Способ концентрирования и разделения флавоноидов



Способ концентрирования и разделения флавоноидов
Способ концентрирования и разделения флавоноидов
Способ концентрирования и разделения флавоноидов
Способ концентрирования и разделения флавоноидов

Владельцы патента RU 2646805:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ) (RU)

Изобретение относится к области аналитической химии и может быть использовано для концентрирования и разделения флавоноидов (ФЛ), таких как кверцетин, (+)-катехин, нарингин, для последующего определения в растительных образцах, фармацевтических препаратах. Способ концентрирования и разделения флавоноидов, включающий сорбционно-хроматографическое извлечение флавоноидов пропусканием раствора кверцетина, (+)-катехина или нарингина через мезопористый сорбент типа МСМ-41, полученный из реакционной смеси цетилтриметиламмоний бромида (CTABr), источника кремния и дистиллированной воды и прошедший гидротермальную обработку, фильтрование полученной смеси, экстракцию темплата, высушивание и кальцинирование, при этом используются ацетонитрильные растворы флавонидов, при этом в качестве источника кремния использован тетраэтоксисилан (TEOS), реакционная смесь дополнительно содержит аммиак и этиловый спирт, обработку сорбента производят при определенных условиях, полученный сорбент предварительно фракционируют до размера частиц 0,1-0,25 мм и дополнительно модифицируют триметилхлорсиланом, при этом в качестве растворителя при модификации используется трихлорметан. Вышеописанный способ повышает степень извлечения и разделения флавоноидов- кверцетина, нарингина, катехина. 6 ил., 13 пр.

.

 

Изобретение относится к области аналитической химии и может быть использовано для концентрирования и разделения флавоноидов (ФЛ), таких как кверцетин, (+)-катехин, нарингин, для последующего определения в растительных образцах, фармацевтических препаратах.

Концентрирование и разделение флавоноидов осуществляют сорбционно-хроматографическим методом с использованием в качестве сорбентов мезопористых материалов типа МСМ-41. По своей химической природе мезопористый материал типа МСМ-41 идентичен силикагелю, но имеет большие значения удельной площади поверхности (более 1000 м2/г), узкое распределение пор по размерам (2-10 нм) гексагональной структуры, что позволяет использовать данный материал в качестве сорбента. МСМ-41, а также модифицированные органосиланами композиты на его основе могут быть использованы в качестве альтернативы силикагелю и другим сорбентам в хроматографических процессах и для сорбционного концентрирования и выделения полифенольных веществ.

Для выделения аналита из смеси с помощью мезопористых сорбентов используют колонки, которые предварительно заполняют материалом типа МСМ-41 или модифицированным триметилхлорсиланом композитом на его основе. Высота слоя сорбента 1,5-2,0 см. Диаметр колонки 1,2 см.

Согласно литературным данным для идентификации, разделения и определения флавоноидов применяют, в основном, обращенно-фазовый вариант высокоэффективной жидкостной хроматографии.

Для выделения и концентрирования на стадии пробоподготовки используют силикагели, модифицированные гидрофобными алкильными группами (например, C18) и полимерные сорбенты [Дмитриенко С.Г., Кудринская В.А., Апяри В.В. Методы выделения и концентрирования и определения кверцетина / Журнал аналитической химии. 2012. Т. 67, №64. с. 340-353, Карцова Л.А. Алексеева А.В. Хроматографические и электрофоретические методы определения полифенольных соединений / Журнал аналитической химии. - 2008. - №11. - С. 1126-1136, Шафигулин Р.В., Комиссарова Н.В., Родина Т.А., Буланова А.В. Хроматографическое и препаративное разделение флавоноидов, содержащихся в чае // Сборник статей «Хроматография на благо России». - М.: «Граница». 2007. С. 348-356, Темердардашев З.А., Фролова Н.А., Колычев И.А. Определение фенольных соединений в лекарственных растениях методом обращенно-фазовой ВЭЖХ / Журнал аналитической химии. 2011. Т. 66, №4. С.417-424]. Степень извлечения кверцетина с использованием сорбента С18 достигает более 90%. Однако в литературе отсутствуют данные по изучению возможностей выделения флавоноидов из неводных растворов при комнатной температуре, а также не приведены количественные характеристики процесса разделения и концентрирования.

Известен способ, в котором для группового динамического сорбционного концентрирования флавоноидов (рутин, морин, нарингенин, хризин) использовали концентрирующую микроколонку (30×4 мм), заполненную 0,055 г сверхсшитого полистирола (ССПС, патроны Диапак П-3, ЗАО «БиоХимМак», Россия). Сорбцию проводили из водных растворов ФЛ. Перед использованием колонку промывали 0,1 М раствором соляной кислоты (cHCl=0,1 М). Определение флавоноидов проводили методом ВЭЖХ [С.Г. Дмитриенко, А.В. Степанова, В.А. Кудринская, В.В. Апяри. Особенности разделения флавоноидов методом обращенно-фазовой высокоэффективной хроматографии на колонке Luna 5u С18(2)/ ВЕСТН. МОСК. УН-ТА. СЕР. 2. ХИМИЯ. 2012. Т. 53. №6. С. 369-373]. Установлено, что в выбранных условиях рутин сорбируется на 90±4%, а остальные ФЛ - на 95-99%.

Известен способ, в котором разделение флавоноидов осуществляли на сорбентах с молекулярными отпечатками кверцетина на основе полимера, содержащего акриламид и ЭГДМА. Полимеризацию смеси, содержащей ацетон в качестве растворителя, проводили в течение 24 ч при 60°С. Сорбцию проводили в течение 1 ч. При этом был получен полимер, характеризующийся следующими факторами разделения: кверцетин/рутин (30), кверцетин/нарингенин (1), кверцетин/нарингин (18), кверцетин/морин (7), кверцетин/хризин (0,8). Импринтинг-фактор был равен 6 [Кудринская В.А., Дмитриенко С.Г., Золотов Ю.А. Синтез и исследование сорбционных свойств полимеров с молекулярными отпечатками кверцетина// Вестник МГУ. Сер. 2. Химия. 2009. Т. 50. №3. С. 156-163].

Из патента РФ 2491989 [МПК B01J 20/282, С07В 39/04, опубл. 29.03.2012], взятого за прототип, известен способ получения мезопористого сорбента для сорбционного концентрирования кверцитина и (+)-кахетина, включающий приготовление реакционной смеси на основе Ludox-HS-40, CTABr, NaOH, H2O дистиллированной, кверцетина (или (+)-катехина), дальнейшую гидротермальную обработку, промывание водой дистиллированной и смесью 96%-ного этанола с нитратом аммония, высушивание и кальцинирование при 550°С в течение 2 ч.

Изобретение обеспечивает получение мезопористых материалов типа МСМ-41, которые могут быть использованы как носители в хроматографии, а также для сорбционного концентрирования витаминов, относящихся к группе флавоноидов. Однако способ является достаточно длительным (гидротермальная обработка происходит в течение 144 ч).

Задачей данного изобретения является разработка нового эффективного способа извлечения и концентрирования кверцетина, (+)-катехина, нарингина из растворов сорбционно-хроматографическим.

Технический результат заключается в повышении степени извлечения, концентрирования, разделения флавоноидов на мезопористом сорбенте.

Технический результат достигается тем, что в способе концентрирования и разделения флавоноидов, включающем сорбционно-хроматографическое извлечение пропусканием раствора флавоноидов через мезопористый сорбент типа МСМ-41, полученный из реакционной смеси источника кремния, цетилтриметиламмоний бромида (CTABr) и дистиллированной воды и прошедший гидротермальную обработку, фильтрование полученной смеси, экстракцию темплата, высушивание и кальцинирование, отличающийся тем, что используются ацетонитрильные растворы флавонидов: кверцетин с концентрацией с=1⋅10-4 моль/дм3, нарингин - с=1⋅10-4 моль/дм3, (+)-катехин - с=1⋅10-4 моль/дм3, при этом в качестве источника кремния использован тетраэтоксисилан (TEOS), реакционная смесь дополнительно содержит аммиак и этиловый спирт при мольном соотношении 1 TEOS:0,2 CTABr:22 NH3:50 С2Н5ОН:475 H2O, обработку сорбента производят при температуре 130°С в течение 2 ч, полученный сорбент дополнительно модифицируют триметилхлорсиланом при комнатной температуре в течение десяти часов при постоянном перемешивании, в качестве растворителя используют трихлорметан.

Решение задачи достигается тем, что концентрирование и разделение флавоноидов происходит из ацетонитрильных растворов на предварительно модифицированном триметилхлорсиланом наностркуктурированном мезопористом материале МСМ-41.

На фиг. 1 приведена Таблица 1 коэффициентов концентрирования флавоноидов кремнийсодержащими материалами.

На фиг. 2 приведены выходные кривые сорбции нарингина (1) и кверцетина (2) на МСМ-41 из ацетонитрильных растворов их смеси (U=0.2 см3/мин, m=0.35 г).

На фиг. 3 приведены выходные кривые сорбции (+)-катехина (1) и кверцетина (2) на МСМ-41 из ацетонитрильных растворов их смеси (U=0.2 см3/мин, m=0.35 г).

На фиг. 4 приведены выходные кривые сорбции нарингина (1) и кверцетина (2) на MMet из ацетонитрильных растворов их смеси (U=0.2 см3/мин, m=0.35 г).

На фиг. 5 приведены выходные кривые сорбции (+)-катехина (1) и кверцетина (2) на MMet из ацетонитрильных растворов их смеси (U=0.2 см3/мин, m=0.35 г).

На фиг. 6 приведена Таблица 2 значений разрешения хроматографических зон (Rs) бинарных смесей флавоноидов при их сорбции различными сорбентами.

Сорбенты типа МСМ-41 предварительно получают методом жидкокристаллического темплатирования. Мольное соотношение компонентов для синтеза 1.0TEOS:0.2CTABr:21.0NH3:50.0C2H5OH:475.0H2O. Модифицирование производят триметилхлорсиланом. Для осуществления модификации сорбент был предварительно фракционирован (0.1÷0.25 мм) и активирован при 130°С в течение двух часов. Далее МСМ-41 помещали в колбу, куда приливали триметилхлорсилан (модификатор). В качестве растворителя использовался трихлорметан. Модификацию осуществляли при комнатной температуре в течение десяти часов при постоянном перемешивании.

Применение мезопористых наноструктурированных материалов типа МСМ-41 в качестве сорбентов позволяет добиться увеличения коэффициентов концентрирования веществ по сравнению с силикагелем. Модификация триметилхлорсиланом мезопористого материала типа МСМ-41 в свою очередь способствует увеличению коэффициентов концентрирования. В таблице 1 приведены данные о коэффициентах концентрирования кверцетина, нарингина и (+)-катехина.

Пример 1

Силикагель (ООО «ИМИД» г. Краснодар) помещают в хроматографическую колонку. Диаметр колонки 1.2 см. Высота слоя сорбента 1.5-2.0 см. Через колонку пропускают ацетонитрильный раствор кверцетина (c=1⋅10-4 моль/дм3). Исходные растворы с концентрацией 1⋅10-4 моль/дм3 готовили по навескам.

Пример 2

Сорбент типа МСМ-41 получают по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают кверцетина (с=1⋅10-4 моль/дм3).

Пример 3

Сорбент типа МСМ-41 модифицируют триметилхлорсиланом по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают ацетонитрильный раствор кверцетина (с=1⋅10-4 моль/дм3).

Пример 4

Силикагель (ООО «ИМИД» г. Краснодар) помещают в хроматографическую колонку. Диаметр колонки 1.2 см. Высота слоя сорбента 1.5-2.0 см. Через колонку пропускают ацетонитрильный раствор нарингина (с=1⋅10-4 моль/дм3).

Пример 5

Сорбент типа МСМ-41 получают по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают нарингина (с=1⋅10-4 моль/дм3).

Пример 6

Сорбент типа МСМ-41 модифицируют триметилхлорсиланом по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают ацетонитрильный раствор нарингина (с=1⋅10-4 моль/дм3).

Пример 7

Силикагель (ООО «ИМИД», г. Краснодар) помещают в хроматографическую колонку. Диаметр колонки 1.2 см. Высота слоя сорбента 1.5-2.0 см. Через колонку пропускают ацетонитрильный раствор (+)-катехина (с=1⋅10-4 моль/дм3).

Пример 8

Сорбент типа МСМ-41 получают по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают (+)-катехина (с=1⋅10-4 моль/дм3).

Пример 9

Сорбент типа МСМ-41 модифицируют триметилхлорсиланом по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают ацетонитрильный раствор (+)-катехина (с=1⋅10-4 моль/дм3).

Пример 10

Сорбент типа МСМ-41 получают по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают ацетонитрильный бинарный раствор кверцетина (с=1⋅10-4 моль/дм3) и нарингина (с=1⋅10-4 моль/дм3). Выходные кривые сорбции представлены на фиг. 3.

Пример 11

Сорбент типа МСМ-41 получают по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают ацетонитрильный бинарный раствор кверцетина (с=1⋅10-4 моль/дм3) и (+)-катехина (с=4⋅10-4 моль/дм3). Выходные кривые сорбции представлены на фиг. 4.

Пример 12

Сорбент типа МСМ-41 модифицируют триметилхлорсиланом по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают ацетонитрильный бинарный раствор кверцетина (с=1⋅10-4 моль/дм3) и нарингина (с=1⋅10-4 моль/дм3). Выходные кривые сорбции представлены на фиг. 5.

Пример 13

Сорбент типа МСМ-41 модифицируют триметилхлорсиланом по методике, описанной выше. Сорбентом заполняются колонки. Высота слоя сорбента 1.5-2.0 см. Диаметр колонки 1.2 см. Через колонку пропускают ацетонитрильный бинарный раствор кверцетина (с=1⋅10-4 моль/дм3) и и (+)-катехина (с=4⋅10-4 моль/дм3). Выходные кривые сорбции представлены на фиг. 6.

Для количественного описания разделения компонентов рассчитано разрешение хроматографических зон (таблица 2) с применением выражения, характеризующего разрешение двух хроматографических зон:

где и - объем раствора, пропущенного до с/с0=0.5 наиболее и наименее сорбируемого компонента, соответственно, дм3; W1 и W2 - ширина хроматографической зоны (ширина пика у основания при переходе к дифференциальной зависимости), дм3.

При использовании исследуемых сорбентов при разделении агликонов - кверцетина и (+)-катехина наблюдается увеличение разрешения при использовании модифицированного материала (МСМ-41<MMet), что свидетельствует о перспективности применения высокоупорядоченных мезопористых материалов не только для извлечения и концентрирования агликонов флавоноидов, но и их эффективного разделения.

Способ концентрирования и разделения флавоноидов, включающий сорбционно-хроматографическое извлечение флавоноидов пропусканием раствора кверцетина, (+)-катехина или нарингина через мезопористый сорбент типа МСМ-41, полученный из реакционной смеси цетилтриметиламмоний бромида (CTABr), источника кремния и дистиллированной воды и прошедший гидротермальную обработку, фильтрование полученной смеси, экстракцию темплата, высушивание и кальцинирование, отличающийся тем, что используются ацетонитрильные растворы флавонидов с концентрацией кверцетина с=1⋅10-4 моль/дм3, нарингина с=1⋅10-4 моль/дм3, (+)-катехина с=1⋅10-4 моль /дм3, при этом в качестве источника кремния использован тетраэтоксисилан (TEOS), реакционная смесь дополнительно содержит аммиак и этиловый спирт при мольном соотношении 1 TEOS:0,2 CTABr:22 NH 3:50 C2H5OH:475 H2O, обработку сорбента производят при температуре 130°C в течение 2 ч, полученный сорбент предварительно фракционируют до размера частиц 0,1-0,25 мм и дополнительно модифицируют триметилхлорсиланом при комнатной температуре в течение десяти часов при постоянном перемешивании, при этом в качестве растворителя при модификации используется трихлорметан.



 

Похожие патенты:

Изобретение относится к области химико-фармацевтической промышленности и может быть использовано для количественного определения серебряной соли сульфадимидина для стандартизации и контроля качества лекарственных средств.

Изобретение относится к аналитической химии и может быть использовано для количественного определения альдегидных групп в окисленных полисахаридах, а именно окисленного декстрана.

Изобретение относится к фармации и может быть использовано для определения выраженности модифицирующей активности, ассоциированной с носителем, приобретенной в процессе технологической обработки исходного вещества в виде многократного последовательного уменьшения концентрации последнего с использованием носителя, которая проявляется в способности непосредственно изменять физико-химические и/или биологические свойства вещества, состоящего из молекул, структурно схожих с молекулами исходного вещества, при воздействии на него указанным носителем.

Изобретение относится к фармакологии и может быть использовано для определения выраженности модифицирующей активности, ассоциированной с носителем, приобретенной в процессе технологической обработки исходного вещества в виде многократного последовательного уменьшения концентрации последнего с использованием носителя, которая проявляется в способности непосредственно изменять физико-химические и/или биологические свойства исходного вещества при воздействии на него указанным носителем.

Изобретение относится к способу количественного определения методом ВЭЖХ таурина и аллантоина при их совместном присутствии в различных лекарственных препаратах, биологически активных добавках, косметической и пищевой продукции.

Изобретение относится к области микробиологии, а именно к способу определения контаминации растворов и биологических жидкостей. Сущность способа состоит в том, что детектируют биологические объекты, включающие микроорганизмы или вирусы, с помощью наночастиц металлов, формирующихся in situ из внесенных в исследуемый объект солей соответствующих металлов, при последующем анализе динамики спектральных характеристик формирующихся наночастиц.

Изобретение относится к области биотехнологии, в частности к способу биотестирования активности противопаразитарных субстанций и препаратов, содержащих в качестве активного вещества авермектины и их производные, с помощью олигохет вида Tubifex tubifex.
Изобретение относится к медицине, а именно к фармакологии, фармации, дерматологии, косметологии и судебной медицине, и может быть использовано при разработке новых лекарственных средств, предназначено для поиска и оценки эффективности средств, обесцвечивающих кожу в области «красных» и «синих», свежих и старых кровоподтеков, при разработке косметических технологий, предназначенных для удаления кровоподтеков, а также при судебной медицинской экспертизе давности кровоподтеков и ушибов мягких тканей.

Изобретение относится к медицине для определения концентрации в биосистемах (сыворотке крови, слюне и др.) и может быть использовано для количественного определения биоцидного гидразида изоникотиновой кислоты (изониазида) в водных растворах этого соединения при токсикологическом и техническом анализе субстанции и лекарственных форм этого препарата.

Изобретение относится к медицине, в частности к лабораторным методам исследования, позволяющим осуществлять эффективный скрининг антиоксидантов. Способ экспресс-скрининга потенциальных антиоксидантов заключается в том, что выделяют липопротеиды низкой плотности (ЛНП) из плазмы венозной крови здоровых доноров, осуществляют окисление липопротеидов низкой плотности при температуре 37°С внесением 30 мМ сульфата меди (CuSO4), после чего через фиксированные интервалы времени измеряют накопление липогидропероксидов (конъюгированных диенов) при 233 нм (ΔD233) и по результатам исследования строят кинетическую кривую окисления ЛНП, из которой определяют продолжительность периода индукции (τ), затем в опытные пробы вносят исследуемые антиоксиданты (конечная концентрация 1 мкМ), растворенные либо в 96% этаноле - для жирорастворимых веществ или в среде инкубации - для водорастворимых веществ, и если продолжительность периода индукции исследуемого вещества выше 0,4 - вещество может рассматриваться в качестве эффективного антиоксиданта; если ниже 0,1 - исследованное вещество эффективным антиоксидантом не является.

Группа изобретений относится к фармацевтике, а именно к препарату, который может быть использован в медицине. Предложено: применение гранул соли двух- или трехвалентного металла альгината размером 0,1-2 мм в качестве сорбента липидов, ингибирующего их расщепление; фармацевтическая композиция для снижения всасывания липидов в желудочно-кишечном тракте, содержащая указанные гранулы в эффективном количестве и фармацевтически допустимые вспомогательные вещества и лекарственный препарат для лечения ожирения, представляющий собой твердую пероральную лекарственную форму с фармацевтической композицией.

Изобретение может быть использовано для удаления нефти, масел и нефтепродуктов с поверхности воды и поверхностного слоя почвы или грунта. Сорбент выполнен гранулированным.

Изобретение относится к области сорбционных процессов и может быть использовано для создания сорбента для золотодобывающей и атомной промышленности, в частности для извлечения благородных, радиоактивных и редких металлов.

Изобретение относится к области охраны окружающей среды и сможет быть использовано для получения гранулированных сорбентов. Целлюлозосодержащие отходы табачно-махорочного производства растительного происхождения в виде табачной пыли смешивают с водной суспензией бентонитовой глины, имеющей соотношение (мас.ч.): бентонитовая глина:вода, равное 3:5.

Настоящее изобретение относится к хроматографическим матрицам, включающим лиганды на основе одного или нескольких доменов связывающихся с иммуноглобулином белков, таких как белок A (SpA) Staphylococcus aureus, а также способам их применения.

Изобретение относится к способам получения сорбентов для очистки воды в системе хозяйственно-питьевого водоснабжения. Способ получения сорбента предусматривает измельчение Каменноярской опоки Астраханской области, которая содержит (%): SiO2 – 86,2, Al2O3 – 4,15, Fe2O3 – 1,56, TiO2 – 0,2, K2O – 1,2, СаО – 1, Na2O до 0,5; MgO до 1.

Изобретение относится к охране окружающей среды, а именно к локализации и сбору нефти или нефтепродуктов с водной поверхности. Используют нефтеприемную емкость и впитывающий нефть материал, выполненный в виде губки из пенополиуретана.

Изобретение относится к получению сорбента для очистки твердых поверхностей и воды от нефти и жидких нефтепродуктов. В качестве исходного сырья берут Каменноярскую опоку Астраханской области, содержащую (%) SiO2 - 86.2; Al2O3 - 4.15; Fe2O3 - 1.56; TiO2 - 0.2; K2O - 1.2; CaO - 1; Na2O до 0.5; MgO до 1.

Изобретение относится к аналитической химии, в частности к способу создания энантиоселективных сорбентов. Cпособ заключатся в модифицировании графитированной термической сажи Carboblack С или инертного носителя Inerton NAW супрамолекулярной структурой циануровой кислоты.
Изобретение относится к получению сорбентов. Предложен способ получения пористого магнитного сорбента нефтепродуктов.

Изобретение относится к новому производному кумарина, представленному следующей формулой (I), или его фармацевтически приемлемой соли или гидрату, где R1 и R2 являются одинаковыми или разными и представляют собой (а) фенил, необязательно замещенный алкокси, алкилом, циано, нитро, гидрокси, трифторметилом, амино, карбокси, алкоксикарбонилом, фенилом или одним или двумя атомами галогена, (b) пиридил, (с) алкил или (d) тиенил, а также к фармацевтическому агенту, содержащего такое соединение в качестве активного ингредиента.

Изобретение относится к области аналитической химии и может быть использовано для концентрирования и разделения флавоноидов, таких как кверцетин, -катехин, нарингин, для последующего определения в растительных образцах, фармацевтических препаратах. Способ концентрирования и разделения флавоноидов, включающий сорбционно-хроматографическое извлечение флавоноидов пропусканием раствора кверцетина, -катехина или нарингина через мезопористый сорбент типа МСМ-41, полученный из реакционной смеси цетилтриметиламмоний бромида, источника кремния и дистиллированной воды и прошедший гидротермальную обработку, фильтрование полученной смеси, экстракцию темплата, высушивание и кальцинирование, при этом используются ацетонитрильные растворы флавонидов, при этом в качестве источника кремния использован тетраэтоксисилан, реакционная смесь дополнительно содержит аммиак и этиловый спирт, обработку сорбента производят при определенных условиях, полученный сорбент предварительно фракционируют до размера частиц 0,1-0,25 мм и дополнительно модифицируют триметилхлорсиланом, при этом в качестве растворителя при модификации используется трихлорметан. Вышеописанный способ повышает степень извлечения и разделения флавоноидов- кверцетина, нарингина, катехина. 6 ил., 13 пр..

Наверх