Способ гидрометаллургического обратного извлечения лития из фракции гальванических батарей, содержащей оксид лития и марганца

Настоящее изобретение касается способа гидрометаллургического обратного извлечения лития из содержащей оксид лития и марганца фракции использованных гальванических батарей. При реализации способа указанную фракцию с размером частиц до 500 мкм, переводят в растворимое состояние введением при температурах от 30 до 70°C в щавелевую кислоту, количество которой стехиометрически избыточно в сравнении с содержанием марганца в оксиде лития и марганца. Процесс ведут при соотношении твердого вещества к жидкости в пределах от 10 до 250 г/л. Образовавшийся раствор, содержащий литий, отделяют, а оставшийся осадок отмывают по меньшей мере дважды. Отделенный раствор с литием и содержащие литий промывочные растворы объединяют. Остаточное содержание марганца, находящегося в растворенном состоянии, восстанавливают путем осаждения в виде гидроксида, отделяют и отмывают, а оставшийся раствор, содержащий литий, очищают далее путем преобразования в карбонат, хлорид или сульфат и при необходимости последующей кристаллизации. Техническим результатом является снижение энергозатратности процесса и чистота литиевых солей. 7 з.п. ф-лы, 1 табл., 1 пр.

 

Объектом настоящего изобретения является способ гидрометаллургического обратного извлечения лития из фракции гальванических батарей, содержащей оксид лития и марганца.

Для независимого энергообеспечения мобильным электронным устройствам необходимы все более мощные батареи, пригодные к повторной зарядке [аккумуляторы]. Для этих целей применяют литиево-ионные батареи, в силу высокой плотности энергии (выраженной в Вт⋅ч/кг), способности выдержать большое число циклов и малого уровня саморазряжения. Очень широко распространены литиево-ионные батареи, в которых в качестве материала катода применяют оксиды переходных металлов. В этих батареях активный материал катода состоит из оксидов лития и переходных металлов, из которого в процессе зарядки высвобождаются ионы лития, встраивающиеся в материал анода. Особое значение имеют оксиды лития, смешанные с таковыми марганца, которые известны также под сокращенным названием ячеек или батарей из марганцевой шпинели (литий-марганцевой шпинели). Крупные литиевые аккумуляторы применяют в стационарных вариантах (энергетический резерв, power back-up) или в автомобилестроении, для тяги (гибридный или чисто электрический привод). С точки зрения безопасности при только что указанных вариантах применения батареям на основе оксида лития и марганца придается первостепенное значение. Поскольку с ростом размера и числа изготовленных, использованных, а затем и отработанных батарей растет количество содержащихся в них материалов, требуется экономичный способ обратного извлечения лития, содержащегося в батареях.

Из международной заявки WO 2012/072619 А1 известен способ обратного извлечения лития из содержащей LiFePO4 фракции измельченных и просеянных (грохоченых) аккумуляторов, при реализации которого содержащую LiFePO4 фракцию обрабатывают кислым раствором в присутствии окислителя. Высвободившиеся ионы лития отделяют от нерастворенного фосфата железа и осаждают из содержащего литий раствора в виде соли. Последующую гидрометаллургическую обработку осуществляют разбавленной серной кислотой с параллельным введением кислорода, озона или добавлением пероксида водорода в температурном диапазоне от 80°C до 120°C.

Недостаток этого способа состоит в высокой энергозатратности процесса экстракции, высоких требованиях с точки зрения устойчивости используемой аппаратуры к коррозии и в чистоте литиевых солей, получаемых осаждением.

Перед изобретением была поставлена задача представить способ, который обеспечивает максимально возможную энергоэффективность при экстракции лития с одновременно низкими требованиями по устойчивости применяемого экстракционного оборудования к коррозии и повышении чистоты получаемых соединений лития.

Поставленную задачу решают посредством способа гидрометаллургического обратного извлечения лития из содержащей оксид лития и марганца фракции использованных гальванических батарей, при реализации указанного способа фракцию, содержащую оксид лития и марганца с размером частиц до 500 мкм, переводят в растворимое состояние, вводя при температурах от 30 до 70°C в щавелевую кислоту, количество которой стехиометрически избыточно в сравнении с содержанием марганца в оксиде лития и марганца, при соотношении твердого вещества к жидкости в пределах от 10 до 250 г/л, образовавшийся раствор, содержащий литий, отделяют, а оставшийся осадок отмывают по меньшей мере дважды; отделенный раствор с литием и содержащие литий промывочные растворы объединяют, остаточное содержание марганца, находящегося еще в растворенном состоянии, восстанавливают путем осаждения в виде гидроксида, отделяют и отмывают, а оставшийся раствор, содержащий литий, очищают далее путем преобразования в карбонат, хлорид или сульфат и, при необходимости, с последующей кристаллизацией. Неожиданно было обнаружено, что экстракция лития происходит без дополнительных источников тепла, уже при использовании выделяющейся при экстракции теплоты реакции. Благодаря тому, что теплоту реакции посредством дозирования восстановителя контролируют и поддерживают на очень низком уровне, можно в общем случае избежать практически автокаталитического разложения восстановителя. Для экстракции лития необходимо применять практически только стехиометрически равные количества восстановителя. В зависимости от выбранных условий реакции марганец выпадает в осадок уже во время экстракции, преимущественно в виде нерастворенного оксалата марганца.

При этом в указанных мягких гидрометаллургических условиях перевода в растворимое состояние содержащийся литий переходит в раствор более чем на 95 вес.%, а степень повторного извлечения составляет более 90 вес.%.

Далее предпочтительно восстанавливать содержащиеся многовалентные катионы металлов с помощью ионообменников. Сниженное содержание многовалентных катионов металлов, в частности, положительно сказывается на дальнейшей обработке раствора методом электродиализа с использованием биполярных мембран, поскольку эти катионы металлов ввиду их осаждения на применяемых мембранах и внутри них играют роль "мембранных ядов".

Особо предпочтительно, чтобы фракция, содержащая оксид лития и марганца, имела размер частиц до 500 мкм, предпочтительно - от 100 до 400 мкм. Применение частиц указанного размера улучшает процесс перевода в растворимое состояние.

Выгодно применять щавелевую кислоту в концентрации от 0,2 до 1,2 моль/л, предпочтительно от 0,5 до 1,0 моль/л или непосредственно в виде твердого вещества. Применение твердой щавелевой кислоты резко уменьшает реакционный объем.

Особо предпочтительно, чтобы соотношение твердого вещества и жидкости было задано в пределах от 20 до 200 г/л, предпочтительно - от 45 до 90 г/л. Несмотря на высокое содержание твердого вещества в реакционной смеси присутствующий литий переводится в раствор практически количественно.

Предпочтительно проводить перевод в растворимую форму при температуре 35-65°C, в особенности при 40-60°C. Это неожиданным образом не оказывает существенного влияния на эффективность вымывания лития ни в смысле длительности ни в смысле количества. Указанный температурный диапазон можно задать простыми аппаратными средствами.

Предпочтительно отмывать остаток (осадок) от перевода в растворимое состояние не менее трех раз. Было обнаружено, что таким образом можно получить более 90 вес.% присутствующего лития.

Предпочтительно применять щавелевую кислоту в избытке, чтобы избежать одновременного выпадения в осадок оксалата марганца и лития в форме карбоната. Особо предпочтителен избыток в 0,1-1 моль, целесообразно - 0,2-0,8-молярный избыток.

Изготовленный в соответствии со способом продукт пригоден в смысле своей чистоты для изготовления оксидов лития с переходными металлами или фосфатов лития с переходными металлами, и его можно предпочтительно использовать для изготовления активных материалов для использования в катодах литиево-ионных батарей.

Ниже приведено общее описание процесса согласно изобретению.

Примеры

Более подробное пояснение изобретения дано на основании нижеследующих примеров и таблицы 1.

В приведенных в таблице 1 условиях провели 6 экспериментов с приведенными условиями с фракцией, содержащей оксид лития и марганца.

1. Способ гидрометаллургического обратного извлечения лития из содержащей оксид лития и марганца фракции использованных гальванических батарей, отличающийся тем, что фракцию, содержащую оксид лития и марганца с размером частиц до 500 мкм, переводят в растворимое состояние введением при температурах от 30 до 70°С в щавелевую кислоту, количество которой стехиометрически избыточно в сравнении с содержанием марганца в оксиде лития и марганца, при соотношении твердого вещества к жидкости в пределах от 10 до 250 г/л, образовавшийся раствор, содержащий литий, отделяют, а оставшийся осадок отмывают по меньшей мере дважды; отделенный раствор с литием и содержащие литий промывочные растворы объединяют, остаточное содержание марганца, находящегося в растворенном состоянии, восстанавливают путем осаждения в виде гидроксида, отделяют и отмывают, а оставшийся раствор, содержащий литий, очищают далее путем преобразования в карбонат, хлорид или сульфат, предпочтительно с последующей кристаллизацией.

2. Способ по п. 1, отличающийся тем, что содержащиеся многовалентные катионы металлов в растворе восстанавливают с помощью ионообменников.

3. Способ по п. 1, отличающийся тем, что фракция, содержащая оксид лития и марганца, имеет размер частиц от 100 до 400 мкм.

4. Способ по п. 1, отличающийся тем, что щавелевую кислоту применяют в концентрации от 0,2 до 1,2 моль/л, предпочтительно от 0,5 до 1,0 моль/л.

5. Способ по п. 1, отличающийся тем, что соотношение твердого вещества и жидкости находится в пределах от 20 до 200 г/л, предпочтительно от 45 до 90 г/л.

6. Способ по п. 1, отличающийся тем, что перевод в растворимую форму осуществляют при температуре 35-65°С, в частности при 40-60°С.

7. Способ по п. 1, отличающийся тем, что остаток от перевода в растворимую форму отмывают по меньшей мере три раза.

8. Способ по одному из пп. 1-7, отличающийся тем, что применяют 0,1-1-молярный избыток, предпочтительно 0,2-0,8-молярный избыток щавелевой кислоты.



 

Похожие патенты:

Изобретение относится к извлечению драгоценных металлов из сырьевого материала, содержащего драгоценные металлы. Способ включает нагревание сырьевого материала в плазменной печи с образованием верхнего слоя шлака и нижнего слоя расплавленного металла, удаление слоя шлака, удаление слоя расплавленного металла, затвердевание удаленного слоя расплавленного металла, фрагментирование затвердевшего слоя металла с образованием фрагментов и извлечение богатой драгоценными металлами композиции из этих фрагментов.

Изобретение относится к переработке медно-никелевого файнштейна. Способ включает загрузку флюса в печь с нагретым медно-никелевым файнштейном, содержащим кобальт и железо, плавление флюса и продувку файнштейна кислородсодержащим дутьем.

Изобретение касается способа гидрометаллургического обратного извлечения лития из содержащей фосфат лития и железа фракции использованных гальванических батарей.

Изобретение относится к способу извлечения мышьяка из отходов аммиачно-автоклавного передела кобальтовых руд. Способ включает спекающий обжиг отходов в присутствии соды.
Изобретение относится к области металлургии редких металлов, а более конкретно к способам извлечения галлия из твердых порошкообразных галлийсодержащих материалов.

Изобретение относится получению титансодержащих металлических порошков. Способ включает травление слитков титансодержащего металлического материала, промывку, гидрирование слитков, измельчение полученного гидрида в порошок, дегидрирование полученного порошка гидрида путем термического разложения при вакуумировании и повторное измельчение дегидрированного порошка.

Изобретение относится к извлечению золота из бурых и каменных углей. Способ включает дробление углей до 6-10 мм, загрузку их на решетку в металлическую герметичную емкость с патрубком, без соприкосновения с находящейся в ней водой, подогрев емкости до 135-140°C и выдержку до полного испарения воды, при этом обеспечивают прохождение нагретого водяного пара через слой углей и через патрубок с его конденсацией в сборной охлаждаемой емкости с суспензией сорбента, собирающего золото в летучей форме, перенесенное из углей.
Изобретение относится к переработке красных шламов - отходов алюминиевого производства. Красный шлам измельчают и разделяют с помощью магнитной сепарации на магнитную и немагнитную фракции.

Изобретение относится к способу обработки золы, в частности летучей золы, в котором несколько элементов отделяют от золы. В способе отделяют благородные металлы и редкоземельные элементы.

Изобретение относится к утилизации сбросных пульп золотоизвлекательных фабрик, в том числе хвостов обогащения. Способ включает насыщение сбросных пульп электролитическими газами и электрофлотацию в электрофлотационных колоннах.

Изобретение относится к способу переработки марганецсодержащего сырья. В качестве исходного сырья используют ванадий-, магний-, марганецсодержащие кеки содового выщелачивания металлургических шлаков или марганцевых карбонатных руд.

Изобретение относится к способу обработки марганецсодержащих материалов, таких как конкреции, извлеченные с помощью добычи под морским дном. Способ включает взаимодействие материалов с аммиаком и выщелачивание с помощью минеральной кислоты.
Изобретение относится к цветной металлургии, в частности к переработке железомарганцевых конкреций для получения кобальта, меди, никеля, марганца, других металлов и их соединений.

Изобретение относится к способу обработки марганецсодержащих материалов, например марганцевых конкреций морского дна. Способ включает выщелачивание этих материалов с помощью водного раствора азотной кислоты и полимеризованного оксида азота (N2O3)x.

Изобретение относится к дефосфорации расплавов марганцевых руд и концентратов. Селективное восстановление фосфора из расплава ведут газообразным монооксидом углерода (СО), который продувают через расплав.

Изобретение относится к металлургии. Способ химического обогащения полиметаллических марганецсодержащих руд включает дробление и размол руды, который ведут до крупности минус 0,125, автоклавное выщелачивание присутствующих в руде элементов путем смешивания ее с 18%-ным раствором хлористого железа в соотношении 1:9 с последующим нагревом до температуры 475-500 K в течение 3 часов.

Изобретение относится к способу обработки марганецсодержащих материалов, таких как подводные марганцевые конкреции, путем выщелачивания водной HNO3 и NO-газом. При этом проводят извлечение ценных составляющих, особенно марганца, кобальта, никеля, железа и меди.
Изобретение относится к способу выщелачивания ценных минералов из проницаемого рудного тела или из твердых частиц, полученных из руды, содержащей компоненты карбоната металла и сульфида металла.

Изобретение относится к переработке карбонатно-оксидных марганцевых руд. Способ включает смешивание руды с шестиводным хлорным железом FeCl3·6H2O, тонкое измельчение, выщелачивание шихты горячей водой, отделение раствора от осадка оксидов железа, марганца, алюминия и диоксида кремния.

Изобретение относится к способу переработки марганцевых руд. Способ включает получение шихты смешиванием руды с гидросульфатом натрия, взятого в количестве, стехиометрически необходимом для связывания марганца и примесей в сульфаты.

Изобретение относится к способу извлечения мышьяка из отходов аммиачно-автоклавного передела кобальтовых руд. Способ включает спекающий обжиг отходов в присутствии соды.

Настоящее изобретение касается способа гидрометаллургического обратного извлечения лития из содержащей оксид лития и марганца фракции использованных гальванических батарей. При реализации способа указанную фракцию с размером частиц до 500 мкм, переводят в растворимое состояние введением при температурах от 30 до 70°C в щавелевую кислоту, количество которой стехиометрически избыточно в сравнении с содержанием марганца в оксиде лития и марганца. Процесс ведут при соотношении твердого вещества к жидкости в пределах от 10 до 250 гл. Образовавшийся раствор, содержащий литий, отделяют, а оставшийся осадок отмывают по меньшей мере дважды. Отделенный раствор с литием и содержащие литий промывочные растворы объединяют. Остаточное содержание марганца, находящегося в растворенном состоянии, восстанавливают путем осаждения в виде гидроксида, отделяют и отмывают, а оставшийся раствор, содержащий литий, очищают далее путем преобразования в карбонат, хлорид или сульфат и при необходимости последующей кристаллизации. Техническим результатом является снижение энергозатратности процесса и чистота литиевых солей. 7 з.п. ф-лы, 1 табл., 1 пр.

Наверх