Аминосодержащие полимеры с концевыми карбинольными группами

Изобретение относится к диеновым полимерам, способу их получения, их применению, к вулканизующимся каучуковым композициям, их применению, а также к шине и формованным изделиям, содержащим каучуковую композицию в вулканизованной форме. Диеновые полимеры содержат в начале полимерных цепей третичные аминогруппы формулы (II), а также имеют по концам полимерных цепей силансодержащие карбинольные группы формулы (III) в виде солей металлов. Причем R1, R2 являются одинаковыми или различными и представляют собой алкильный, циклоалкильный, арильный, алкарильный и аралкильный радикалы, которые могут содержать гетероатомы, такие как кислород, азот, сера и/или кремний. В указанных формулах (II) и (III) Z означает двухвалентный органический радикал, который может содержать, кроме атомов углерода и водорода, гетероатомы, такие как кислород, азот, сера и/или кремний. Причем R3, R4, R5, R6 являются одинаковыми или различными и означают водород, алкильный, циклоалкильный, арильный, алкарильный и аралкильный радикалы, которые могут содержать гетероатомы, такие как кислород, азот, сера и/или кремний. 10 н. и 11 з.п. ф-лы, 2 табл, 3 пр.

 

Изобретение относится к диеновым полимерам с функциональными группами в начале и в конце полимерных цепей, их получению и применению.

Важными свойствами протекторов являются их хорошее сцепление с сухой и мокрой поверхностями, а также высокое сопротивление истиранию. При этом очень трудно улучшить сопротивление шин скольжению, не ухудшая одновременно сопротивления качению. Низкое сопротивление качению имеет существенное значение для низкого потребления горючего, а высокое сопротивление трению является решающим фактором для высокой износостойкости шин.

Сопротивление покрышки скольжению в мокром состоянии и сопротивление ее качению в значительной степени зависят от динамически-механических свойств каучуков, используемых при приготовлении каучуковой смеси. С целью снижения сопротивления качению для протекторов используют каучуки с высокой эластичностью по отскоку при повышенной температуре (от 60°C до 100°C). С другой стороны, для повышения сопротивления покрышки скольжению в мокром состоянии преимуществом каучука является высокий коэффициент амортизации при низкой температуре (от 0°C до 23°C) или низкая эластичность по отскоку в пределах температур от 0°C до 23°C. Для удовлетворения этого комплексного профиля требований для протектора используют смеси различных каучуков. Обычно используют смеси из одного или нескольких каучуков с относительно высокой температурой стеклования, таких как стиролбутадиеновый каучук, и одного или нескольких каучуков с относительно низкой температурой стеклования, таких как полибутадиен с высоким 1,4-цис-содержанием или стиролбутадиеновый каучук с низким содержанием стирола и низким винилсодержанием либо полученный в растворе полибутадиен со средним 1,4-цис- и низким винилсодержанием.

При изготовлении протекторов с низким сопротивлением качению каучуки, содержащие двойные связи, полученные анионной полимеризацией в растворе, такие как полимеризованные в растворе полибутадиеновые и полимеризованные в растворе стиролбутадиеновые каучуки имеют преимущество по сравнению с соответствующими эмульсионными каучуками. Преимуществами, кроме прочего, являются регулируемость винилсодержания и связанная с этим температура стеклования и разветвление молекулы. Благодаря этому при практическом использовании достигается преимущество в отношении сопротивления шин скольжению в мокром состоянии и сопротивления их качению. Существенный вклад в отношении рассеяния энергии и, следовательно, сопротивления качению протекторов вносят свободные концы полимерных цепей и обратимые процессы образования и деструкции сетки наполнителя, образующейся в используемом в смеси для протектора наполнителе (преимущественно, кремневой кислоты и/или сажи).

Введение функциональных групп в начало и/или по концам полимерных цепей делает возможным физическую или химическую связь начала и/или концов полимерных цепей с поверхностью наполнителя. Благодаря этому ограничивается их подвижность и, следовательно, снижается рассеяние энергии при динамическом напряжении протектора. Одновременно эти функциональные группы улучшают диспергирование наполнителя в протекторе, что может привести к ослаблению сетки наполнителя и, следовательно, может привести к дополнительному снижению сопротивления качению.

Способы введения функциональных групп в начало полимерных цепей посредством функциональных анионных инициаторов полимеризации описаны, например, в европейских патентных публикациях EP 0513217 B1 и EP 0675140 B1 (инициаторы с защищенной гидроксильной группой), в патентной заявке США US 2008/0308204 A1 (инициаторы, содержащие простой тиоэфир), а также в патенте США US 5792820 и в европейской патентной публикации EP 0590490 B1 (щелочные амиды вторичных аминов в качестве инициаторов полимеризации).

В европейской патентной публикации EP 0594107 B1, в особенности, описано применение in situ в качестве инициаторов полимеризации щелочные амидов вторичных аминов, причем функционализация концов цепей полимеров не описана.

Кроме того, разработаны многочисленные способы введения функциональных групп по концам полимерных цепей. В европейской заявке на патент EP 0180141 A1 описывается, например, использование в качестве агента функционализации (то есть введения функциональных групп) 4,4'-бис(диметиламино)бензофенона или N-метилкапролактама. Из европейской заявки на патент EP 0864606 A1 известно использование этиленоксида и N-винилпирролидона. В патенте США US 4417029 приводится ряд других возможных агентов функционализации.

В особенности хорошо пригодны для функционализации концов полимерных цепей диеновых каучуков силаны, по меньшей мере, в сумме с двумя галоген-, и/или алкилокси-, и/или арилоксизаместителями кремния, так как названые заместители у атома кремния могут легко обмениваться посредством концов анионных полимерных цепей, и другие вышеназванные заместители у кремния могут использоваться в качестве функциональной группы, которая, в случае необходимости, после гидролиза может взаимодействовать с наполнителем смеси для протекторов. Примеры таких силанов приведены в патентах США US 3244664, US 4185042 и в европейской заявке на патент EP 0890580 A1.

Многие из названных реагентов для функционализации концов полимерных цепей обладают, однако, недостатками, такими как, например, плохая растворимость в технологическом растворителе, высокая токсичность или высокая летучесть, что может привести к загрязнению рекуперованного растворителя. Кроме того, многие из этих реагентов функционализации могут реагировать более, чем в одним анионным концом полимерной цепи, что приводит к наносящим вред и трудно контролируемым реакциям присоединения. Это справедливо и в отношении названных силанов, которые, кроме того, имеют еще и другой недостаток, такой как при реакции этих силанов с анионными концами полимерных цепей отщепляются компоненты, такие как галогениды или алкоксигруппы, причем последние легко превращаются в спирты. Галогениды способствуют коррозии. Спирты могут привести к загрязнению технологического растворителя. Следующий недостаток при использовании силанов в качестве агентов функционализации заключается в том, что полученные из них полимеры с силоксаном на концах полимерной цепи после функционализации посредством Si-OR групп на концах полимерных цепей (или посредством Si-OH групп после гидролиза Si-OR групп) могут соединяться с образованием связей Si-О-Si-, что приводит к нежелательному повышению вязкости каучуков во время обработки или хранения. Описано много способов такого снижения вязкости полимеров с концевым силоксаном, например, добавкой стабилизирующих агентов на основе кислоты и галогенангидридов кислоты (европейская заявка на патент EP 0801078 A1), добавкой силоксана (европейская патентная публикация EP 1198506 B1), добавкой длинноцепочечных спиртов (европейская патентная публикация EP 1237934 B1) или добавкой реагентов для контроля показателя pH (европейский патент EP 1726598).

В европейской патентной публикации EP 0778311 B1 в качестве агентов функционализации для введения по концам полимерных цепей функциональных Si-OH групп, среди прочего, описываются циклосилоксаны. По сравнению с вышеназванными силанами эти циклосилоксаны имеют то преимущество, что в расчете на молекулу циклосилоксана, в каждом случае, может вступать в реакцию только один анионный конец полимерной цепи, а также во время реакции функционализации не происходит соединения посредством реакции присоединения более, чем одной полимерной цепи в расчете на агент функционализации. Образованные после введения агента функционализации концевые Si-OH группы, однако, как поясняется и описано также в патенте США US 4618650, могут присоединяться с образованием Si-O-Si-связей. При этом также существует проблема нежелательного повышения вязкости во время обработки и хранения.

Поэтому была поставлена задача получить функционализированные полимеры, не обладающие недостатками известного уровня техники и, в особенности, способные использовать хорошую реакционную способность силанов с анионными концами полимерных цепей, не имеющие таких недостатков, как взаимодействие нескольких анионных концов полимерных цепей в расчете на молекулу силана, отщепление вредных компонентов и присоединение с образованием Si-O-Si-связей при обработке и хранении.

Для решения этой задачи предлагаются функционализированные полимеры, которые могут содержать в начале полимерных цепей третичные аминогруппы формулы (I) или (II):

или

причем

R1, R2 являются одинаковыми или различными и означают алкильный, циклоалкильный, арильный, алкарильный и аралкильный радикалы, которые могут содержать гетероатомы, такие как кислород, азот, сера и/или кремний,

Z означает двухвалентный органический радикал, который может содержать кроме атомов углерода и водорода гетероатомы, такие как кислород, азот, сера и/или кремний,

а также имеющие по концам полимерных цепей силансодержащие карбинольные группы формулы (III):

или их металлические соли, либо соли полуметаллов, причем

R3, R4, R5, R6 являются одинаковыми или различными и означают водород, алкильный, циклоалкильный, арильный, алкарильный и аралкильный радикалы, которые могут содержать гетероатомы, такие как кислород, азот, сера и/или кремний,

A означает двухвалентный органический радикал, который может содержать, кроме атомов углерода и водорода, гетероатомы, такие как кислород, азот, сера и/или кремний.

Силансодержащие карбинольные группы формулы (III) по концам полимерных цепей функционализированных диеновых полимеров по изобретению могут находиться в виде солей металлов формулы (IV):

причем

R3, R4, R5, R6 являются одинаковыми или различными и означают водород, алкильный, циклоалкильный, арильный, алкарильный и аралкильный радикалы, которые могут содержать гетероатомы, такие как кислород, азот, сера и/или кремний,

A означает двухвалентный органический радикал, который может содержать, кроме атомов углерода и водорода, гетероатомы, такие как кислород, азот, сера и/или кремний,

n является целым числом от 1 до 4,

M означает металл либо полуметалл с валентностью от 1 до 4, предпочтительно литий, натрий, калий, магний, кальций, железо, кобальт, никель, алюминий, неодим, титан, кремний и/или олово.

Предпочтительными полимерами для получения функционализированных диеновых полимеров по изобретению являются диеновые полимеры и диеновые сополимеры, полученные сополимеризацией диенов с винилароматическими мономерами.

Предпочтительными диенами являются 1,3-бутадиен, изопрен, 1,3-пентадиен, 2,3-диметилбутадиен, 1-фенил-1,3-бутадиен и/или 1,3-гексадиен. Особенно предпочтительными являются 1,3-бутадиен и/или изопрен.

В качестве винилароматических сомономеров могут использоваться, например, стирол, о-, м- и/или п-метилстирол, п-трет.бутилстирол, α-метилстирол, винилнафталин, дивинилбензол, тривинилбензол и/или дивинилнафталин. Особенно предпочтительно используют стирол.

Получение этих полимеров, предпочтительно, осуществляют анионной полимеризацией в растворе.

Инициаторами анионной полимеризации в растворе являются щелочные амиды вторичных органических аминов, например, такие как пирролидид лития, пиперидид лития, гексаметиленимид лития, литий-1-метилимидазолидид, литий-1-метилпиперазид морфолид лития, дифенил-амид лития, дибензиламид лития, дициклогексиламид лития, дигексиламид лития, диоктиламид лития. Кроме того, могут также использоваться бифункциональные щелочные амиды, такие, например, как дилитийпиперазид.

Получение этих щелочных амидов, предпочтительно, осуществляют взаимодействием соответствующих вторичных аминов со щелочными органическими соединениями. При этом предпочтительными щелочными органическими соединениями являются н-бутиллитий и втор.бутиллитий. Щелочные амиды, предпочтительно, получают in situ в полимеризационном реакторе взаимодействием щелочного органического соединения с вторичными аминами. Предпочтительными вторичными аминами являются пирролидины, пиперидины, гексаметиленимины, 1-алкилимидазолидины, 1-алкилпиперазины, морфолины, N,N-дифениламины, N,N-ди-бензиламины, N.N-дициклогексиламин, N,N-дигексиламин, N,N-диоктиламин.

Дополнительно могут использоваться известные рандомизаторы и агенты контроля для микроструктуры полимера, такие, например, как диэтиловый эфир, ди-н-пропиловый эфир, диизопропиловый эфир, ди-н-бутиловый эфир, этиленгликольдиметиловый эфир, этиленгликольдиэтиловый эфир, этиленгликольди-н-бутиловый эфир, этиленгликольди-трет.бутиловый эфир, диэтиленгликольдиметиловый эфир, диэтиленгликольдиэтиловый эфир, диэтиленгликольди-н-бутиловый эфир, диэтиленгликольдитрет.-бутиловый эфир, 2-(2-этоксиэтокси)-2-метилпропан, триэтиленгликольдиметиловый эфир, тетрагидрофуран, этилтетрагидрофурфуриловый эфир, гексилтетрагидрофурфуриловый эфир, 2-(2-бис(2-тетрагидрофурил)пропан, диоксан, триметиламин, триэтиламин, N,N,N',N'-тетраметилэтилендиамин, N-метилморфолин, N-этилморфолин, 1,2-ди-пиперидиноэтан, 1,2-дипирролидиноэтан, 1,2-диморфолиноэтан, а также соли калия и натрия спиртов, фенолов, карбоновых кислот и сульфокислот.

Такая полимеризация в растворе известна и описана, например, в I. Franta, Elastomers and Rubber Compounding Materials; Elsevier 1989, Seite 113-131, в Houben-Weyl, Methoden der Organischen Chemie, Thieme Verlag, Stuttgart, 1961, Band XIV/1 Seiten 645 bis 673 или в Band E 20 (1987), Seiten 114 bis 134 и Seiten 134 bis 153, а также в Comprehensive Polymer Science, Vol. 3, Part I (Pergamon Press Ltd., Oxford 1989), Seiten 365-386.

Получение предпочтительных диеновых полимеров происходит, преимущественно, в растворителе. В качестве растворителя для полимеризации используют, например, инертные апротонные растворители, например парафиновые углеводороды, такие как изомерные бутаны, пентаны, гексаны, гептаны, октаны, деканы, циклопентан, циклогексан, метилциклогексан, этилциклогексан или 1,4-диметилциклогексан или ароматические углеводороды, такие как бензол, толуол, этилбензол, ксилол, диэтилбензол или пропилбензол. Эти растворители могут использоваться отдельно или в смеси. Предпочтительными являются циклогексан и н-гексан. Возможно также смешение с полярными растворителями.

Количество растворителя в способе по изобретению составляет обычно от 100 до 1000 г, предпочтительно, от 200 до 700 г в расчете на 100 г общего количества используемого мономера. Однако возможно также осуществлять полимеризацию используемых мономеров в отсутствие растворителей.

Полимеризацию можно проводить таким образом, чтобы сначала загружать мономеры, при необходимости, контролирующие агенты для регулирования микроструктуры и растворители, а затем начинать полимеризацию добавлением инициатора. Можно также проводить полимеризацию приточным способом, при котором полимеризационный реактор заполняют добавлением мономеров, при необходимости, контролирующих агентов для регулирования микроструктуры и растворителя, причем подают инициатор или добавляют мономеры, при необходимости, контролирующие агенты для регулирования микроструктуры и растворитель. Возможны варианты, такие как подача в реактор растворителя, добавление инициатора, а затем добавление мономеров, а также, при необходимости, контролирующих агентов для регулирования микроструктуры. Кроме того, можно проводить полимеризацию непрерывно. Во всех случаях возможно добавление других мономеров, контролирующих агентов и растворителя во время или в конце полимеризации.

В предпочтительном варианте осуществления способа загружают мономеры, при необходимости, контролирующие агенты для регулирования микроструктуры, растворитель, а также вторичный амин и начинают полимеризацию добавлением щелочного органического соединения, такого как бутиллитий (BuLi), причем щелочной амидный инициатор полимеризации образуется in situ взаимодействием щелочного органического соединения с вторичным амином.

Время полимеризации может колебаться в широких пределах от нескольких минут до нескольких часов. Обычно полимеризацию проводят в пределах от около 10 минут до 8 часов, предпочтительно, от 20 минут до 4 часов. Она может проводиться как при нормальном, так и при повышенном давлении (от 1 до 10 бар).

Неожиданно было установлено, что использованием щелочных амидных инициаторов полимеризации для введения третичных аминогрупп в начало полимерных цепей в сочетании с использованием одного или нескольких 1-окса-2-силациклоалканов в качестве агентов функционализации для введения функциональных групп по концам полимерных цепей диеновых полимеров. Можно получить диеновые полимеры, обладающие улучшенными свойствами протекторов и не обладающие недостатками известного уровня техники. Например, может не происходить присоединения посредством многократных реакций агента функционализации, отщепления вредных компонентов, а также присоединения посредством образования связей Si-О-Si при обработке и хранении полимеров.

В качестве щелочных амидных инициаторов полимеризации используют соединения общей формулы (V) или (VI):

или

причем

R1, R2 являются одинаковыми или различными и означают алкильный, циклоалкильный, арильный, алкарильный и аралкильный радикалы, которые могут содержать гетероатомы, такие как кислород, азот, сера и/или кремний,

Z означает двухвалентный органический радикал, который может содержать кроме атомов углерода и водорода гетероатомы, такие как кислород, азот, сера и/или кремний,

M означает литий, натрий или калий.

В качестве 1-окса-2-силациклоалканов используют соединения общей формулы (VII):

причем

R3, R4, R5, R6 являются одинаковыми или различными и означают водород, алкильный, циклоалкильный, арильный, алкарильный и аралкильный радикалы, которые могут содержать гетероатомы, такие как кислород, азот, сера и/или кремний,

A означает двухвалентный органический радикал, который может содержать, кроме атомов углерода и водорода, гетероатомы, такие как кислород, азот, сера и/или кремний.

При этом атом кремния в формуле (VII) является монофункциональным, причем под монофункциональностью подразумевается, что атом кремния имеет три Si-C связи и одну Si-О связь.

Примерами соединений формулы (VII) являются:

2,2-диметил-1-окса-2-силациклогексан

2,2-диэтил-1-окса-2-силациклогексан

2,2-дипропил-1-окса-2-силациклогексан

2-метил-2-фенил-1-окса-2-силациклогексан

2,2-дифенил-1-окса-2-силациклогексан

2,2,5,5-тетраметил-1-окса-2-силациклогексан

2,2,3-триметил-1-окса-2-силациклогексан

2,2-диметил-1-окса-2-силациклопентан

2,2,4-триметил-1-окса-2-силациклопентан

2,2-диметил-1,4-диокса-2-силациклогексан

2,2,5,5-тетраметил-1,4-диокса-2-силациклогексан

2,2,4-триметил-[1,4,2]оксазасилинан

бензо-2,2-диметил-1,4-диокса-2-силациклогексан

бензо-2,2,4-триметил-1-окса-4-аза-2-силациклогексан

Установлено, что функционализированные по изобретению диеновые полимеры могут быть получены взаимодействием реакционноспособных концов полимерных цепей с 1-окса-2-силациклоалканами и, при необходимости, последующим протонированием концевых алкоголятных групп в спирт.

Поэтому объектом изобретения является также применение 1-окса-2-силациклоалканов в качестве агентов функционализации для получения функционализированных диеновых полимеров по изобретению с концевыми группами формулы (III) или (IV).

Функционализированные диеновые полимеры по изобретению, предпочтительно, имеют среднечисловую молекулярную массу от 10000 до 2000000 г/моль, предпочтительно от 100000 до 1000000 г/моль и температуру стеклования от -110°C до +20°C, предпочтительно от -110°C до 0°C, а также вязкость по Муни ML 1+4 (100°C) от 10 до 200, предпочтительно от 30 до 150 единиц Муни.

Следующим объектом изобретения является способ получения функционализированных диеновых полимеров по изобретению, в котором в качестве инициаторов полимеризации используют щелочные амиды вторичных органических аминов, а также одно или несколько соединений формулы (VII) в виде чистого вещества, раствора или суспензии. Добавление соединений формулы (VII), предпочтительно, осуществляют по окончании полимеризации, однако оно может осуществляться также перед полным превращением мономеров. Реакцию соединений формулы (VII) с реакционноспособными концами полимерных цепей осуществляют при обычно используемой для полимеризации температуре. Время реакции для взаимодействия соединений формулы (VII) с реакционноспособными концами полимерных цепей может составлять от нескольких минут до нескольких часов.

Предпочтительными являются щелочные амиды, используемые в растворе. При этом предпочтительно используют тот же самый растворитель, который применяется и для полимеризации. Однако могут также использоваться растворитель или смеси растворителей с более высокой полярностью для предотвращения осаждения щелочных амидов.

Предпочтительным является способ получения функционализированных диеновых полимеров по изобретению, в котором инициаторы полимеризации получают взаимодействием вторичного амина со щелочными органическими соединениями на отдельной стадии предварительного формирования или in situ непосредственно в полимеризационном реакторе для образования алкиламидов, а также используют одно или несколько соединений формулы (VII) в виде чистого вещества, раствора или суспензии для взаимодействия с реакционноспособными концами полимерных цепей. Добавление соединений формулы (VII), предпочтительно, осуществляют по окончании полимеризации, однако оно может также осуществляться перед полным превращением мономеров. Реакцию соединений формулы (VII) с реакционноспособными концами полимерных цепей осуществляют при обычно используемой для полимеризации температуре. Время взаимодействия соединений формулы (VII) с реакционноспособными концами полимерных цепей может составлять от нескольких минут до нескольких часов.

Количество вторичных аминов, предпочтительно, является равным или меньшим, чем количество щелочных органических соединений. Особенно предпочтительно, если количественное соотношение между вторичным амином и щелочным органическим соединением составляет 0,05-2,00:0,05-2,00.

Установлено, что при этом количественном соотношении концы полимерных цепей функционализируются силансодержащими карбинольными соединениями, в результате чего образуются полимеры с функциональными группами по обоим концам полимерных цепей, обладающие улучшенными свойствами протекторов, причем предотвращается присоединение посредством многократных реакций агента функционализации, отщепление вредных компонентов, а также присоединение посредством образования Si-O-Si связей при обработке и хранении полимеров.

Количество 1-окса-2-силациклоалкана формулы (VII) может быть выбрано таким, чтобы все реакционноспособные группы концов полимерных цепей вступали в реакцию с соединениями формулы (VII) либо чтобы можно было использовать внутреннюю защиту этих соединений. Используемое количество соединений формулы (VII) может изменяться в широких пределах. Предпочтительное количество составляет от 0,005 до 2 мас. %, особенно предпочтительно, от 0,01 до 1 мас. % в расчете на полимер.

Дополнительно к соединениям формулы (VII) могут также использоваться обычные для анионной полимеризации диенов агенты связи для взаимодействия с реакционноспособными концами полимерных цепей. Примерами таких агентов связи являются тетрахлорид кремния, метилтрихлорсилан, диметилдихлорсилан, тетрахлоридолова, дибутилоловодихлорид, тетраалкоксисиланы, этиленгликольдиглицидиловый эфир, 1,2,4-трис(хлорметил)бензол. Такие агенты связи могут добавляться перед добавлением соединений формулы (VII), вместе с ними или после них.

После добавления соединений формулы (VII) и, при необходимости, агентов связи перед обработкой или во время обработки функционализированных полимеров (то есть содержащих функциональные группы полимеров) по изобретению добавляют обычный противостаритель, такой как стерически затрудненные фенолы, ароматические амины, фосфиты, тиоэфир. Кроме того, могут добавляться обычные используемые для диеновых каучуков масла-разбавители, такие как DAE (Distillate Aromatic Extract), TDAE (Treated Distillate Aromatic Extract), MES (Mild Extraction Solvates), RAE (Residual Aromatic Extract), TRAE (Treated Residual Distillate Aromatic Extract), нафтеновые и тяжелые нафтеновые масла. Могут также добавляться наполнители, такие как сажа и кремневая кислота, каучуки и вспомогательные средства для каучуков.

Удаление растворителя из процесса полимеризации может осуществляться известными способами, такими как дистилляция, перегонка с водяным паром или под вакуумом, в случае необходимости, при повышенной температуре.

Другим объектом изобретения является применение функционализированных полимеров по изобретению для получения вулканизующихся каучуковых композиций.

Эти вулканизующиеся каучуковые композиции, предпочтительно, содержат другие каучуки, наполнители, химикалии для каучуков, вспомогательные средства, способствующие переработки и масла-разбавители.

Дополнительными каучуками являются, например, природный каучук, а также синтетические каучуки. Если они присутствуют, то их количество обычно составляет в пределах от 0,5 до 95 мас. %, предпочтительно, от 10 до 80 мас. % в расчете на общее количество полимера в смеси. Количество добавляемых дополнительно каучуков зависит от конкретной цели использования смесей по изобретению.

Ниже приводятся в качестве примера известные в литературе синтетические каучуки. Они, кроме прочего, включают:

BR полибутадиен;

ABR сополимеры бутадиена с C1-C4-алкиловым эфиром акриловой кислоты;

IR полиизопрен;

E-SBR сополимеризаты стирола и бутадиена с содержанием стирола 1-60 мас. %, предпочтительно, 20-50 мас. %, полученные эмульсионной полимеризацией;

S-SBR сополимеризаты стирола и бутадиена с содержанием стирола 1-60 мас. %, предпочтительно, 15-45 мас. %, полученные эмульсионной полимеризацией в растворе;

IIR сополимеризаты изобутилена и изопрена;

NBR сополимеры бутадиена и акрилонитрила с содержанием акрилонитрила 5-60 мас. %, предпочтительно, 10-40 мас. %;

HNBR частично или полностью гидрированный NBR каучук;

E-PDM терполимеризаты этилена, пропилена и диена,

а также смеси этих каучуков. Для изготовления шин для автомобилей особенно предпочтительными являются натуральный каучук, E-SBR, а также S-SBR с температурой стеклования выше -60°C, полибутадиеновый каучук с высоким цис-содержанием (>90%), полученные с катализаторами на основе никеля, кобальта, титана или неодима, а также полибутадиеновый каучук с винилсодержанием до 80%, а также их смеси.

В качестве наполнителя для каучуковых композиций по изобретению используют все известные используемые в каучуковой промышленности наполнители. Они включают как активные, так и не активные наполнители.

В качестве примера можно упомянуть:

- высокодисперсные кремниевые кислоты, полученные, например, осаждением из раствора силикатов или пламенным гидролизом галогенидов кремния со специфической поверхностью (BET-поверхностью) 5-1000 м2/г, предпочтительно 20-400 м2/г и исходным размером частиц 100-400 нм. Кремниевые кислоты, при необходимости, могут также находиться в виде смешанных оксидов с другими оксидами металлов, такими как оксиды алюминия, магния, кальция, бария, цинка, циркония и титана;

- синтетические силикаты, такие как силикат алюминия, силикаты щелочноземельных металлов, таких как силикат магния или силикат кальция с BET-поверхностью 20-400 м2/г и диаметром исходных частиц 10-400 нм;

- природные силикаты, такие как каолин и другие кремниевые кислоты природного происхождения;

- стеклянные волокна и продукты из них (холсты, жгуты) или стеклянные микрошарики;

- оксиды металлов, такие как оксид цинка, оксид кальция, оксид магния и оксид алюминия;

- карбонаты металлов, такие как карбонат магния, карбонат кальция, карбонат цинка;

- гидроксиды металлов, такие как, например, гидроксид алюминия, гидроксид магния;

- сульфаты металлов, такие как сульфат кальция и сульфат бария;

- сажи: используемыми для этого сажами являются пламенная сажа, канальная газовая сажа, печная сажа, газовая сажа, термальная сажа, ацетиленовая сажа или сажи, полученные электродуговым способом, имеющие BET поверхность 9-200 м2/г, например SAF-, ISAF-LS-, ISAF-HM-, ISAF-LM-, ISAF-HS-, CF-, SCF-, HAF-LS-, HAF-, HAF-HS-, FF-HS-, SPF-, XCF-, FEF-LS-, FEF-, FEF-HS-, GPF-HS-, GPF, APF-, SRF-LS-, SRF-LM-, SRF-HS-, SRF-HM и MT-сажа или сажи согласно ASTM N110-, N219-, N220-.N231-, N234-, N242-, N294-, N326, N327-, N330-, N332-, N339-, N347-, N351-, N356-, N358-, N375-, N472-, N539-, N550-, N568-, N650-, N660-, N754-, N762-, N765-, N774-, N787 и №90-сажи;

- каучуковые гели, особенно, на основе каучуков BR, E-SBR и/или полихлоропрена с размером частиц от 5 до 1000 нм.

В качестве наполнителя, предпочтительно, используют высокодисперсные кремниевые кислоты и/или сажи.

Названные наполнители могут использоваться отдельно или в смеси. В особенно предпочтительном варианте каучуковые композиции содержат в качестве наполнителей смесь из светлых наполнителей, таких как высокодисперсные кремниевые кислоты и сажи, причем отношение в смеси светлых наполнителей к сажам составляет от 0,01:1 до 50:1, предпочтительно, от 0,05:1 до 20:1.

При этом наполнители используют в количестве в пределах от 10 до 500 мас. ч. в расчете на 100 мас. ч. каучука. Предпочтительно, используют от 20 до 200 мас. ч. наполнителя.

В другом варианте полученные по изобретению каучуковые композиции содержат еще вспомогательное средство для каучука, например улучшающее способность каучуковой композиции к переработке, служащее поперечной сшивке композиции каучука, улучшающее физические свойства вулканизата, полученного из каучуковой композиции по изобретению, для специальной цели их использования, улучшающее взаимодействие между каучуком и наполнителем или служащее связи каучука с наполнителем.

Вспомогательными средствами для каучуков, например, агентами сшивки, являются, например, сера или соединения, служащие донором серы, а также ускоритель реакции, противостаритель, термостабилизаторы, светостабилизаторы, антиозонанты, вспомогательное средство, способствующее переработке, мягчитель, агент, придающий липкость, вспенивающий агент, красители, пигменты, воска, разбавитель, органические кислоты, силаны, ингибитор, оксиды металлов, масла-разбавители, такие как, например, DAE (Distillate Aromatic Extract), TDAE (Treated Distillate Aromatic Extract), MES (Mild Extraction Solvates), RAE (Residual Aromatic Extract), TRAE (Treated Residual Distillate Aromatic Extract), нафтеновые и тяжелые нафтеновые масла, а также активаторы.

Общее количество вспомогательного средства для каучука находится в пределах от 1 до 300 мас. ч. в расчете на 100 мас. ч. всего каучука. Предпочтительно, используют от 5 до 150 мас. ч. вспомогательных средств для каучука.

Получение вулканизующихся каучуковых композиций может осуществляться в одну или несколько стадий способа, причем предпочтительными являются от 2 до 3 стадий смешения. Так, например, добавление серы и ускорителя осуществляют на отдельной стадии смешения, например, на вальцах, причем предпочтительной является температура в пределах от 30°C до 90°C. Добавление серы и ускорителя, предпочтительно, осуществляют на последней стадии смешения.

Для получения вулканизующихся каучуковых композиций пригодными агрегатами являются, например вальцы, кнет-смеситель, закрытый резиносмеситель или смесительный экструдер.

Поэтому другим объектом изобретения являются вулканизующиеся каучуковые композиции, содержащие функционализированные диеновые полимеры с третичными аминогруппами формулы (I) или (II) в начале полимерных цепей и функциональные группы формулы (III) или (IV) по концам полимерных цепей.

Каучуковые композиции могут также содержать функционализированные диеновые полимеры с третичными аминогруппами формулы (I) или (II) в начале полимерных цепей и функциональные группы формулы (III) или (IV) по концам полимерных цепей.

Еще одним объектом изобретения является применение вулканизующихся каучуковых композиций по изобретению для получения каучуковых вулканизатов, в особенности, для изготовления шин, особенно, протекторов, обладающих особенно низким сопротивлением качению при высоком сопротивлении скольжению в мокром состоянии и высокой прочностью к истиранию

Вулканизующиеся каучуковые композиции по изобретению пригодны также для получения формованных изделий, например, для изготовления кабельных оболочек, шлангов, приводных ремней, транспортерных лент, обкладки вальцов, обувных подошв, уплотнительных колец и амортизационных элементов.

Нижеследующие примеры служат пояснению изобретения, но не ограничивают его.

Примеры

Пример 1a: Синтез сополимера стирола и бутадиена, не функционализированного (сравнительный пример)

Инертизированный реактор объемом 20 л заполняли 8,5 кг гексана, 1185 г 1,3-бутадиена, 315 г стирола, 8 ммоль 2,2-бис(2-тетрагидрофурил)-пропана, а также 10,3 ммоль н-бутиллития и содержимое реактора нагревали до температуры 65°C. Полимеризацию осуществляли в течение 25 минут при 65°C с перемешиванием. Затем добавляли 10,3 ммоль цетилового спирта, раствор каучука спускали, стабилизировали добавлением 3 г Irganox® 1520 (2,4-бис(октилтиометил)-6-метилфенола) и удаляли растворитель перегонкой с водяным паром. Каучуковую крошку сушили в вакууме при 65°C.

Винилсодержание (ИК-спектроскопически) - 50,2 мас. %, содержание стирола (ИК-спектроскопически) - 20,9 мас. %, температура стеклования (ДСК) - (-25,6)°C; среднечисловая молекулярная масса Mn (ГПХ, ПС эталон) - 258 кг/моль; Mw/Mn - 1,15; вязкость по Муни (ML 1+4 при 100°C) - 52 ME.

Пример 1b: Синтез сополимера стирола и бутадиена с третичными аминогруппами в начале полимерной цепи (сравнительный пример)

Инертизированный реактор объемом 20 л заполняли 8,5 кг гексана, 1185 г 1,3-бутадиена, 315 г стирола, 11,3 ммоль 2,2-бис(2-тетрагидрофурил)-пропана, 14,1 ммоль пирролидина, а также 14,1 ммоль н-бутиллития и содержимое реактора нагревали до температуры 65°C. Полимеризацию осуществляли в течение 25 минут при 65°C с перемешиванием. Затем добавляли 14,1 ммоль цетилового спирта, раствор каучука спускали, стабилизировали добавлением 3 г Irganox® 1520 и удаляли растворитель перегонкой с водяным паром. Каучуковую крошку сушили в вакууме при 65°C.

Винилсодержание (ИК-спектроскопически) - 50,0 мас. %, содержание стирола (ИК-спектроскопически) - 20,8 мас. %, температура стеклования (ДСК) - (-25,9)°C; среднечисловая молекулярная масса Mn (ГПХ, ПС эталон) - 210 кг/моль; Mw/Mn - 1,19; вязкость по Муни (ML 1+4 при 100°C) - 41 ME.

Пример 1c: Синтез сополимера стирола и бутадиена с функционализацией концов цепей взаимодействием с агентом функционализации формулы (VII) (сравнительный пример)

Инертизированный реактор объемом 20 л заполняли 8,5 кг гексана, 1185 г 1,3-бутадиена, 315 г стирола, 8,2 ммоль 2,2-бис(2-тетрагидрофурил)-пропана, а также 10,55 ммоль н-бутиллития и содержимое реактора нагревали до температуры 65°C. Полимеризацию осуществляли 25 минут при 65°C с перемешиванием. Затем добавляли 10,55 ммоль (1,69 мл) 2,2,4-триметил[1,4,2]оксазасилинана и содержимое реактора нагревали еще 20 минут до 65°C. Затем раствор каучука спускали, стабилизировали добавлением 3 г Irganox® 1520 и удаляли растворитель перегонкой с водяным паром. Каучуковую крошку сушили в вакууме при 65°C.

Винилсодержание (ИК-спектроскопически) - 50,3 мас. %, содержание стирола (ИК-спектроскопически) - 20,9 мас. %, температура стеклования (ДСК) - (-25,7)°C; среднечисловая молекулярная масса Mn (ГПХ, ПС эталон) - 216 кг/моль; Mw/Mn - 1,18; вязкость по Муни (ML 1+4 при 100°C) - 44 ME.

Пример 1d: Синтез сополимера стирола и бутадиена с третичной аминогруппой в начале полимерной цепи и функционализацией конца полимерной цепи агентом функционализации формулы (VII) (пример по изобретению)

Инертизированный реактор объемом 20 л заполняли 8,5 кг гексана, 1185 г 1,3-бутадиена, 315 г стирола, 11,3 ммоль 2,2-бис(2-тетрагидрофурил)-пропана, 14,1 ммоль пирролидина, а также 14,1 ммоль бутиллития и содержимое реактора нагревали до температуры 65°C. Полимеризацию осуществляли в течение 25 минут при 65°C с перемешиванием. Затем добавляли 14,1 ммоль (2,26 мл) 2,2,4-триметил-[1,4,2]оксазасилинана и содержимое реактора нагревали еще 20 минут до 65°C. Затем раствор каучука спускали, стабилизировали добавлением 3 г Irganox® 1520 и удаляли растворитель перегонкой с водяным паром. Каучуковую крошку сушили в вакууме при температуре 65°C.

Винилсодержание (ИК-спектроскопически) - 49,3 мас. %, содержание стирола (ИК-спектроскопически) - 20,3 мас. %, температура стеклования (ДСК) - (-26,3)°C; среднечисловая молекулярная масса Mn (ГПХ, ПС эталон) - 170 кг/моль; Mw/Mn - 1,29; вязкость по Муни (ML 1+4 при 100°C) - 43 ME.

Примеры 2a-d: Каучуковые композиции

Получали каучуковые композиции для протекторов, причем использовали сополимеры стирола и бутадиена из Примеров 1a-1d.

Компоненты композиций приведены в Таблице 1. Каучуковые композиции (без серы и ускорителя) получали в кнет-смесителе объемом 1,5 л. Затем на вальце при температуре 40°C перемешивали серу и ускоритель.

Примеры 3a-d: Свойства вулканизатов

Для определения свойств вулканизатов подвергали вулканизации каучуковые композиции по Примерам 2a-d при температуре 160°C в течение 20 минут. Свойства соответствующих вулканизатов приведены в Таблице 2 в виде Примеров 3a-d.

У вулканизатов определяли следующие свойства согласно названным нормам:

- эластичность по отскоку при температуре 60°C (согласно DIN 53512);

- износ при истирании (согласно DIN 53516);

- ΔG*: разность между зависящими от частоты вязкоэластичными модулями G* при 0,5% удлинения и 15% удлинения при температуре 60°C/1 Гц (размах амплитуды);

- tanδ-Maximum: максимум динамической амортизации (демпфирования) при измерении зависящего от частоты вязко-эластичного модуля при температуре 60°C/1 Гц при tanδ=Gʺ/G' (MTS - размах амплитуды);

- tanδ при 0°C, 60°C: по измерению зависящей от температуры динамической амортизации согласно DIN 53513 (10 Гц, скорость нагрева 1 К⋅мин-1) с tanδ=Eʺ/E';

- удлинение при разрыве, натяжение при разрыве (согласно DIN 53504).

Эластичность по отскоку при 60°C, ΔG*, tanδ-Maximum (MTS) и tanδ при 60°C являются индикаторами потерь на гистерезис при качении шины (сопротивление качению). Чем выше эластичность по отскоку при 60°C и чем ниже ΔG*, tanδ-Maximum (MTS) и tanδ при 60°C, тем ниже сопротивление качению шины. Tanδ при 0°C является мерой сопротивления скольжению в мокром состоянии. Чем выше tanδ при 0°C, тем выше ожидаемое сопротивление скольжению шины в мокром состоянии.

Для использования шин требуется низкое сопротивление качению, которое получается, когда у вулканизата определяется высокий показатель эластичности по отскоку при 60°C, а также низкий tanδ-показатель при динамическом демпфировании при высокой температуре (60°C) и низкий tanδ-Maximum при MTS-размахе (затухании) амплитуд (MTS-Amplitudensweep). Как видно из Таблицы 2, вулканизат по Примеру 3d согласно изобретению характеризуется высокой эластичностью по отскоку при 60°C, низким tanδ-показателем при динамическом демпфировании при температуре 60°C, а также низким tanδ-Maximum при MTS-размахе (затухании) амплитуд (Amplitudensweep)

Для использования шин требуется, кроме того, высокое сопротивление скольжению в мокром состоянии, которое существует в том случае, когда вулканизат имеет высокий tanδ-показатель при динамическом демпфировании при низкой температуре (0°C). Как видно из Таблицы 2, вулканизат по Примеру 3d согласно изобретению характеризуется высоким tanδ-показателем при динамическом демпфировании при 0°C.

1. Диеновый полимер, отличающийся тем, что он содержит в начале полимерных цепей третичные аминогруппы формулы (II):

причем

Z означает двухвалентный органический радикал, который может содержать, кроме атомов углерода и водорода, гетероатомы, такие как кислород, азот, сера и/или кремний,

а также имеющие по концам полимерных цепей силансодержащие карбинольные группы формулы (III):

или их металлические соли либо соли полуметаллов, причем

R3, R4, R5, R6 являются одинаковыми или различными и означают водород, алкильный, циклоалкильный, арильный, алкарильный и аралкильный радикалы, которые могут содержать гетероатомы, такие как кислород, азот, сера и/или кремний,

А означает двухвалентный органический радикал, который может содержать, кроме атомов углерода и водорода, гетероатомы, такие как кислород, азот, сера и/или кремний.

2. Диеновый полимер по п. 1, отличающийся тем, что силансодержащие карбинольные группы формулы (III) по концам полимерных цепей находятся в виде солей металлов формулы (IV):

причем

R3, R4, R5, R6 являются одинаковыми или различными и представляют собой водород, алкильный, циклоалкильный, арильный, алкарильный и аралкильный радикалы, которые могут содержать гетероатомы, такие как кислород, азот, сера и/или кремний,

А означает двухвалентный органический радикал, который может содержать, кроме атомов углерода и водорода, гетероатомы, такие как кислород, азот, сера и/или кремний,

n является целым числом от 1 до 4,

М является металлом либо полуметаллом с валентностью от 1 до 4, предпочтительно литием, натрием, калием, магнием, кальцием, железом, кобальтом, никелем, алюминием, неодимом, титаном, кремнием и/или оловом.

3. Диеновый полимер по п. 1 или 2, отличающийся тем, что он представляет собой полибутадиен, полиизопрен, сополимер бутадиена и изопрена, сополимер бутадиена и стирола, сополимер изопрена и стирола или терполимер бутадиена, изопрена и стирола.

4. Диеновый полимер по п. 1, отличающийся тем, что он имеет среднечисловую молекулярную массу от 10000 до 2000000 г/моль, предпочтительно от 100000 до 1000000 г/моль.

5. Диеновый полимер по п. 1, отличающийся тем, что он имеет температуру стеклования от -110°С до +20°С, предпочтительно от -110°С до 0°С.

6. Диеновый полимер по п. 1, отличающийся тем, что он имеет вязкость по Муни [ML 1+4 (100°С)] от 10 до 200, предпочтительно от 30 до 150 единиц Муни.

7. Способ получения диеновых полимеров по п. 1, отличающийся тем, что в качестве агента функционализации для введения функциональных групп по концам полимерных цепей используют один или несколько 1-окса-2-силациклоалканов общей формулы (VII):

причем

R3, R4, R5, R6 являются одинаковыми или различными и означают водород, алкильный, циклоалкильный, арильный, алкарильный и аралкильный радикалы, которые могут содержать гетероатомы, такие как кислород, азот, сера и/или кремний,

А представляет собой двухвалентный органический радикал, который может содержать, кроме атомов углерода и водорода, гетероатомы, такие как кислород, азот, сера и/или кремний,

а для введения третичных аминогрупп в начале полимерных цепей используют щелочные амиды общей формулы (VI):

где Z означает двухвалентный органический радикал, который может содержать, кроме атомов углерода и водорода, гетероатомы, такие как кислород, азот, сера и/или кремний,

М означает литий, натрий или калий, которые являются продуктом взаимодействия вторичных органических аминов с щелочными органическими соединениями.

8. Способ получения по п. 7, отличающийся тем, что щелочные амиды получают взаимодействием вторичных органических аминов со щелочными органическими соединениями in situ или на отдельной стадии предварительного формирования, а для реакции с реакционно-способными концами полимерных цепей используют один или несколько 1-окса-2-силациклоалканов.

9. Способ по п. 8, отличающийся тем, что в качестве инициаторов анионной полимеризации используют щелочные амиды.

10. Способ по п. 8, отличающийся тем, что в качестве вторичного органического амина используют пирролидин или гексаметиленимин, а в качестве щелочного органического соединения используют бутиллитий.

11. Способ по п. 8, отличающийся тем, что количество вторичных аминов является равным или меньшим, чем количество щелочно-органических соединений, и особенно предпочтительно, если их количественное соотношение составляет 0,05-2,00:0,05-2,00.

12. Способ по п. 7, отличающийся тем, что количество 1-окса-2-силациклоалканов составляет между 0,005-2 мас. %, предпочтительно между 0,01-1 мас. % от количества полимера с реакционно-способными концами полимерных цепей.

13. Способ по п. 7, отличающийся тем, что для взаимодействия используют агенты присоединения.

14. Применение диеновых полимеров по одному из пп. 1-6 для приготовления вулканизующихся каучуковых композиций.

15. Вулканизующаяся каучуковая композиция, содержащая диеновый полимер по одному из пп. 1-6, а также противостаритель, масла, наполнители, каучуки и/или вспомогательное средство для каучуков.

16. Вулканизующаяся каучуковая композиция, содержащая диеновый полимер по п. 1 или 2.

17. Вулканизующаяся каучуковая композиция, содержащая функционализированные диеновые полимеры с третичными аминогруппами формулы (I) или (II) в начале полимерных цепей и функциональные группы приведенной в п. 1 формулы (III) и/или функциональные группы приведенной в п. 2 формулы (IV) по концам полимерных цепей.

18. Применение вулканизующейся каучуковой композиции по п. 17 для изготовления шин, особенно протекторов шин.

19. Применение вулканизующейся каучуковой композиции по п. 17 для изготовления формованных изделий, таких как кабельные оболочки, шланги, приводные ремни, транспортерные ленты, обкладки для вальцов, обувные подошвы, уплотнительные кольца и амортизационные элементы.

20. Шина, содержащая каучуковую композицию по п. 17 в вулканизованной форме.

21. Формованное изделие, содержащее каучуковую композицию по п. 17 в вулканизованной форме.



 

Похожие патенты:

Изобретение относится к получению полимерных продуктов, содержащих в составе макромолекул незамещенные циклопропановые группы. Способ получения полимерных продуктов, содержащих в составе макромолекул циклопропановые группы, общей формулы (1): имеющих соотношение звеньев (а+b):(c+d)=60-90:10-40], заключается во взаимодействии 1,2-полибутадиена с диазометаном в среде органического растворителя в присутствии катализатора при мольном соотношении 1,2-полибутадиен : диазометан : катализатор, равном 1 : 1,0-3,0 : 0,0025-0,01, способ отличается тем, что в качестве катализатора используют соединения палладия (II) – хлорид палладия PdCl2.

Изобретение относится к резиновым смесям как вариантам для протекторов шин. Описывается резиновая смесь в качестве одного из вариантов, содержащая каучуковый компонент и наполнитель, для которой температура пика на температурной кривой tanδ составляет -16,0°C или выше и -6,0°C или ниже, значение tanδ в положении пика составляет более 1,13, tanδ при 0°C составляет 0,95 или более и значение, полученное делением абсолютного значения разницы между значениями tanδ при -5°C и tanδ при 5°C на разность температур между -5 и 5°C {|(tanδ при -5°C)-(tanδ при 5°C)|/10} (/°C), составляет менее 0,045/°C.

Изобретение относится к элементу шины, который является удовлетворительным в отношении показателя минимального расхода топлива и имеет более высокую прочность и более превосходное сопротивление истиранию по сравнению с обычными элементами шин.

Изобретение относится к способам связывания полидиеновых (со)полимеров. Способ получения связанного полимера включает стадии: (i) полимеризацию сопряженного диенового мономера и, необязательно, сополимеризуемого с ним мономера с получением полимера, содержащего реакционноспособную концевую группу; (ii) взаимодействие реакционноспособной концевой группы полимера с полиизоцианатом, количество функциональных групп которого составляет X, с получением промежуточного полимерного продукта, и (iii) взаимодействие указанного промежуточного полимерного продукта с полиолом, количество функциональных групп которого составляет Y, с получением связанного полимерного продукта, где X+Y≥5.

Изобретение относится к вулканизующимся композициям на основе нитрильных каучуков, содержащих эпоксидные группы, особые кислотные сшивающие агенты, а также ускорители сшивания, в которых отсутствует необходимость использовать обычные сшивающие агенты.

Изобретение раскрывает привитой полимер, содержащий цепь основного полимера Р, содержащую сопряженные диеновые звенья; по меньшей мере одну боковую привитую цепь G, представленную следующей общей формулой (1)R-(OCH2CH2)m-S-, (1)где R представляет собой насыщенную, линейную или разветвленную углеводородную цепь, содержащую по меньшей мере 18 атомов углерода, а m представляет собой целое число, варьирующееся в диапазоне от 0 до 20, при этом указанная привитая цепь G связана с цепью основного полимера Р через атом серы из формулы (1); и по меньшей мере одну привитую цепь G’, представленную следующей общей формулой (4)-S-R’-S-, (4)где R’ представляет собой углеводородную группу, насыщенную или ненасыщенную, линейную или разветвленную, циклическую и/или ароматическую, содержащую от 2 до 40 атомов углерода, необязательно содержащую один или несколько гетероатомов, при этом указанная привитая цепь G’ связана с цепью основного полимера Р с использованием каждого атома серы из формулы (4).

Изобретение относится к резиновым смесям и пневматическим шинам, полученным из них. Резиновая смесь включает на 100 масс.% каучукового компонента по меньшей мере 35 масс.% бутадиен-стирольного каучука, сопряженный диеновый полимер и диоксид кремния с удельной поверхностью, измеренной из адсорбции азота от 40-400 м2/г.

Изобретение относится к резиновым смесям и пневматическим шинам, полученным из них. Резиновая смесь включает сопряженный диеновый полимер и диоксид кремния с удельной поверхностью, измеренной из адсорбции азота от 40-400 м2/г.

Изобретение относится к вулканизующимся композициям на основе содержащих эпоксидные группы нитрильных каучуков. Вулканизующаяся композиция в твердой форме содержит нитрильный каучук с эпоксидными группами, который содержит повторяющиеся звенья, производные сопряженного диена и α,β-ненасыщенного нитрила.

Изобретение относится к резиновой смеси и пневматической шине. Резиновая смесь содержит диоксид кремния и полимер сопряженного диена, который получают взаимодействием соединения, содержащего атом азота и атом кремния, с активным концом сополимера, полученного полимеризацией мономерного компонента, содержащего соединение сопряженного диена, и кремнийсодержащего винилового соединения.

Изобретение относится к способу получения полидиена. Способ получения полидиена включает стадии: полимеризации сопряженного диенового мономера с применением каталитической системы, содержащей металлоценовый комплекс, в полимеризационной смеси, содержащей менее 20% по массе растворителя от общей массы полимеризационной смеси, с получением полимерных цепей, которые содержат реакционноспособные концы, и введения функционализирующего агента в полимеризационную смесь для взаимодействия с реакционноспособными полимерными цепями с образованием функционализированного полимера, где каталитическая система, содержащая металлоценовый комплекс, включает комбинацию или продукт взаимодействия: (а) металлоценового комплекса, (b) алкилирующего агента и (с) некоординирующего аниона; где металлоценовый комплекс определен формулой I где М представляет собой элемент лантанидного ряда, скандий или иттрий, Ср представляет собой циклопентадиенильную группу или производное циклопентадиенильной группы, Y представляет собой гидрокарбилоксигруппу, тиогидрокарбилоксигруппу, аминогруппу, силильную группу, циклопентадиенильную группу или производное циклопентадиенильной группы, X представляет собой атом водорода, атом галогена, гидрокарбилоксигруппу, тиогидрокарбилоксигруппу, аминогруппу, силильную группу или одновалентную органическую группу, каждый L независимо представляет собой нейтральное основание Льюиса, n представляет собой число от 0 до 3, или где Ср и Y объединены посредством двухвалентной группы, и где применяют от 0,0005 до 0,01 ммоль металлоценового комплекса на 100 г сопряженного диенового мономера.

Изобретение относится к способу синтеза диеновых эластомеров в непрерывном режиме при высокой степени конверсии. Способ непрерывного синтеза диенового эластомера характеризуется тем, что включает следующие одновременные этапы: a) непрерывное введение в полимеризационный реактор, снабженный газовой фазой и оборудованный по меньшей мере одним средством перемешивания и разгрузочным устройством, по меньшей мере: i.

Изобретение относится к способу получения латексов, которые могут найти применение в различных отраслях промышленности, в том числе в производстве водоэмульсионных красок, водостойких обоев, клеев, при аппретировании ковровых изделий.

Настоящее изобретение относится к стабилизированным растворам многовалентных инициаторов анионной полимеризации и к способам непрерывного получения полидиенов или сополимеров полидиенов.

Изобретение раскрывает компонент жидкой формовочной смолы для использования в способе реакционно-литьевого формования, содержащий реакционный мономер жидкой смолы, содержащий полимеризуемый метатезисной полимеризацией циклоолефин, и массу ненабухающей слюды, причем масса ненабухающей слюды характеризуется средним размером частиц в диапазоне от приблизительно 35 до приблизительно 500 мкм и имеет объемную плотность в диапазоне от приблизительно 0,10 до приблизительно 0,27 г/мл.

Изобретение относится к полимерной промышленности. Описан способ получения дилитиевого инициатора анионной (со)полимеризации на основе олигомера олефин-ароматического углеводорода и сопряженного диена, имеющего общую формулу Li-В-А-В-Li, где Li - активный центр, B - диеновый блок, A - олефин-ароматический блок.

Изобретение относится к способу полимеризации в массе сопряженных диенов с использованием каталитической системы на основе никеля. Способ получения полидиена, не содержащего геля, включающий стадию: полимеризации сопряженного диенового мономера с использованием каталитической системы на основе никеля, в котором указанная стадия полимеризации происходит в полимеризационной смеси, содержащей менее 20% по массе органического растворителя в пересчете на общую массу полимеризационной смеси, температуру полимеризационной смеси в ходе указанной стадии полимеризации поддерживают ниже 25°C, а степень превращения сопряженного диенового мономера поддерживают ниже 12%, причем указанная каталитическая система на основе никеля представляет собой комбинацию или продукт реакции (а) никельсодержащего соединения, (b) алкилирующего агента и (с) источника фтора.

Изобретение относится к полимеризации в массе сопряженных диенов. Способ получения полидиена включает стадии: (i) обеспечения сопряженного диенового мономера; (ii) загрузки каталитической системы на основе никеля в сопряженный диеновый мономер, причем указанная каталитическая система на основе никеля представляет собой комбинацию или продукт реакции (a) никельсодержащего соединения, (b) алкилирующего агента и (c) источника фтора, при этом молярное отношение алкилирующего агента к никельсодержащему соединению составляет от примерно 10:1 до примерно 50:1, при этом молярное отношение источника фтора к никельсодержащему соединению составляет от примерно 70:1 до примерно 130:1; и (iii) загрузки модулирующего основания Льюиса в сопряженный диеновый мономер для полимеризации тем самым сопряженного диенового мономера в присутствии модулирующего основания Льюиса, в котором указанную стадию загрузки модулирующего основания Льюиса проводят отдельно от указанной стадии загрузки катализатора на основе никеля, и указанные стадии обеспечения сопряженного диенового мономера, загрузки каталитической системы на основе никеля и загрузки основания Льюиса обеспечивают получение полимеризационной смеси, содержащей менее 20% по массе органического растворителя в пересчете на общую массу полимеризационной смеси, где указанную стадию загрузки каталитической системы на основе никеля в сопряженный диеновый мономер осуществляют перед указанной стадией загрузки модулирующего основания Льюиса в сопряженный диеновый мономер, при этом указанную стадию загрузки модулирующего основания Льюиса осуществляют до того, как 5% сопряженного диенового мономера будет полимеризовано, или где указанную стадию загрузки модулирующего основания Льюиса в сопряженный диеновый мономер осуществляют перед указанной стадией загрузки каталитической системы на основе никеля в сопряженный диеновый мономер, и (iv) поддерживают полимеризацию сопряженного диенового мономера при степени превращения менее 15%, при этом полидиен имеет содержание цис-1,4-связей по меньшей мере 97%, содержание 1,2-связей менее 1,0%, распределение молекулярных масс менее 3,0, вязкость по Муни (ML1+4@100°C) менее 60 и содержание геля менее 20% по массе.

Изобретение относится к способу производства модифицированного полимера или соответствующего гидрированного полимера. Способ производства модифицированного полимера или его гидрированного продукта включает полимеризацию мономера, содержащего по крайней мере одно из перечисленного: сопряженный диен и ароматическое соединение винила, в растворителе полимеризации на основе углеводорода, с использованием активного металлоорганического агента в качестве инициатора полимеризации, с образованием модифицированного полимера или его гидрированного продукта, причем модифицированный полимер включает в себя функциональную группу по крайней мере в одном из положений: в главной цепи и в боковой цепи, причем функциональная группа включается в модифицированный полимер с использованием соединения, имеющего функциональную группу, защищенную силильной группой, в качестве инициатора полимеризации, мономера, содержащего функциональную группу, или терминатора полимеризации, кроме того, способ включает в себя последовательно: (a) стадию извлечения растворителя, в которой реакционный раствор, в котором модифицированный полимер или гидрированный продукт растворен в растворителе полимеризации, разделяют на фракцию растворителя, включающую растворитель на основе углеводорода, и твердую фракцию, включающую модифицированный полимер или гидрированный продукт, (b) стадию отделения низкокипящей фракции, в которой фракцию растворителя перегоняют для отделения низкокипящей фракции, включающей растворитель на основе углеводорода и соединение силанола, и (c) стадию удаления силанола, в которой по крайней мере часть соединения силанола удаляют из низкокипящей фракции путем жидкостной экстракции с использованием низкокипящей фракции и экстрагирующего растворителя, причем по крайней мере часть рафината, из которого путем жидкостной экстракции было удалено соединение силанола, повторно используют как растворитель для полимеризации.

Изобретение относится к способу получения полидиенов. Способ получения полидиена включает стадии: (i) получения активного катализатора путем объединения лантанидсодержащего соединения, алкилирующего агента и источника галогена, по существу, в отсутствие амина и (ii) полимеризации сопряженного диенового мономера в присутствии активного катализатора и амина, где амин вводят до того, как заполимеризовалось 5% сопряженного диенового мономера.

Настоящее изобретение относится к стабилизированным растворам многовалентных инициаторов анионной полимеризации и к способам непрерывного получения полидиенов или сополимеров полидиенов.

Изобретение относится к диеновым полимерам, способу их получения, их применению, к вулканизующимся каучуковым композициям, их применению, а также к шине и формованным изделиям, содержащим каучуковую композицию в вулканизованной форме. Диеновые полимеры содержат в начале полимерных цепей третичные аминогруппы формулы, а также имеют по концам полимерных цепей силансодержащие карбинольные группы формулы в виде солей металлов. Причем R1, R2 являются одинаковыми или различными и представляют собой алкильный, циклоалкильный, арильный, алкарильный и аралкильный радикалы, которые могут содержать гетероатомы, такие как кислород, азот, сера иили кремний. В указанных формулах и Z означает двухвалентный органический радикал, который может содержать, кроме атомов углерода и водорода, гетероатомы, такие как кислород, азот, сера иили кремний. Причем R3, R4, R5, R6 являются одинаковыми или различными и означают водород, алкильный, циклоалкильный, арильный, алкарильный и аралкильный радикалы, которые могут содержать гетероатомы, такие как кислород, азот, сера иили кремний. 10 н. и 11 з.п. ф-лы, 2 табл, 3 пр.

Наверх