Технологический комплекс получения синтез-газа в установке по переработке попутного нефтяного газа в синтетическую нефть на гравитационной платформе gtl

Изобретение относится к переработке попутного нефтяного газа (ПНГ) на газохимических установках, размещаемых на удаленных шельфовых месторождениях. Технологический комплекс получения синтез-газа в установке по переработке попутного нефтяного газа в синтетическую нефть на гравитационной платформе GTL включает узел подачи попутного нефтяного газа, воздушный компрессор, реактор синтез-газа, содержащий смеситель попутного нефтяного газа с воздухом и следующий за ним каталитический пакет, имеющий выходной трубопровод подачи полученного синтез-газа потребителю, в частности блоку синтеза Фишера-Тропша, и программно-организованную систему управления, связанную с узлом подачи попутного нефтяного газа. С воздушным компрессором трубопроводом связана установка получения кислорода из воздуха, соединенная трубопроводом с узлом регулирования расхода подачи выделенного кислорода в реактор синтез-газа. Вход указанного узла регулирования расхода подачи выделенного кислорода также соединен с воздушным компрессором, а его выход соответственно со смесителем газа с воздухом реактора синтез-газа. Узел регулирования расхода подачи выделенного кислорода связан с системой управления. Комплекс повышает стабильность работы оборудования по производству синтетических жидких углеводородов, в частности, реактора Фишера-Тропша, путем обеспечения постоянного количества получаемого синтез-газа при неравномерном дебите поступающего на переработку ПНГ. 1 ил.

 

Изобретение относится к области переработки попутного нефтяного газа (ПНГ) на газохимических установках, размещаемых на удаленных шельфовых месторождениях, и касается вопроса, связанного со стабильностью работы оборудования по производству синтетических жидких углеводородов.

Процесс переработки попутного нефтяного газа в синтетические углеводороды (процесс GTL) проходит в два этапа: на первом ПНГ конвертируется в синтез-газ, а на втором синтез-газ преобразуется в реакторе Фишера-Тропша в синтетические углеводороды. Процесс реализуется с 20-х гг. XX века.

Для подавляющего числа объектов по добыче нефти характерна неравномерность дебита попутного нефтяного газа в зависимости от сезона, срока эксплуатации месторождения и других факторов.

Потребление попутного нефтяного газа в качестве топливного газа для энергетического комплекса платформы и для общеплатформенных нужд также изменяется в широком диапазоне в зависимости от сезона и других факторов.

В результате дебит газа, поступающего на переработку, является непостоянным и уменьшается до 50% от максимального значения.

Известно, что установки, использующие каталитические процессы, в том числе газохимические, имеют ограничение по количеству перерабатываемого сырья до ±(10÷20) % от средних показателей. Это связано с необходимостью обеспечения заданных объемных скоростей подачи газов на катализаторы химических процессов в реакторах установки.

Использование существующих подходов к проектированию и выбору оборудования газохимических установок не позволяет создать установки, которые без изменения количества работающих реакторов и другого технологического оборудования пригодны к переработке газа, дебит которого непостоянен и изменяется до±50% от средних показателей.

Из уровня техники известно, что процесс парциального окисления метана и его гомологов малочувствителен к разбавлению и протекает в широких пределах соотношения углеводородов и окислителя. С наибольшей эффективностью процесс каталитического парциального окисления протекает при изменении содержания в сырье: углеводородов 5÷30 об. %, кислорода 5÷40 об. %, инертных компонентов (азота и прочих газов) - до 90 об. % (см. патенты РФ №2158711, №2204434, №2433950, №2538971, №2350386).

Известен технологический комплекс для получения синтез-газа (патент РФ №2480400), содержащий пространственно разнесенные и герметично связанные между собой системой трубопроводов узел подачи обрабатываемого углеводородного газа, реактор синтез-газа со смесителем углеводородного газа с воздухом, реактор синтетического топлива, устройство компримирования воздуха (воздушный компрессор) и снабженный программно-организованной и коррелируемой в процессе получения синтез-газа системой управления -прототип.

Недостатком известного технологического комплекса является тот факт, что с помощью него возможна переработка углеводородного сырья только фиксированного расхода без возможности регулирования его производительности в нужных пределах для нефтегазового месторождения с неравномерным дебитом добычи попутного нефтяного газа и его потребления на собственные нужды.

Предлагаемое изобретение решает задачу повышения стабильности работы оборудования по производству синтетических жидких углеводородов (реактора Фишера-Тропша) путем обеспечения постоянного количества получаемого синтез-газа при неравномерном дебите поступающего на переработку ПНГ.

Для этого в технологический комплекс получения синтез-газа в установке по переработке попутного нефтяного газа в синтетическую нефть на гравитационной платформе GTL, включающий узел подачи попутного нефтяного газа, воздушный компрессор, реактор синтез-газа, содержащий смеситель попутного нефтяного газа с воздухом, соединенный трубопроводом с узлом подачи попутного нефтяного газа, и следующий за ним каталитический пакет, имеющий выходной трубопровод подачи полученного синтез-газа потребителю, в частности блоку синтеза Фишера-Тропша, и программно-организованную систему управления, связанную с узлом подачи попутного нефтяного газа, по изобретению введены связанная с воздушным компрессором трубопроводом установка получения кислорода из воздуха и соединенный с ней трубопроводом узел регулирования расхода подачи выделенного кислорода в реактор синтез-газа. При этом вход указанного узла регулирования расхода подачи выделенного кислорода соединен трубопроводом также с воздушным компрессором, а его выход - соответственно со смесителем газа с воздухом реактора синтез-газа. Причем указанный узел регулирования расхода подачи выделенного кислорода связан с упомянутой системой управления.

Введение в состав комплекса установки получения кислорода из воздуха обеспечивает подачу чистого кислорода (99,5 об. %), а добавление узла регулирования расхода выделенного кислорода позволяет регулировать степень обогащения воздуха, поступающего в смеситель реактора синтез-газа, что приводит к обеспечению постоянства количества получаемого синтез-газа при неравномерном дебите поступающего на переработку ПНГ.

Сущность изобретения поясняется рисунком, на котором изображена принципиальная схема технологического комплекса получения синтез-газа в установке по переработке попутного нефтяного газа в синтетическую нефть на гравитационной платформе.

Технологический комплекс получения синтез-газа в установке по переработке попутного нефтяного газа в синтетическую нефть на гравитационной платформе GTL включает узел подачи ПНГ 1, реактор синтез-газа 2, содержащий смеситель 3 ПНГ с обогащенным воздухом, связанный трубопроводом с узлом подачи ПНГ 1, и каталитический пакет 4, выход которого соединен трубопроводом с блоком синтеза Фишера-Тропша 5. Комплекс содержит программно-организованную систему управления (ПОСУ) 6, воздушный компрессор 7, связанную трубопроводом с воздушным компрессором 7 установку получения кислорода из воздуха 8 и соединенный с ней (8) трубопроводом узел регулирования расхода подачи выделенного кислорода 9 в реактор синтез-газа 2. При этом вход указанного узла регулирования 9 соединен трубопроводом также с воздушным компрессором 7, а его выход - соответственно со смесителем 3 ПНГ с обогащенным воздухом реактора синтез-газа 2. Причем упомянутый узел 9 и узел подачи ПНГ 1 связаны с ПОСУ 6.

Технологический комплекс получения синтез-газа в установке по переработке попутного нефтяного газа в синтетическую нефть на гравитационной платформе GTL работает следующим образом.

ПНГ поступает на переработку через узел подачи ПНГ 1, где ведется количественный учет расхода газа и откуда он поступает в смеситель 3 реактора синтез-газа 2. Воздух, забираемый из атмосферы, подвергается сжатию в воздушном компрессоре 7. Сжатый воздух на выходе компрессора 7 подается по трубопроводу в установку 8 получения кислорода из воздуха, откуда выделенный из воздуха кислород направляется по трубопроводу в узел регулирования расхода 9, где смешивается с воздухом, поступающим из воздушного компрессора 7, обогащая его. Из узла регулирования расхода подачи выделенного кислорода 9 обогащенный воздух направляется в смеситель 3 реактора синтез-газа 2 для смешения с ПНГ. Образовавшаяся в смесителе 3 газовоздушная реакционная смесь поступает в каталитический пакет 4, где происходит образование синтез-газа, который далее подается в блок синтеза Фишера-Тропша 5, где в результате проведения реакции Фишера-Тропша синтез-газ преобразуется в синтетическую нефть.

Степень обогащения воздуха кислородом в узле регулирования расхода подачи выделенного кислорода 9 регулируется входящей в состав технологического комплекса ПОСУ 6 в зависимости от данных по расходу подаваемого на переработку ПНГ, поступающих от узла подачи ПНГ 1. В результате обеспечивается постоянство количества синтез-газа при неравномерном дебите поступающего на переработку ПНГ.

Таким образом, обеспечивается стабильная работа технологического оборудования по производству синтетических жидких углеводородов за счет постоянного выхода синтез-газа, что выгодно отличает предлагаемый по заявке технологический комплекс получения синтез-газа в установке по переработке попутного нефтяного газа в синтетическую нефть на гравитационной платформе GTL от прототипа.

Технологический комплекс получения синтез-газа в установке по переработке попутного нефтяного газа в синтетическую нефть на гравитационной платформе GTL, включающий узел подачи попутного нефтяного газа, воздушный компрессор, реактор синтез-газа, содержащий смеситель попутного нефтяного газа с воздухом, соединенный трубопроводом с узлом подачи попутного нефтяного газа, и следующий за ним каталитический пакет, имеющий выходной трубопровод подачи полученного синтез-газа потребителю, в частности блоку синтеза Фишера-Тропша, и программно-организованную систему управления, связанную с узлом подачи попутного нефтяного газа, отличающийся тем, что в его состав введены связанная с воздушным компрессором трубопроводом установка получения кислорода из воздуха и соединенный с ней трубопроводом узел регулирования расхода подачи выделенного кислорода в реактор синтез-газа, при этом вход указанного узла регулирования расхода подачи выделенного кислорода соединен трубопроводом также с воздушным компрессором, а его выход - соответственно со смесителем газа с воздухом реактора синтез-газа, причем указанный узел регулирования расхода подачи выделенного кислорода связан с упомянутой системой управления.



 

Похожие патенты:

Изобретение относится к нанотехнологии. Сначала смешивают полимер с катализатором и растворителем до получения однородного раствора.

Изобретение относится к химической промышленности. Взрывчатое вещество со скоростью детонации 6300 м/с или более размещают на периферии исходного вещества, содержащего ароматическое соединение с не более чем двумя нитрогруппами, например, динитротолуола, динитробензола или динитроксилола.

Изобретение относится к катализатору для раздельного получения водорода и монооксида углерода из метана. Катализатор состава 5-15% мас.

Группа изобретений относится к способу получения водородсодержащего газа для производства метанола из углеводородных газов (метана, природного газа, попутных нефтяных газов, сланцевых газов) и устройству для осуществления способа, и могут быть использованы в химической, нефте- и газохимической отраслях промышленности, в том числе при создании малотоннажных газохимических производств.
Изобретение относится к технологии получения синтетических алмазов методом динамического детонационного синтеза и может быть использовано для очистки и извлечения высокочистого алмаза из первичных продуктов.

Изобретение относится к технологии получения синтез-газа из углеводородных газов путем их парциального окисления для целевого использования в качестве промежуточного продукта в нефте- и газохимических производствах.

Изобретение относится к технологии переработки газового сырья, в частности к способу получения синтез-газа, который может быть в дальнейшем использован для процессов синтеза метанола.
Изобретение может быть использовано в наноэлектронике. Частицы графита помещают в вакуум между электродами, при этом разность потенциалов устанавливают достаточной для электродинамического ожижения частиц и получения ими энергии, превышающей работу, необходимую для их раскола по плоскостям спайности на слои графена при хрупком разрушении во время ударов об электроды.

Изобретение относится к катализатору для гетерогенного катализа, который содержит по меньшей мере смешанный оксид никеля и магния и магниевую шпинель, где смешанный оксид никеля и магния обладает средним размером кристаллитов ≤100 нм, фаза магниевой шпинели обладает средним размером кристаллитов ≤100 нм.

Изобретение может быть использовано в энергетической, нефтехимической, химической, металлургической отраслях промышленности. Способ получения водорода из газовых смесей, содержащих диоксид углерода, осуществляют путем его абсорбционного удаления абсорбентом на основе водных растворов аминов, способ включает процессы абсорбции диоксида углерода при повышенном давлении, расширения насыщенного абсорбента в турбине с получением механической энергии, регенерации насыщенного абсорбента при повышенной температуре и/или пониженном давлении с подводом тепла через кипятильник, рекуперации тепла горячего регенерированного абсорбента, сжатие регенерированного абсорбента насосом, охлаждение регенерированного абсорбента в холодильнике и подачу его в абсорбер, а также охлаждение парогазовой фазы, выделенной при регенерации абсорбента.

Изобретение относится к электротехнике и может быть использовано при изготовлении углеродных катодных материалов для накопителей энергии, например гибридных суперконденсаторов. Восстановленный оксид графена с насыпным весом 0,002-2,0 г/см3 обрабатывают в псевдоожиженном слое, создаваемом озоновоздушной или озонокислородной смесью, содержащей 10 об.% озона, при температуре до +80°C. Процесс можно проводить в присутствии катализатора, например азотной кислоты, предварительно нанесённой на восстановленный оксид графена. Изобретение позволяет повысить удельные мощностные характеристики катодов и получать прочные структуры катодных материалов в процессе прессования без использования связующих. 2 н. и 4 з.п. ф-лы, 2 ил., 7 пр.

Настоящее изобретение относится к вариантам способа преобразования исходного топлива во вторичное топливо посредством установки реформинга. Один из вариантов способа включает следующие этапы: подачу исходного топлива в печь установки реформинга, причем исходное топливо содержит отходы в виде сточных вод и/или твердых отходов, содержащих углерод; подачу в печь метана в качестве дополнительного исходного топлива; подачу воды в печь; обеспечение одного или более плазменно-дуговых источников тепла в установке реформинга для расщепления указанных исходных топлив и указанной воды на один или более составляющих компонентов и/или их комбинации; преобразование по меньшей мере части указанного одного или более составляющих компонентов воды и исходных топлив и/или их комбинации в указанное вторичное топливо с использованием одного или более катализаторов; вывод указанного вторичного топлива из установки реформинга. В другом варианте способа исходным топливом является метан, а вторичным топливом – метанол. Предлагаемые способы позволяют отказаться от использования больших конвертеров для печей (печных камер) при использовании метана для питания плазменно-дуговых горелок. 4 н. и 9 з.п. ф-лы, 4 ил.

Изобретение предназначено для органической электроники, электрореологии, медицины и может быть использовано при изготовлении микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей, суперконденсаторов, сенсоров и биосенсоров, солнечных батарей, дисплеев, а также лекарств для лечения онкологических заболеваний. Мономер - 3-амино-7-диметиламино-2-метилфеназин гидрохлорид – нейтральный красный, растворяют в органическом растворителе до концентрации 0,01-0,05 моль/л. В полученный раствор добавляют одностенные углеродные нанотрубки (ОУНТ) в количестве 1-10 от массы мономера. Затем проводят окислительную полимеризацию мономера in situ в присутствии водного раствора окислителя. Полученный гибридный электропроводящий материал на основе поли-3-амино-7-метиламино-2-метилфеназина и ОУНТ характеризуется высокой электропроводностью, прочностью, термостойкостью. 2 н.п. ф-лы, 7 ил., 1 табл., 21 пр.

Изобретение относится к области получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья и интегрированному мембранно-каталитическому реактору для осуществления способа и может быть использовано в получении топливных элементов, полупроводников, химическом синтезе. Интегрированный мембранно-каталитический реактор представляет собой полый цилиндрический корпус, в нижней части которого расположены входной патрубок для подачи сырья, соединенный с диффузором для равномерного распределения сырья в объеме реактора, и патрубок с карманом для термопары, а в верхней части находится отводной патрубок и с помощью отвинчивающейся крышки закреплен пористый керамический каталитический конвертер из материала, полученного самораспространяющимся высокотемпературным синтезом из шихты состава, % мас.: Ni - 45, Al - 5, Co3O4 - 50, и восстановленного в токе водорода, представляющий собой трубку с глухим верхним концом, в центральном канале которого установлена водородселективная мембрана на основе палладийсодержащего сплава в виде скрученной в спираль тонкостенной трубки с возможностью вывода через нее ультрачистого водорода в отводной патрубок, причем с отводным патрубком соединены газовая линия для вывода ультрачистого водорода, газовая линия для вывода синтез-газа и остальных продуктов и газовая линия для ввода газа-носителя. Изобретение обеспечивает высокоэффективное получение ультрачистого водорода с высоким выходом и синтез-газа в одной установке и в одном процессе. 2 н. и 4 з.п. ф-лы, 2 ил., 6 табл., 34 пр.

Изобретение может быть использовано для изготовления прессовок поликристаллического алмаза и режущего инструмента. Наноразмерный одно- или многослойный материал, содержащий графен, спекают примерно 5 мин в отсутствие катализатора - переходного металла при давлении и температуре по меньшей мере 45 кбар и 700°С, соответственно. По другому варианту указанный материал перед спеканием смешивают с алмазной затравкой в количестве не менее 0,01% от массы смеси. Графен имеет отношение размеров от 500 до 2000. Полученные прессовки поликристаллического алмаза и режущий элемент содержат поликристаллические суперабразивные частицы, например алмаз. Изобретение позволяет избежать вредного влияния катализатора на механические и абразивные свойства прессовок и режущего инструмента. 4 н. и 20 з.п. ф-лы, 3 табл., 7 ил.

Изобретение относится к технологическому оборудованию для производства синтез-газа путем паровой каталитической конверсии природного газа. Устройство состоит из корпуса с горловиной, снаружи которого коаксиально размещен кожух с крышкой и с днищем в виде обечайки с фланцем для присоединения к нему снизу огневой горелки. Горловина закреплена внутри осевого канала фланца. Кожух коаксиально установлен снаружи корпуса, а охлаждающая рубашка снаружи кожуха. Коллектор для сбора продуктов конверсии имеет форму стакана, коаксиально установленного на наружной стороне крышки. Кольцевое пространство между кожухом и корпусом разделено горизонтальной перегородкой на верхнее и нижнее отделения. В верхнем отделении размещены реакционные трубы предриформинга и первичного риформинга, пневматически связанные между собой с помощью торообразного коллектора. Внутреннее пространство корпуса разделено горизонтальными перегородками на верхний, средний и нижний отсеки. Реакционные трубы вторичного риформинга установлены в верхнем отсеке. Внутренние полости верхнего и нижнего отсеков пневматически связаны между собой. В реакционных трубах предриформинга, первичного и вторичного риформинга размещен твердый гранулированный катализатор. Внутренняя полость верхнего отделения пневматически связана с внутренней полостью верхнего отсека и с патрубками для отвода дымовых газов в сборный коллектор. Последние пневматически связаны с внутренней полостью сборного коллектора, откуда дымовые газы направляются в дымовую трубу. По пути движения дымовых газов из сборного коллектора в дымовую трубу может быть предусмотрено размещение различных видов теплоиспользующего оборудования. Внутренняя полость нижнего отделения пневматически связана с реакционными трубами предриформинга и с патрубком для ввода парогазовой смеси, поступающей в него из узла смешивания природного газа и водяного пара. Внутренняя полость, образованная наружной поверхностью крышки и внутренней поверхностью стакана, пневматически связана с реакционными трубами вторичного риформинга и с патрубком для отвода продуктов конверсии. Технический результат заключается в повышении экономичности работы устройства и эффективности использования тепловой энергии отходящих газов. 1 з.п. ф-лы, 4 ил., 1 пр.
Наверх