Способ непрерывной переработки медных никельсодержащих сульфидных материалов на черновую медь, отвальный шлак и медно-никелевый сплав

Изобретение используется для переработки медных никельсодержащих сульфидных материалов. Способ включает плавку материалов совместно с SiO2 и CaO-содержащими флюсами и углем в конвертерной печи Ванюкова с получением черновой меди, концентрированных по SO2 газов, шлака с соотношением концентраций SiO2/CaO в нем от 0,4/1 до 3/1 и суммы концентраций железа, никеля и кобальта не более 30 мас.%, при удельном расходе кислорода в пределах 150-240 нм3 на 1 т перерабатываемого сухого сульфидного материала. Далее ведут обеднение этого шлака в отдельной в восстановительной печи Ванюкова при использовании смеси кислородсодержащего газа и углеводородного топлива совместно с углем с получением отвального шлака и медно-никелевого сплава. Техническим результатом является получение черновой меди, отвального шлака и медно-никелевого сплава непрерывным способом, при разделении процессов конвертирования и восстановления по отдельным двум однозонным печам Ванюкова. 2 з.п. ф-лы, 5 ил., 1 табл.

 

Предлагаемое изобретение относится к области цветной металлургии, в частности, к способам переработки медных никельсодержащих сульфидных материалов.

Способ может быть использован для переработки медных никельсодержащих сульфидных материалов с получением черновой меди, отвального шлака и медно-никелевого сплава.

Способ непрерывной переработки медных никельсодержащих сульфидных материалов представляется в виде комплекса, состоящего из двух печей, например из двух печей Ванюкова. Окислительную плавку медного никельсодержащего сульфидного материала ведут в конвертерной печи Ванюкова совместно с SiO2 и CaO-содержащими флюсами с получением черновой меди, концентрированных по SO2 газов и богатого оксидами меди и никеля шлака, который непрерывно, по переточному желобу, поступает во вторую печь комплекса непрерывного конвертирования, в восстановительную печь Ванюкова, где проходит обработку восстановительной газовой смесью, при использовании для этого смеси кислородсодержащего газа, углеводородного топлива и угля при коэффициенте расхода кислорода (α) в пределах от 0,5 до 0,9 с получением отвального шлака и медно-никелевого сплава. Кроме медного никельсодержащего сульфидного материала в конвертерную и в восстановительную печи Ванюкова подают сопутствующие продукты, содержащие медь и никель.

Основными продуктами комплекса непрерывного конвертирования, состоящего из двух печей Ванюкова, являются: черновая медь, концентрированные по SO2 газы, отвальный шлак и медно-никелевый сплав. Химический состав отвального шлака таков, что позволяет использовать его в строительной индустрии или для закладки горных выработок, а состав медно-никелевого сплава является основой для получения товарной продукции.

Известен способ непрерывного конвертирования жидких и твердых сульфидных материалов (RU №2071982), включающий загрузку сульфидных материалов в печь, подачу кислородсодержащего дутья в слой штейно-металошлаковой эмульсии через горизонтальные дутьевые устройства, расположенные равномерно в боковых стенках печи, удаление жидких продуктов конвертирования из печи. Недостатком указанного способа является возможность периодического образования между слоями шлака и меди промежуточного слоя штейна. Наличие промежуточного слоя штейна неизбежно приводит к образованию не черновой, а получерновой меди. Поскольку допускается периодическое получение получерновой меди, данная технология непрерывного конвертирования должна предусматривать и обязательную в этом случае операцию финишного конвертирования. Недостатками такого способа конвертирования являются: образование свернутых никелевых шлаков и нецелесообразность утилизации серы на операции финишного конвертирования. В случае получения в печи не получерновой, а черновой меди недостатком технологии следует считать невысокое прямое извлечение меди в черновую медь, так как операция обеднения образующегося при окислительной плавке шлака этим способом не предусматривается.

Также известен способ (RU №2169202) переработки медного концентрата на черновую медь, включающий загрузку шихты, продувку расплава с образованием шлака и черновой меди и выпуск этих продуктов плавки. При этом окислительную плавку концентрата ведут при соотношении загрузки концентрата и подачи кислородсодержащего газа в пределах 1,0-1,3 от теоретически необходимого для окисления всей серы и примесей (Fe, Ni, Со) до оксидов, а перед выпуском шлака, который осуществляют периодически, проводят обеднение шлака, меняя соотношение загружаемого медного концентрата и кислородсодержащего дутья в пределах 0,3-1,0 от теоретически необходимого для окисления всей серы и примесей (Fe, Ni, Со) до оксидов. При этом добиваются снижения содержания оксидной меди в шлаке с 35 до 22%. Недостатками данного способа получения черновой меди является достаточно высокое остаточное содержание меди в шлаке после обеднения. Это связано с тем, что при восстановлении шлака сульфидным концентратом в шлак переходят по обменным реакциям железо, кобальт и никель концентрата, что на фоне снижения концентрации в шлаке меди приводит к заметному увеличению в шлаке концентраций железа и никеля. При попытках более глубокого восстановления шлака по меди концентрации железа и никеля в шлаке еще больше возрастают, и происходит выпадение из шлака твердой железо-никелевой шпинели в результате насыщения ею гомогенного силикатного расплава. Следствием нахождения в шлаке значительного количества твердой шпинели является, как известно, неизбежное вспенивание шлака и создание аварийной ситуации.

Совмещение в одном печном пространстве двух процессов (окислительного и восстановительного) приводит к непостоянству состава продуктов плавки (меди, шлака, отходящих газов) и делает весьма сложным автоматический контроль управления такой технологией.

Непостоянство уровней шлака и меди предполагает периодический контакт агрессивного, из-за высокого содержания оксидной меди (на окислительной стадии концентрация меди достигает 35 мас. %), шлакового расплава с огнеупорной футеровкой с быстрым износом последней.

Наиболее близким к предлагаемому изобретению по технической и технологической сущности является способ непрерывной переработки медных никельсодержащих сульфидных материалов совместно с SiO2 и CaO-содержащими флюсами (RU №2359046) с получением черновой меди, оборотного шлака, концентрированных по SO2 газов, в печи с двумя зонами - окислительную плавку ведут в окислительной зоне, а обеднение шлака ведут непрерывно в восстановительной зоне печи при использовании для этого смеси кислородсодержащего газа и углеводородного топлива при коэффициенте расхода кислорода (α) в пределах от 0,5 до 0,9. На окислительную плавку совместно с SiO2-содержащим флюсом подают CaO-содержащий флюс из расчета получения шлаков с отношением SiO2/CaO в нем от 3/1 до 1/1, причем суммарный расход флюсов на окислительную плавку определяют из условий поддержания в шлаке суммы концентраций железа, никеля и кобальта не более 30 масс. %. На стадию восстановления шлака, совместно с углеводородным топливом, подают твердое топливо, например уголь. Данный способ имеет следующий существенный недостаток: шлак окислительной плавки, без изменения кондиционных качеств черновой меди по никелю, нельзя подвергнуть глубокому восстановлению, поскольку на определенной стадии процесса начинает активно восстанавливаться из шлака никель и железо с переходом в черновую медь и, тем самым, делая ее некондиционной для последующего огневого рафинирования. Таким образом, полученный шлак двухзонной печи Ванюкова, богатый оксидами меди (выше 11%) и никеля (выше 6%), является богатым продуктом, который должен проходить дополнительную стадию его обработки с целью доизвлечения из него меди и никеля. Переработка такого шлака оказывает дополнительную нагрузку на пирометаллургический передел никелевого производства, куда отправляется шлак для доизвлечения меди и никеля. Способ принят за ближайший аналог.

Задачей изобретения является разработка способа непрерывной переработки медных никельсодержащих сульфидных материалов с получением черновой меди, шлака, соответствующего по своему составу шлаку отвальных кондиций, т.е. отвальному шлаку и медно-никелевого сплава. Для достижения поставленной цели процессы конвертирования и восстановления необходимо разделить по отдельным агрегатам, по двум однозонным печам Ванюкова, соединенным между собой переточным желобом.

Техническим результатом является получение черновой меди, отвального шлака и медно-никелевого сплава непрерывным способом, при разделении процессов конвертирования и восстановления по отдельным агрегатам, по двум однозонным печам Ванюкова.

Указанный технический результат достигается тем, что в способе непрерывной переработки медных никельсодержащих сульфидных материалов на черновую медь, отвальный шлак и медно-никелевый сплав, включающем окислительную плавку совместно с SiO2 и CaO-содержащими флюсами и углем, с получением черновой меди, концентрированных по SO2 газов, шлака с соотношением концентрации SiO2/CaO в нем от 3/1 до 1/1 и суммы концентраций железа, никеля и кобальта не более 30 масс. %, при удельном расходе кислорода в пределах 150-240 нм3 на 1 т перерабатываемого сухого сульфидного материала и обеднение этого шлака при использовании для этого смеси кислородсодержащего газа и углеводородного топлива при коэффициенте расхода кислорода (α) в пределах от 0,5 до 0,9 совместно с углем, в отличие от ближайшего аналога обеднение шлака ведут в отдельном агрегате, в восстановительной печи Ванюкова, при этом получают отвальный шлак и медно-никелевый сплав.

Способ может характеризоваться тем, что при обеднении шлакового расплава получают медно-никелевый сплав, являющийся основой для получения товарной продукции.

Также способ может характеризоваться тем, что на окислительную плавку совместно с SiO2-содержащими флюсами подают CaO-содержащий флюс из расчета получения шлака с отношением концентраций SiO2/CaO от 0,4/1 до 3/1.

Кроме этого способ может характеризоваться тем, что на восстановление подают уголь в расчете до 15% от массы получаемого шлака стадии окисления.

Способ может характеризоваться еще и тем, что в конвертерную и восстановительную печи Ванюкова подают сопутствующие продукты.

Способ может характеризоваться также тем, что сопутствующие продукты содержат медь и никель.

Заявляемый способ непрерывной переработки медных никельсодержащих сульфидных материалов в комплексе, состоящего из двух печей, в частности из двух печей Ванюкова, представляется следующим образом (см. фигуру 1). В конвертерную печь Ванюкова, комплекса непрерывного конвертирования, подают медные никельсодержащие сульфидные материалы совместно с SiO2 и CaO-содержащими флюсами. Через фурмы печи подается кислородно-воздушная смесь и газообразное топливо. Образующиеся в процессе плавки в конвертерной печи Ванюкова черновая медь выпускается непрерывно в миксер-накопитель, а шлак с высоким содержанием меди, никеля и железа, поступает во вторую печь комплекса непрерывного конвертирования, в восстановительную печь Ванюкова, где происходит его обеднение восстановительной газо-воздушной смесью совместно с каменным углем с получением отвального шлака и медно-никелевого сплава. Восстановительная газо-воздушная смесь формируется в результате сжигания природного газа в кислородно-воздушной смеси, в условиях дефицита кислорода. Температуру окислительного и восстановительного процессов поддерживают на уровне 1350°C.

Продукты плавки конвертерной печи Ванюкова (черновая медь) и печи восстановления (отвальный шлак и медно-никелевый сплав) предполагается выпускать непрерывно. Для выпуска продуктов плавки предусматриваются сифонные устройства, размещенные в противоположных торцах печей. Непрерывность предлагаемого процесса в виде комплекса из двух печей Ванюкова создает предпосылки для поддержания постоянства уровней шлака и черновой меди в конвертерной печи Ванюкова и, шлака и медно-никелевого сплава в восстановительной печи Ванюкова, что является важным преимуществом данного процесса. Черновая медь непрерывно выпускается через сифонное устройство в предназначенный для нее миксер-накопитель и далее отправляется на анодное рафинирование с получением медных анодов. Специфика состава шлака окислительной стадии нового способа такова, что в нем содержатся медь и никель в соотношении 4/1-5/1 благоприятного для получения ценного медно-никелевого сплава, например сплав «мельхиор». В результате глубокого восстановления такого шлака до отвальных кондиций образуется медно-никелевый сплав с некоторым содержанием железа, который и является основой для получения товарной продукции. Этот медно-никелевый сплав может быть переработан либо в пирометаллургическом никелевом производстве, либо направлен на стадию окислительного рафинирования для удаления железа и получения товарной продукции, состав которой для условий России определен Государственным стандартом (сплав «мельхиор», «нейзильбер» и пр.).

Важной особенностью разработанного способа является то, что в случае переработки в конвертерной печи Ванюкова материалов, содержащих драгоценные, платиновые металлы и их спутники, эти металлы практически полностью извлекаются в черновую медь и не переходят в шлак, поступающий в восстановительную печь Ванюкова. Это обеспечивает получение в восстановительной печи Ванюкова медно-никелевого сплава практически не содержащего драгоценные, платиновые металлы и их спутники.

Очевидно, что сплав восстановительной печи Ванюкова предпочтительнее после операции рафинирования и розлива направлять потребителю как товарную продукцию.

Шлак, полученный в восстановительной печи Ванюкова, является отвальным. Химический состав шлака таков, что позволяет использовать его в строительной индустрии или для закладки горных выработок.

Вся сера, содержащаяся в медном никельсодержащем сульфидном материале, переходит в газовую фазу конвертерной печи Ванюкова.

Поскольку стадия окисления, реализованная в конвертерной печи Ванюкова, процесса непрерывного конвертирования с получением черновой меди прошла всесторонние исследования и в настоящее время достаточно изучена (Цымбулов Л.Б., Князев М.В., Цемехман Л.Ш. Способ переработки медных сульфидных материалов на черновую медь // Патент РФ №2359046 от 09.01.2008. Пигарев. С.П. Строение и свойства шлаковых расплавов непрерывного конвертирования медных никельсодержащих штейнов и концентратов. Автореф. дисс. к.т.н. С.-Петербург. 2013. 21 с.), предлагаемое изобретение основывается на данных экспериментальных исследований восстановительной стадии нового способа с поиском условий, обеспечивающих получение отвального шлака и медно-никелевого сплава, являющегося основой для получения товарной продукции, например - сплав «мельхиор», нашедший в настоящее время широкое применение в промышленном производстве как сплав с высокими антикоррозийными свойствами, а также для производства бытовых и ювелирных изделий.

Методика проведения экспериментальных исследований заключалась в следующем. В индукционную печь помещали алундовый реактор, в котором находился алундовый тигель с исходным шлаком, который представлял собой шлак окислительной стадии процесса, следующего состава, % масс: Cu - 17,9; Ni - 5,6; Fe - 23,1; Со - 0,135; SiO2 - 27,5; CaO - 11,9; Al2O3 - 3,1; MgO - 0,79. Далее запускали печь в работу, изменяя напряжение на индукторе, разогревали печь до рабочей температуры 1350°C.

После проплавления шлака через трубку из оксида бериллия проводилась продувка расплава восстановительной газовой смесью следующего состава % об.: СО - 44; CO2 - 38; H2 - 18. Парциальное давление кислорода в восстановительной газовой смеси соответствовало парциальному давлению кислорода в смеси, образующейся при сжигании природного газа при величине "альфа" (α)=0,6.

В лабораторных экспериментах варьировали время продувки расплава газовой смесью от 0 до 50 минут. Расход газовой смеси составлял 0,8 л/мин. По окончании продувки, расплав отстаивали в течение 15 минут, далее отключали печь. Затем тигель с расплавом вынимали из печи, охлаждали и отделяли шлак от металлического сплава.

Шлак и металлический сплав, пройдя соответствующую пробоподготовку, анализировали методами атомно-абсорбционной спектрометрии и атомно-эмиссионной спектрометрии с индуктивно связанной плазмой.

Химические составы металлического сплава и шлака, полученные в результате проведенных экспериментальных исследований, представлены в таблице 1 (фигура 2).

Первоначально рассмотрим изменение состава шлака по меди и никелю при изменении времени продувки шлакового расплава восстановительной газовой смесью. Данная зависимость представлена на фигуре 3.

Как видно из фигуры 3, с увеличением времени продувки шлакового расплава восстановительной газовой смесью, наблюдается резкое снижение содержания меди в шлаке, а, начиная с 17-ой минуты продувки, на фоне снижения содержания меди наблюдается и существенное снижение содержания никеля в шлаковом расплаве. После 35-й минуты продувки шлакового расплава снижение концентрации меди и никеля в шлаке становится крайне незначительным.

Из графика, представленного на фигуре 4, видно, что снижение содержания меди (фигура 4-а) и никеля (фигура 4-б) в шлаке сопровождается ростом содержания никеля в металлическом сплаве, достигая максимального значения его содержания на уровне 21,5%, при концентрации меди и никеля в шлаке на уровне 0,8% и 0,4% соответственно. Дальнейшее снижение меди и никеля в шлаковом расплаве до кондиционных значений характеризуется снижением содержания никеля в металлическом сплаве, что связано с началом активного восстановления железа и переходом его в металлический сплав. Подробнее об этом будет сказано ниже.

Поскольку предложенный нами новый способ непрерывной переработки медных никельсодержащих сульфидных материалов подразумевает одновременное получение сплава с определенным соотношением меди к никелю и с определенным кондиционным содержанием в нем железа, с одной стороны, и отвального шлака, с другой стороны, необходимо произвести выбор оптимальных технологических параметров, на которые и следует ориентироваться при его реализации.

Рассмотрим динамику изменения состава шлака и медно-никелевого сплава в процессе продувки восстановительной газовой смесью (см. фигуру 5).

На фигуре 5 представлен график, характеризующий изменение содержания никеля и железа в металлическом сплаве от времени продувки шлакового расплава восстановительной газовой смесью. На рассматриваемый график, также нанесены зависимости изменения содержаний меди и никеля в шлаке от времени продувки шлакового расплава газовой смесью.

На указанных графиках следует обратить внимание, прежде всего, на взаимосвязь содержания меди и никеля в отвальном шлаке с содержанием никеля и железа в образующемся в результате восстановления металлическом сплаве. В период активного восстановления никеля с 5 до 30 минут продувки наблюдается существенное снижение концентраций, как меди, так и никеля в шлаке, но эти остаточные содержания еще достаточно высоки (Cu - 0,8%; Ni - 0,4%) и не позволяют считать шлак отвальным.

Только тогда, когда начинается активное восстановление железа, становится возможным снижение концентраций меди и никеля до отвальных содержаний.

Таким образом, с одной стороны, для получения кондиционного содержания железа в медно-никелевом сплаве, в частности в мельхиоре (Fe≤0,5%) необходимо стремиться к минимальной степени восстановления железа в процессе обеднения. С другой стороны, глубокое обеднение шлака по меди и никелю возможно только при получении сплава с концентрацией железа 5% и более, что потребует дополнительных затрат на стадии рафинирования, при получении медно-никелевых сплавов товарных марок. В связи с этим рекомендуется проводить процесс обеднения до достижения концентрации железа в медно-никелевом сплаве ~6%. При этом будет получен отвальный шлак следующего состава, % масс: Cu - 0,45; Ni - 0,17; Fe - 30,3; SiO2 - 37,5; CaO - 16,2; Al2O3 - 5; MgO - 1. Состав медно-никелевого сплава будет следующим, % масс.: Cu - 73,2; Ni - 20,5; Fe - 6,1.

Для получения из этого сплава товарной продукции, например в виде сплава «мельхиор», необходимо провести стадию окислительного рафинирования, при котором содержание железа в медно-никелевом сплаве может быть снижено до кондиционных значений. Соотношение Cu/Ni в полученном рафинированном металлическом сплаве будет находиться в пределах 4/1-5/1, т.е. соответствовать составу товарной продукции. Шлак, образующийся в процессе окислительного рафинирования, основой которого будут оксиды железа, направляется в комплекс непрерывного конвертирования - на окислительную стадию процесса, в конвертерную печь Ванюкова. Возможно производство и других видов товарной продукции, состав которой для условий России определен Государственным стандартом. Специфической особенностью разработанного способа, как это отмечено выше, является то, что драгоценные, платиновые металлы и их спутники, присутствующие в сырье, практически полностью переходят в черновую медь на стадии конвертирования и получение нового вида товарной продукции не приведет к дополнительным потерям этих металлов.

Разработанный способ имеет важное преимущество - возможность получения новой товарной продукции по короткой технологической схеме, что существенно сокращает затраты на производство товарной продукции металлургического предприятия в целом.

1. Способ непрерывной переработки медных никельсодержащих сульфидных материалов, включающий окислительную плавку совместно с SiO2- и СаО-содержащими флюсами и углем при удельном расходе кислорода в пределах 150-240 нм3 на 1 т перерабатываемого сухого сульфидного материала с получением черновой меди, концентрированных по SO2 газов и шлака с суммой концентраций железа, никеля и кобальта не более 30 мас.% и обеднение полученного шлака восстановлением при использовании смеси кислородсодержащего газа и углеводородного топлива при коэффициенте расхода кислорода (α) в пределах от 0,5 до 0,9 совместно с углем, отличающийся тем, что окислительную плавку и обеднение шлака ведут в отдельных однозонных окислительной и восстановительной печах Ванюкова, при этом на окислительную плавку подают флюсы из расчета получения шлака с соотношением концентраций SiO2/CaO от 0,4/1 до 3/1, а при обеднении шлака подают уголь в расчете до 15% от массы получаемого шлака окислительной плавки, причем обеднение шлака проводят путем продувки в течение от 17 до 35 минут с получением отвального шлака и медно-никелевого сплава.

2. Способ по п. 1, отличающийся тем, что в окислительную и восстановительную печи Ванюкова подают сопутствующие продукты.

3. Способ по п. 2, отличающийся тем, что сопутствующие продукты содержат медь и никель.



 

Похожие патенты:
Изобретение относится к технологии утилизации отходов латуни, отработанных травильных растворов, отходов цинка и может быть использовано в машиностроении и гальванотехнике.

Изобретение относится к способу флотационного разделения минералов тяжелых металлов. В способе используется селективный собиратель М-ТФ, представляющий собой смесь дитиофосфата и тионокарбамата с переменным в нем соотношении дитиофосфата и тионокарбамата в зависимости от долей пирита и пирротина в сульфидной руде, от соотношений сульфидов меди и разновидностей сфалерита в коллективном концентрате и операциях селективной флотации.
Изобретение относится к гидрометаллургии, конкретно к способу выделения оксидов цинка и меди из водно-аммиачного раствора, содержащего растворимые соединения цинка и меди, а также 4-10% аммиака, и образующегося в процессе водно-аммиачной обработки вторичного сырья, содержащего соединения цинка и меди, например в мельнице мокрого помола, при кучном или чановом выщелачивании.

Изобретение относится к утилизации отработанных медно-аммиачных растворов травления печатных плат. Способ включает обработку отработанного концентрированного медно-аммиачного раствора раствором соляной или серной кислоты до рН 5,5-6,5 для отделения ионов меди в виде осадка гидроксида меди.
Изобретение относится к способу получения пергидро(1,3,5-дитиазин)-5-ил-метана, являющегося сорбентом при извлечении благородных металлов из растворов. Способ включает взаимодействие формальдегида, сульфида натрия и аминосоединения.

Изобретение относится к области металлургии цветных и благородных металлов, в частности к способам переработки шламов электролитического рафинирования меди. Способ включает выщелачивание сурьмы и свинца из медеэлектролитного шлама в растворе, содержащем 50-200 г/дм3 глицерина, 50-100 г/дм3 щелочи и восстановитель, в количестве, обеспечивающем окислительно-восстановительный потенциал системы положительнее +0,8 В при температуре 70-90°С в течение 2-3 часов.

Изобретение относится к способу очистки никелевого электролита от примесей ионов Fe (III), Со (III) и Cu (II) экстракцией с селективным извлечением указанных ионов из электролита в органическую фазу.

Изобретение может быть использовано в обогащении меди и серебра для переработки сульфидно-окисленных медных руд. Перед подачей на кислотное выщелачивание при перемешивании коллективного концентрата, полученного из сульфидно-окисленной медной руды, осуществляют стадиальную коллективную флотацию с использованием добавки сульфида натрия.

Изобретение относится к гидрометаллургическим способам переработки растворов, содержащих цветные металлы, осаждением гидратов цветных металлов с помощью магнийсодержащего осадителя.
Изобретение относится к способу переработки медно-ванадиевой пульпы процесса очистки тетрахлорида титана. Способ включает отгонку тетрахлорида титана из медно-ванадиевой пульпы с получением кубового остатка .

Изобретение относится к способу извлечения базовых металлов из сульфидных руд и концентратов. Способ включает стадии, в которых смешивают содержащую базовые металлы руду с солями трехвалентного железа. Базовые металлы предпочтительно представляют собой медь, никель и цинк. Затем нагревают указанную смесь, добавляют воду для образования суспензии, перемешивают и фильтруют суспензию. Техническим результатом является повышение эффективности извлечения указанных металлов при переработке руд и концентратов с низким содержанием сульфидов. 9 з.п. ф-лы, 3 табл., 3 пр.

Изобретение относится к гидрометаллургии меди. Способ переработки многокомпонентных хлоридных и хлоридно-сульфатных растворов для получения чистого электролита CuSO4 и для его регенерации после электролиза с нерастворимым анодом включает осаждение из исходного раствора чистой соли CuCl действием на него ранее полученным порошком меди с последующим гидролитическим разложением CuCl водяным паром при температуре, равной или более 100°C, с получением оксида меди (I) - Cu2O. Далее действием оксида меди на раствор серной кислоты получают чистый электролит CuSO4 и порошок меди. При этом образующийся в процессе порошок меди используют для выделения CuCl из исходного раствора. Техническими результатами предлагаемого способа являются быстрое и дешевое извлечение меди из многокомпонентных растворов в форме CuCl, простая и дешевая переработка ее на чистый электролит CuSO4 и его регенерация в процессе электролиза с нерастворимым анодом. 2 пр.

Изобретение относится к комплексному способу переработки шлаков. Способ включает обогащение исходного сырья и биовыщелачивание с получением продуктивного раствора. При этом в качестве исходного сырья используют лежалые шлаки медеплавильного производства с повышенными содержаниями металлов Cu, Pb, Zn, Sn, Sb, As, Bi, Fe, которые направляют на механическое обогащение с получением коллективного концентрата и хвостов. Полученные хвосты подвергают окомкованию и кучному биовыщелачиванию с получением продуктивного раствора с извлечением в него Cu, Zn, Fe, Sb, As и твердого остатка. Полученный остаток направляют на пирометаллургическую переработку с получением чернового свинца и вторичного шлака. Продуктивный раствор биовыщелачивания направляют на цементацию меди с получением цементационной меди и раствора, направляемого на осаждение из него арсената кальция и получение железооксидного транспарентного пигмента. Техническим результатом является повышение эффективности и глубины переработки шлаков с получением дополнительной товарной продукции. 9 з.п. ф-лы, 3 табл., 2 пр.
Изобретение относится к гидрометаллургии и может быть использовано при регенерации сернокислых производственных растворов. Сернокислый раствор, содержащий примесные элементы, подвергают экстракционной обработке с переводом основной части серной кислоты в первичный экстракт, а основной части примесных элементов в первичный рафинат. Первичный экстракт отмывают от примесных элементов сернокислым раствором, который присоединяют к исходному сернокислому раствору или первичному рафинату. Отмытый первичный экстракт обрабатывают раствором серной кислоты с получением первичного реэкстракта в виде очищенного раствора серной кислоты с концентрацией 450-600 г/л. Первичный рафинат подвергают экстракционной обработке азот- или фосфорсодержащим экстрагентом с получением вторичного экстракта и вторичного рафината, содержащего 100-250 г/л серной кислоты. Вторичный экстракт подвергают водной реэкстракции с получением вторичного реэкстракта в виде раствора серной кислоты, который используют в качестве реэкстрагента для обработки отмытого первичного экстракта. Способ позволяет повысить концентрацию получаемого очищенного сернокислого раствора до 600 г/л. 7 з.п. ф-лы, 6 пр.

Группа изобретений относится к способу и устройству для получения черновой меди. Способ включает смешение и реагирование медеплавильного расплавленного шлака, углеродсодержащего восстановителя и инертного газа под давлением. При этом давление инертного газа составляет от 100 кПа до 800 кПа. Устройство включает корпус печи и газовые сопла размещенные на корпусе печи. Газовые сопла расположены на боковой стенке корпуса печи и ориентированы на центр ванны расплава. Техническим результатом является снижение содержания меди в послереакционном шлаке. 2 н. и 8 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к очистке от меди медеплавильного расплавленного шлака. Способ включает смешивание в очищающем устройстве медеплавильного расплавленного шлака, восстановителя и сжатого инертного газа с получением очищенного от меди шлака. Используют медеплавильный расплавленный шлак, содержащий медь в окисленном состоянии в количестве от 10 до 20 мас.%, при этом инертный газ подают в очищающее устройство под давлением от 100 до 800 кПа. Обеспечивается кипение шлака и интенсификация перемешивания. 8 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к переработке медно-никелевого файнштейна. Способ включает загрузку флюса в печь с нагретым медно-никелевым файнштейном, содержащим кобальт и железо, плавление флюса и продувку файнштейна кислородсодержащим дутьем. В качестве флюса используют смесь В2О3 и СаО в количестве 30-35% от массы железа и кобальта в файнштейне при соотношении В2О3/СаО, равном 4-9. Продувку ведут до полного окисления железа и кобальта с переходом их во флюс. Обеспечивается увеличение извлечения кобальта. 1 табл.

Изобретение относится к цементации меди из медьсодержащих растворов. Способ включает восстановление меди из медьсодержащих растворов железной стружкой с использованием электромагнитного поля, фильтрование и промывку. В качестве медьсодержащих растворов используют медно-сульфатные и медно-хлоридные растворы с концентрацией ионов меди 50-300 г/дм3, при этом восстановление меди ведут в электромагнитном аппарате с движущимися под воздействием переменного магнитного поля магнитными элементами из магнитотвердого материала при мольном отношении Fe:Cu=1:1, при температуре 25-40°С, в течение 1-5 мин с получением осадка в виде медного порошка. Обеспечивается сокращение расхода реагентов и времени получения металлического порошка высокой степени дисперсности. 3 табл., 3 пр.
Изобретение относится к способу переработки отходов электронной и электротехнической промышленности. Способ включает обработку печатных плат с радиодеталями навесного монтажа метансульфоновой кислотой для растворения оловосодержащего припоя и отсоединения радиодеталей, коагуляцию полученной суспензии, декантирование и фильтрацию с получением метаоловянной кислоты. Далее проводят осаждение сульфата свинца серной кислотой из фильтрата и выделение металлов. При этом перед обработкой печатных плат метансульфоновой кислотой проводят их щелочную обработку для разрушения лакового покрытия навесного монтажа. После отсоединения радиодеталей остающиеся на платах медные токоведущие дорожки, растворяют смесью, содержащей 25-30% NaCl и 15-20% CuCl2 при нагревании в присутствии ПАВ и циркулирующей по операциям: растворение меди - электротехническое осаждение меди из полученного раствора - электролита при катодной плотности тока 80-120 А/м2. Техническим результатом является повышение эффективности процесса переработки электронных плат путем дополнительного извлечения меди и улучшения качества полученного катодного осадка меди. 4 з.п. ф-лы, 1 пр.

Изобретение относится к способу конвертирования медных штейнов посредством донной продувки и печи для конвертирования медных штейнов посредством донной продувки. Способ включает подачу медных штейнов и флюсов в печь для конвертирования медных штейнов посредством донной продувки; непрерывное нагнетание кислородсодержащего газа в слой черновой меди расплава со дна печи с использованием фурм; и выгрузку черновой меди и шлака из печи, соответственно. Обеспечивается повышение качества полученной черновой меди, снижение расхода кислорода и повышение срока службы печи. 2 н. и 38 з.п. ф-лы, 5 ил.
Наверх