Способ определения аппаратной функции радиометра

Изобретение относится к радиотеплолокации, а именно к пассивным системам наблюдения за объектами с помощью сканирующего радиометра, и может быть использовано для получения радиотеплового изображения различных объектов. Технический результат изобретения заключается в определении корректной величины аппаратной функции радиометра в условиях его эксплуатации с целью обеспечения возможности получения радиотеплового изображения наблюдаемых объектов. Указанный результат достигается за счет размещения в зоне обзора антенны радиометра контрольного объекта, сканирования объекта антенной радиометра по азимуту и углу места, формирования радиометрического и оптического изображений области, содержащей контрольный объект с прилегающим фоном; формирования матриц Y и X, соответственно, радиометрического и оптического изображения, сегментирования матрицы X по контрасту амплитуд, представлении матрицы X в качестве эталонного радиометрического изображения контрольного объекта, и последующей математической обработки матриц Y и X с получением матрицы А, являющейся матричным представлением аппаратной функции радиометра. 1 з.п. ф-лы, 6 ил.

 

Изобретение относится к радиотеплолокации, а именно к пассивным системам наблюдения за объектами с помощью сканирующего радиометра, и может быть использовано для получения радиотеплового изображения различных объектов.

В настоящее время пассивные системы радиовидения, работающие в области миллиметровых и субмиллиметровых длин волн, находят все большее применение для целей микроволнового мониторинга различных объектов и окружающей среды (осадки, аэрозольные загрязнения атмосферы, свойства подстилающих поверхностей и др.). Но для использования радиометра в системах радиовидения и получения (синтеза) радиотеплового изображения наблюдаемого объекта необходимо с высокой степенью точности знать его аппаратную функцию.

В качестве ближайшего аналога заявляемого способа принят способ определения аппаратной функций радиометра, заключающийся в размещении контрольного объекта в зоне обзора антенны радиометра, сканировании контрольного объекта антенной радиометра по азимуту и углу места и формировании в результате сканирования матрицы Y радиометрического изображения контрольного объекта с последующей математической обработкой матрицы Y. Контрольный объект представляет собой точечный (эталонный) источник, характеризующийся контрастом по отношению к окружающему фону и позволяющий получить эталонное изображение в виде дельта-функции. Аппаратная функция получается вычитанием из изображения наблюдаемой сцены изображения фоновой сцены, формируемого в радиометре в отсутствии контрольного объекта [1].

Недостаток известного способа заключается в следующем. В реальных условиях наблюдения за объектами с помощью радиометра сложно получить эталонное изображение контрольного объекта в виде дельта-функции, поэтому в известном способе измерение аппаратной функции производится в лабораторных условиях. Однако в реальных условиях эксплуатации радиометра, в частности, при определении радиотеплового контраста протяженных объектов, величина (значение) аппаратной функции радиометра будет отличаться от ее величины, измеренной в лабораторных условиях вследствие размытия формы аппаратной функции. Как следствие, практически невозможно получить истинное радиотепловое изображение наблюдаемых объектов.

Технический результат заявляемого изобретения заключается в определении корректной величины аппаратной функции радиометра в условиях его эксплуатации с целью обеспечения возможности получения радиотеплового изображения наблюдаемых объектов.

Указанный технический результат достигается тем, что в способе определения аппаратной функции радиометра, заключающемся в размещении в зоне обзора антенны радиометра контрольного объекта, характеризующегося контрастом по отношению к окружающему фону, сканировании контрольного объекта антенной радиометра по азимуту и углу места, формировании матрицы Y радиометрического изображения контрольного объекта и нахождении аппаратной функции радиометра, в качестве контрольного объекта используют произвольный объект и формируют радиометрическое изображение области, содержащей контрольный объект с прилегающим фоном; при этом дополнительно получают оптическое изображение упомянутой области, формируют матрицу X оптического изображения упомянутой области с контрольным объектом, приводят матрицу X в соответствие масштабу матрицы Y, сегментируют матрицу X по контрасту амплитуд соседних сегментов, для каждого найденного сегмента вычисляют среднюю нормированную радиометрическую амплитуду и принимают сегментированную матрицу X за эталонное радиометрическое изображение контрольного объекта, а процедуру нахождения аппаратной функции радиометра осуществляют посредством преобразования матрицы X в псевдообратную матрицу Х+, построчного переписывания матрицы Y в вектор , умножения вектора справа на матрицу Х+, формирования вектора и построчной записи элементов вектора в матрицу А, являющуюся матричным представлением аппаратной функции радиометра.

Указанный технический результат достигается также тем, что получение оптического изображения области, содержащей контрольный объект, осуществляют с помощью фотокамеры.

Изобретение иллюстрируется рисунками. На фиг. 1-3 показаны этапы определения аппаратной функции, на фиг. 4-6 иллюстрируется получение радиометрического изображения с помощью найденной аппаратной функции.

Заявляемый способ реализуется следующим образом. В зоне обзора антенны радиометра размещают произвольный контрольный объект, который характеризуется определенным контрастом по отношению к прилегающему к нему фону. В результате сканирования антенной радиометра по азимуту и углу места области D расположения контрольного объекта формируется матрица Y радиометрического изображения с элементами y(i,j), , , где М и N - число строк и столбцов матрицы Y, при этом изображение контрольного объекта представляет собой односвязную и однородную по амплитуде подобласть G⊂D, контрастную по отношению к прилегающему к контрольному объекту однородному фону.

При помощи фотокамеры, расположенной в непосредственной близости от радиометра, регистрируется оптическое изображение области, содержащей контрольный объект с прилегающим к нему фоном, и формируется матрица X оптического изображения области D с элементами x(i,j), , , имеющими смысл интенсивности оптического излучения в i-м, j-м угловом направлении, где Mx=k⋅М, Nx=k⋅N, k - масштабный множитель (целое число). Матрица X приводится в соответствие масштабу матрицы Y пересчетом значений ее элементов по формуле (1):

и запоминанием полученных элементов x1(i,j) в матрице X: x(i,j)=x1(i,j), .

Полученная матрица X сегментируется в соответствии с известными алгоритмами сегментации, например [2], по контрасту амплитуд элементов соседних сегментов. Результатом операций сегментации является матрица меток {S(i,j)}, , где S - номер сегмента, которому принадлежит i-й, j-й элемент матрицы X. Далее для каждого s-го сегмента матрицы X вычисляется средняя нормированная радиометрическая амплитуда усреднением амплитуд соответствующих i-x, j-x элементов y(i,j) матрицы Y с теми же метками S(i,j) по формуле (2):

где ns - количество элементов с меткой s; μ - нормирующий множитель, учитывающий интегральный характер наблюдений.

Амплитуда присваивается элементам матрицы X с меткой . Полученная матрица X принимается за эталонное радиометрическое изображение контрольного объекта с четко выраженными по контрасту границами сегментов.

Процедура нахождения аппаратной функции радиометра состоит в следующем. Элементы матрицы X переписываются в матрицу Х1, отвечающую модели радиометрического изображения по формуле (3):

где - вектор измерений y(i,j), считанных построчно из матрицы Y={y(i,j)}; Х1 - матрица элементов x(i,j), расположенных в соответствии с (1); - вектор искомых значений аппаратной функции; - вектор помех.

Затем для матрицы Х1 находится псевдообратная матрица Х+ по формуле (4):

где Т - символ транспонирования; Е - единичная матрица; δ - параметр регуляризации - малое положительное число, необходимое для устойчивого обращения матрицы . Матрица Х+ также может быть найдена сингулярным разложением Х1, например, в среде Matlab: Х+=pinv(X1,δ).

На следующем этапе матрица Y радиометрического изображения построчно переписывается в вектор , который затем умножается справа на матрицу Х+ и в результате получается вектор .

Элементы вектора построчно записываются в матрицу A={α(i,j)}, являющуюся матричным представлением аппаратной функции радиометра. Найденная аппаратная функция радиометра используются в дальнейшем для получения радиотеплового изображения наблюдаемых объектов в зоне обзора радиометра.

Заявляемый способ был проверен на модельном эксперименте. Изображение контрольного объекта в матрице X моделировалось в форме квадрата с амплитудой U0=10 на внешнем фоне с амплитудой Uф=0. Матрица Y радиометрического изображения (фиг. 1) получалась в результате сканирования матрицы X диаграммой направленности антенны (ДНА) размером 7×7 при СКО помехи σp=0,05. Аппаратная функция моделировалась экспонентой с квадратичным показателем степени. В матрице Y выделялась подобласть размером M×N=23×23 с размытым изображением контрольного объекта.

В качестве оптического изображения рассматривалось моделируемое изображение X контрольного объекта с внешним фоном в матрице размером M×N=23×23. В результате сегментации пороговым методом на оптическом изображении X выделялись два сегмента - объекта и фона, и элементам каждого сегмента присваивалась амплитуда. Полученное эталонное радиометрическое изображение (фиг. 2) использовалось для нахождения аппаратной функции.

Далее найденная аппаратная функция радиометра (фиг. 3) использовались для определения более сложного изображения X объекта в виде двух сегментов - рамки 9×9 шириной в 2 элемента с амплитудой U0=10 и внутренней части рамки в виде квадрата 5×5 с амплитудой U1=5 и внешнего фона с амплитудой Uф=0 - фиг. 4. Матрица Y моделировалась для ДНА 7×7 при СКО помехи σр=0,01. При нахождении изображения X применялся матричный метод [3].

На фиг. 5 показано радиометрическое изображение моделируемого объекта, на фиг. 6 - найденное изображение моделируемого объекта, полученное с помощью определенной ранее аппаратной функции радиометра.

Предлагаемый способ позволяет определить аппаратную функцию радиометра в реальных условиях его эксплуатации за счет формирования эталонного изображения с использованием оптического изображения произвольного контрольного объекта. Такой подход позволяет исключить неоднозначность, возникающую при использовании аппаратной функции радиометра, найденной с помощью эталонного объекта в условиях, отличающихся от реальных условий его эксплуатации.

Использование заявляемого способа за счет корректного определения аппаратной функции радиометра способствует более эффективному функционированию существующих радиометрических систем получения радиотеплового изображения различных объектов и окружающей среды.

СПИСОК ЛИТЕРАТУРЫ

1. Методика измерения аппаратной функции пассивной системы радиовидения / www.backstage.narod.ru/education/diplom98.pdf.

2. Гонсалес Р., Вудс Р., Эддинс С. Цифровая обработка изображений в среде MATLAB. М.: Техносфера, 2006. 616 с.

3. Василенко Г.И., Тараторин A.M. Восстановление изображений. М.: Радио и связь, 1986. 304 с.

1. Способ определения аппаратной функции радиометра, заключающийся в размещении в зоне обзора антенны радиометра контрольного объекта, характеризующегося контрастом по отношению к окружающему фону, сканировании контрольного объекта антенной радиометра по азимуту и углу места, формировании матрицы Y радиометрического изображения контрольного объекта и нахождении аппаратной функции радиометра, отличающийся тем, что в качестве контрольного объекта используют произвольный объект и формируют радиометрическое изображение области, содержащей контрольный объект с прилегающим фоном; при этом дополнительно получают оптическое изображение упомянутой области, формируют матрицу X оптического изображения упомянутой области с контрольным объектом, приводят матрицу X в соответствие масштабу матрицы Y, сегментируют матрицу X по контрасту амплитуд соседних сегментов, для каждого найденного сегмента вычисляют среднюю нормированную радиометрическую амплитуду и принимают сегментированную матрицу X за эталонное радиометрическое изображение контрольного объекта, а процедуру нахождения аппаратной функции радиометра осуществляют посредством преобразования матрицы X в псевдообратную матрицу Х+, построчного переписывания матрицы Y в вектор , умножения вектора справа на матрицу Х+, формирования вектора и построчной записи элементов вектора в матрицу А, являющуюся матричным представлением аппаратной функции радиометра.

2. Способ по п. 1, отличающийся тем, что получение оптического изображения области, содержащей контрольный объект, осуществляют с помощью фотокамеры.



 

Похожие патенты:

Изобретение относится к области радиотехники и может быть использовано в радиолокационных системах дистанционного зондирования Земли. Достигаемый технический результат изобретения – повышение качества изображения путем повышения разрешающей способности формируемого радиолокационного изображения наблюдаемого участка земной поверхности в телескопическом режиме за счет уменьшения протяженности обобщенной функции неопределенности по пространственным координатам.

Изобретение относится к радиолокационной технике, в частности к аэрокосмическим бортовым радиолокационным станциям с синтезированием апертуры антенны (РСА), формирующим радиолокационные изображения (РЛИ) земной поверхности с использованием синтезирования антенного раскрыва (САР) в процессе сканирования этой поверхности диаграммой направленности антенны РСА.

Изобретение относится к пассивным двухканальным сканирующим системам наблюдения с двумя приемниками, работающими в оптическом, инфракрасном или миллиметровом диапазонах длин волн.

Изобретение относится к пассивным системам радионаблюдений за объектами с помощью двухканального сканирующего радиометра, работающего в миллиметровом диапазоне длин волн, и может быть использовано также в оптических системах инфракрасного диапазона.

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра, а также может быть использовано в радиолокации, радиоастрономии и в оптико-электронных системах.

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным системам наблюдения за объектами с помощью радиометра со сканирующей по азимуту и углу места антенной.

Изобретение относится к бортовой информационной системе с антенной (2) для приема спутниковых данных географического положения. Техническим результатом является повышение качества приема слабых сигналов географического положения.

Изобретение относится к способам отображения радиолокационной информации на экранах индикаторов радиолокационных станций (РЛС). Достигаемый техническим результат - повышение достоверности и информативности радиолокационной информации о параметрах воздушных, надводных и наземных объектов.

Сканирующее устройство формирования трехмерного голографического изображения, в миллиметровом диапазоне волн, которое обеспечивает реализацию способа исследования объекта, включает в себя модуль трансивера миллиметрового диапазона, содержащий антенную решетку, направляющее устройство рельсового типа, с которым соединен модуль трансивера.

Изобретение относится к области радиолокации и может быть использовано для решения задач радиолокационного мониторинга ограниченных участков земной поверхности, представляющих интерес.

Изобретение относится к области радиотехники и может быть использовано в радиолокационных системах дистанционного зондирования Земли. Техническим результатом изобретения является повышение разрешающей способности восстанавливаемого радиолокационного изображения наблюдаемого участка земной поверхности. Сущность изобретения заключается в том, что процесс формирования изображений заключается в обработке радиосигналов, отраженных от земной поверхности, при формировании изображений производят дополнительную пространственную фильтрацию данных, поступающих с выхода согласованного приемника, корректирующим фильтром, сужая результирующую аппаратную функцию и, тем самым, уменьшая сглаживание восстанавливаемого радиолокационного изображения, при этом систематическая ошибка восстановления уменьшается. Регуляризация решения с помощью корректирующего фильтра минимизирует неоднозначность восстановления радиолокационного изображения. 5 ил.

Изобретение относится к области радиолокации, в частности к радиолокационным станциям РЛС, устанавливаемым на летательных аппаратах, и предназначено для решения задач картографирования земной поверхности. Достигаемый технический результат - повышение разрешающей способности по азимуту вблизи линии пути носителя бортовым РЛС. Указанный результат достигается за счет того, что когерентно излучают и накапливают сигнал в процессе сканирования лучом диаграммы направленности антенны вблизи линии пути носителя радиолокационной станции, когда луч диаграммы направленности антенны, плавно перемещаясь, охватывает весь передний сектор, при этом когерентное накопление сигналов осуществляют по суммарному каналу и разностному азимутальному каналу антенны, затем осуществляют сигнальную обработку двух накопленных сигналов, заключающуюся в определении и компенсации фазового набега, определении крутизны частотной модуляции сигналов, выделении сигналов, накопленных слева и справа от линии пути носителя бортовой РЛС, спектральной обработке сигналов, объединении сигналов накопленных слева и справа от линии пути носителя, после формирования двух объединенных массивов амплитуд сигналов из массива амплитуд суммарного канала вычитают массив амплитуд разностного азимутального канала, а затем формируют радиолокационное изображение. 2 ил.
Наверх