа Маха. Изобретение позволяет снизить расход топлива на форсированном режиме работы двигателя. 2 табл.

Изобретение относится к способам управления расходом воздуха, охлаждающего турбину, преимущественно двухконтурного турбореактивного двигателя с воздухо-воздушным теплообменником в наружном контуре. Для перекрытия клапана поршень поворачивают или перемещают относительно корпуса клапана механизмом перемещения, дополнительно положение поршней всех клапанов изменяют синхронно до промежуточных положений в интервале от положения "открыто" в положение "закрыто" и, наоборот, при этом расход воздуха изменяют и фиксируют одновременно на всех клапанах с помощью средства передачи управляющего воздействия, связанного с механизмом перемещения каждого клапана и системой управления, причем средство передачи управляющего воздействия на расход воздуха выполнено механическим и/или электрическим. Предусмотрено, что в положении "закрыто" на всех клапанах одновременно обеспечивают с помощью системы управления минимально допустимый "дежурный" расход охлаждающего воздуха, необходимый для уменьшения до минимума концевых потерь за профилями на сопловом аппарате и рабочих лопатках турбины. Технический результат – уменьшение удельного расхода топлива на всех режимах эксплуатации, повышение стабильности охлаждения. 1 з.п. ф-лы, 3 ил.

Изобретение относится к электроэнергетике и может быть использовано в системах автоматического регулирования газовых турбин электростанций для перевода газовых турбин в режим регулирования скорости вращения при снижении частоты в энергосистеме. В способе регулирования газовых турбин, включающем измерение частоты вращения ротора генератора газовой турбины в режиме реального времени, сравнение текущего значения частоты вращения с заданными уставками каждой из ступеней технологической защиты газовой турбины и формирование защитных сигналов, при выявлении снижения частоты вращения до уставки одной из ступеней технологической защиты начинают отсчет времени для этой ступени. В случае превышения частотой вращения значения уставки данной ступени в течение заданной выдержки времени на ее срабатывание отсчет времени прекращают, при этом продолжают вести отсчет времени для ступеней с более высокими уставками по частоте. В случае отсутствия превышения частотой вращения значения уставки данной ступени в течение заданной выдержки времени на ее срабатывание формируют защитный сигнал данной ступени на перевод газовой турбины из режима поддержания мощности с коррекцией по частоте в режим регулирования скорости вращения и на отключение генератора от сети. Изобретение позволяет повысить надежность и живучесть электростанции за счет повышения надежности работы газовых турбин при глубоких снижениях частоты в энергосистеме.

Изобретение относится к электротехнике, тепло- и электроэнергетике, а именно к когенерационным системам получения энергии для энергоснабжения машин и комплексов объектов нефтедобычи с использованием попутного нефтяного газа в качестве энергоносителя и тепла для обеспечения собственных нужд предприятий минерально-сырьевого комплекса, находящихся вдали от действующих систем централизованного электроснабжения без связи с единой энергосистемой. Система генерирования электрической и тепловой энергии снабжена двумя изолированными контурами, системой парогенерирования, первой и второй секцией шин с секционным выключателем, блоком синхронизации, первым и вторым пассивными фильтрами, и также активным фильтром. Изобретение позволяет повысить эффективность функционирования энергетической установки параллельно с сетью за счет фильтрации высших гармонических составляющих вырабатываемого тока посредством активного фильтра и синхронизацией тока по фазе через синхронизирующее устройство, а также использования в блоке утилизации выхлопных газов двух изолированных контуров циркуляции энергоносителя. 1 ил.

Изобретение относится к области авиации, в частности к системам регулирования, оптимизирующим параметры турбореактивного двигателя в зависимости от целей полета самолета, в частности кратковременного обеспечения максимальной скорости полета самолета. Ожидаемый технический результат - возможность увеличения тяги сверх штатных режимов в ходе эксплуатации двигателя. Ожидаемый технический результат достигается тем, что в известном способе регулирования авиационного турбореактивного двигателя, включающем поддержание заданных частот вращения роторов и температуры газа за турбиной с помощью регулятора в зависимости от температуры воздуха на входе в двигатель, согласно настоящему изобретению предварительно для данного типа двигателей со штатной программой регулирования проводят его испытания на полном форсажном режиме (режиме работы двигателя с максимальным расходом топлива через форсажные коллекторы) с замером тяги, затем перенастраивают регулятор на повышение частот вращения роторов и температуры газа за турбиной, не превышая максимально допустимых значений для данного типа двигателей, до достижения заданного прироста тяги и фиксируют значения регулятора, а при не достижении заданного прироста тяги значения регулятора также фиксируют для максимально полученного прироста тяги, затем на основе полученных данных формируют дополнительную программу регулирования частот вращения роторов и температуры газов за турбиной и вносят ее в регулятор двигателя, далее в ходе эксплуатации двигателя при необходимости увеличения тяги сверх штатных режимов задействуют дополнительную программу регулирования частот вращения роторов и температуры газов за турбиной. 2 табл., 2 пр.

Струйный регулятор ГТД по приведенным оборотам относится к системам автоматического регулирования энергетических установок и может использоваться, в частности, в системах управления газотурбинных двигателей, а также при моделировании в лабораторных условиях работы силовой установки. Содержит струйный блок управления, выходы которого подключены к исполнительному механизму, вал с установленным на нем диском с отверстиями для получения сигнала о частоте вращения компрессора и термоприемник, выполненный в виде непроточного трубопровода, помещенный в среду, температура которой измеряется. Струйный регулятор сравнивает промежуток времени прохождения импульсов по трубопроводу с промежутком времени поворота вала на заданный угол. При равенстве этих временных промежутков заданный угол поворота диска однозначно определяет значение приведенных оборотов. Технический результат - повышение точности определения приведенных оборотов и, как следствие, более оптимальное регулирование параметров ГТД. 4 ил.

Использование - в системах измерения температуры газа газотурбинных двигателей. Техническим результатом является повышение точности измерителя температуры газа ГТД на переходных режимах. Сущность изобретения: измеритель температуры газа газотурбинного двигателя дополнительно содержит последовательно соединенные блок гистерезиса, элемент схемы «И», первый переключатель, второй интегратор, второй переключатель, блок памяти ошибок модели, четвертый сумматор, выход которого подключен ко второму входу элемента сравнения, общая шина подключена ко второму входу первого и второго переключателей, кнопка пользователя подключена ко второму входу элемента схемы «И» и управляющему входу второго переключателя, выход модели температуры газа подключен к четвертому сумматору, выход датчика частоты вращения ротора высокого давления подключен ко второму входу блока памяти ошибок модели, выход дифференциатора подключен ко входу блока гистерезиса, выход элемента сравнения подключен к третьему входу первого переключателя, выходы с датчиков температуры окружающей среды, давления окружающей среды и датчика определения высоты полета подключены к третьему, четвертому и пятому его входу соответственно. 8 ил.

Наверх