Способ определения коррозионного состояния заземляющих устройств

Изобретение относится к контрольно-измерительной технике и может быть использовано для количественной оценки коррозионного состояния элементов заземляющих устройств электроустановок подстанций различного вида и назначения без проведения вскрышных работ. Заявлен способ определения коррозионного состояния заземляющих устройств, включающий определение общей массы элементов заземляющих устройств, влажности грунта в месте нахождения заземляющего устройства, сопротивления растеканию тока, наличия и величины блуждающих токов. При этом дополнительно определяют потерю массы заземляющих электродов и изменению сопротивления растекания тока. Переходят от физических значений переменных к кодированным. Коррозионное состояние заземляющих устройств рассчитывают по потере массы заземляющих электродов или изменения сопротивления растекания тока заземлителя. Технический результат - повышение точности определения коррозионного состояния элементов заземляющих устройств без вскрытия грунта. 2 табл., 1 ил.

 

Изобретение относится к контрольно-измерительной технике и может быть использовано для количественной оценки коррозионного состояния элементов заземляющих устройств (ЗУ) подстанций различного вида и назначения без проведения вскрышных работ.

Из уровня техники известен способ определения коррозионного состояния заземляющих устройств электроустановок (СТО 56947007-29.130.15.105-2011. Методические указания по контролю состояния заземляющих устройств электроустановок. Стандарт организации АОА «ФСК ЕЭС». 12 с.), при котором определяют толщину коррозии вокруг заземляющих электродов после проведения вскрышных работ.

Недостатком указанного способа является то, что коррозионное состояние ЗУ определяют путем выборочного вскрытия грунта. Периодическое вскрытие грунта над заземлителем требует дополнительных издержек времени, финансов, привлечения специального оборудования, а для измерения основных параметров заземлителей необходимы различные приборы: омметр, микроомметр, штангенциркуль, микрометр и др.

Известен способ контроля состояния заземляющих устройств (РД - 153-34.0-20.525-00. Методические указания по контролю состояния заземляющих устройств электроустановок. - htt://www.rassgost.ru/catalog/item43217), при котором также определяют толщину продуктов новообразований коррозии вокруг заземляющих электродов.

Основной недостаток этого способа заключается в том, что количественная оценка степени коррозионного износа производится выборочно по участкам контролируемого элемента ЗУ путем измерения характерных размеров, зависящих от вида коррозии, и также требует вскрытия грунта. Выборочное вскрытие грунта не позволяет в полном объеме определить коррозионное состояние всех вертикальных и горизонтальных электродов, а также питтинговые очаги коррозии.

Технический результат заявляемого изобретения заключается в обеспечении определения интегрального коррозионного состояния элементов ЗУ без вскрытия грунта.

Указанный технический результат достигается за счет того, что способ определения коррозионного состояния ЗУ включает определение общей массы элементов заземляющих устройств, влажности грунта в месте нахождения заземляющего устройства, сопротивления растеканию тока, наличия и величины блуждающих токов, при этом дополнительно определяют потерю массы заземляющих электродов и изменение сопротивления растеканию тока соответственно по уравнениям:

где и - значения влажности грунта и величины блуждающих токов соответственно (при кодированном значении);

переходят от физических значений переменных к кодированным по уравнению:

где - кодированное значение влажности грунта и величины блуждающего тока; X - натуральное (физическое) значение влажности грунта (величины блуждающего тока); Хi0 - нулевое (центральное) значение влажности грунта (величины блуждающего тока); λi - интервал варьирования влажности грунта (величины блуждающего тока); определяют коэффициент времени kв1 потери массы металла, применяемого для изготовления заземляющих электродов и kв2 изменения сопротивления растеканию тока ЗУ по формулам:

где n=10 - продолжительность измерения; коррозионное состояние заземляющих устройств рассчитывают по потере массы заземляющих электродов или изменения сопротивлении растекания тока заземлители по формулам:

где Δm - потеря массы электродов, ΔR - изменения сопротивления растекания тока ЗУ, Т - продолжительность эксплуатации ЗУ.

Сущность изобретения поясняется чертежом, где представлены кодированные значения влажности грунта и блуждающих токов для последующих расчетов; уравнением 4, по которому определяют общую массу электродов ЗУ; уравнениями 5, 6, по которым, соответственно, определяют потерю массы металла, применяемого для изготовления заземляющих электродов, и изменение сопротивления растеканию тока ЗУ в течение 10 суток. Уравнением 7 переводят физическое значение влажности грунта и величины блуждающих токов в кодовое, так как при расчете потери массы металла, применяемого для изготовления заземляющих электродов и изменения сопротивления растеканию тока ЗУ, необходимо кодовое значение; при помощи уравнений 8, 9 определяют величину «коэффициента времени», нужного в расчетах состояния ЗУ от продолжительности их эксплуатации и по 10, 11, соответственно, определяют потерю массы металла, применяемого для изготовления заземляющих электродов и изменение сопротивления растеканию тока ЗУ для нужного количества времени.

Определение общей массы элементов ЗУ

В литературных источниках отсутствуют сведения о потерях общей массы металла заземляющих электродов. Исходя из нормативной документации ЗУ (по количеству, сечению, длине и марке электродов) можно определить полную массу вертикальных и горизонтальных электродов и их длительность нахождения в эксплуатации.

Основными геометрическими размерами элементов заземлителя, определяющими его массу, являются:

- диаметр, сечение вертикальных и горизонтальных электродов;

- количество и длина параллельных (вертикальных) электродов;

- общая длина горизонтальных электродов.

Исходя из указанных размеров общую длину вертикальных электродов определяют по формуле 1:

где n - количество вертикальных электродов, Lв - длина одного вертикального электрода.

Длина горизонтальных электродов указывается в паспортных данных ЗУ. Общую массу вертикальных и горизонтальных электродов определяют по формулам 2 и 3, а общую массу заземлителей - по 4.

где Lг - длина горизонтальных электродов; k - удельная масса профиля (стержня) на погонный метр, значение которой в зависимости от марки стали определяется по табл. 1.

Удельную массу вертикальных и горизонтальных электродов ЗУ (значение k) можно также определить по классу арматуры и марке стали, из которой изготовлены заземляющие электроды, табл. 2 (ГОСТ 5781-82. Сталь горячекатаная для армирования железобетонных конструкций. Введ. 1983-07-01. - М.: ИПК Изд-во стандартов. 1985. - 17 с.).

Исходя из класса арматуры и марки стали, применяемой для изготовления заземляющих электродов, по табл. 2 определяют диаметр вертикальных и горизонтальных электродов.

Определение влажности грунта в месте нахождении ЗУ

Влажность грунта является основным параметром, существенно влияющим на процесс коррозии элементов ЗУ, соответственно ее значение весьма важно для расчета состояния ЗУ.

Для определения состояния заземлителя необходимо знать среднее значение влажности грунта в период ввода в эксплуатацию и до проверки коррозионного состояния элементов ЗУ. Методика определения влажности грунта приведена в ГОСТ 5180-84. Грунты. Методы лабораторного определения физических характеристик. - Введ. 24.10.1984. - М.: ИПК Изд-во стандартов. 1985. - 17 с.

Определить влажность грунта в месте нахождения ЗУ можно с помощью специальных приборов (влагомеров).

Определение сопротивления растеканию тока ЗУ

Проверка состояния элементов ЗУ согласно действующим методикам проводится путем определения его основных электрических параметров, одним из которых является сопротивление растеканию тока.

Сопротивление растеканию тока заземлителей измеряется при подключении токовых и потенциальных электродов к соответствующему прибору. При измерении сопротивления растеканию тока ЗУ конкретное место погружения токовых и потенциальных электродов прибора не указывается. Задаются расстояние (радиус) от ЗУ до токового и потенциального электродов. Перемещение электродов измерительного прибора при производстве измерений сопротивления растеканию тока ЗУ в разных точках (нахождения ЗУ), в разное время и в одном радиусе приводит к изменению показаний прибора, т.е. сопротивление в разных точках одного радиуса не остается постоянным. Это связано со свойствами грунта, его влажностью, температурой, химическим и минеральным составом и т.д.

Смещение электродов по дуге (без нарушения расстояний от ЗУ) может влиять на результат измерений.

Учитывая, что сопротивление растеканию тока ЗУ является одним из основных показателей, характеризующих его состояние, необходимо фиксировать место погружения измерительных электродов и при всех последующих измерениях погружать эти электроды именно в этих точках.

В этом случае не только обеспечивается сопоставимость результатов измерения, но и возможность получения достоверной информации о состоянии ЗУ по такому показателю, как его сопротивление растеканию тока.

Определение наличия блуждающих токов

Наличие и величина блуждающих токов существенно влияют на процесс коррозии элементов ЗУ (РД 153-39.4-091-01. Инструкция по защите городских подземных трубопроводов от коррозии http://www.znaytovar.ru/gost/2/RD 15339409101 _Instrukciya_po.html). Под действием блуждающих токов коррозия становится электрохимической и потеря массы металла, применяемого для изготовления заземляющих электродов, увеличивается.

Наличие блуждающих токов характерно, прежде всего, для тяговых подстанций переменного и постоянного токов.

Применительно к системам электроснабжения промышленных предприятий наличие блуждающих токов будет обусловливаться применением различных преобразовательных агрегатов, широким применением в технологических процессах электросварки и т.п.

В городских электрических сетях наличие блуждающих токов вызывается рельсовым электрифицированным транспортом.

В системах электроснабжения сельскохозяйственных потребителей блуждающие токи, как правило, отсутствуют.

Однако на всех подстанциях указанных систем электроснабжения существует вероятность протекания по элементам ЗУ токов нулевой последовательности при возникновении в электрических сетях несимметричных режимов.

Поэтому учет наличия и величин блуждающих токов необходим на любых главных понизительных подстанциях.

Величину токов нулевой последовательности определяют одним амперметром, подключенным к трансформатору тока нулевой последовательности, охватывающим любой из заземляющих спусков.

После нахождения вышеуказанных параметров определяют потерю массы (y1) заземляющих электродов и изменение сопротивления растеканию тока (y2) для десяти суток по уравнениям:

где и - значения влажности грунта и величины блуждающих токов соответственно (при кодированном значении).

Переход от физических значений переменных к кодированным осуществляют с помощью уравнения:

где - кодированное значение влажности грунта и величины блуждающего тока;

Хiн - натуральное (физическое) значение влажности грунта (величины блуждающего тока);

Xi0 - нулевое (центральное) значение влажности грунта (величины блуждающего тока);

λi - интервал варьирования влажности грунта (величины блуждающего тока).

Нулевое (центральное) значение влажности грунта и блуждающих токов приводятся на чертеже.

Верхняя граница влажности грунта принята равной 30% по экспериментальным данным, т.к. начиная с указанной влажности грунта процесс коррозии замедляется.

Сопротивление растеканию тока ЗУ определяется до начала измерений и после истечения 10 суток (методом амперметра-вольтметра).

Учитывая это, определяют коэффициент времени kв для всего периода эксплуатации заземляющих электродов (так как на заземляющие электроды в реальных условиях (на подстанциях, в электроустановках и т.д.) воздействует более длительный процесс коррозии.

Определяем kв1 потери массы металла, применяемого для изготовления заземляющих электродов, и kв2 изменения сопротивления растеканию тока ЗУ по формулам:

где n=10 - продолжительность измерения.

Коррозионное состояние заземляющих устройств рассчитывают по потере массы заземляющих электродов или изменения сопротивлении растекания тока заземлителя по формулам:

где Δm - потеря массы электродов, ΔR - изменения сопротивления растекания тока ЗУ, Т - продолжительность эксплуатации ЗУ.

Предлагаемый способ позволяет определить состояние степени коррозии элементов заземлителя и изменение сопротивления растеканию тока ЗУ, находящихся под влиянием различных по величине влажности грунта и блуждающих токов. Также можно определить степень коррозионного состояния элементов заземлителей, находящихся любой период продолжительности в эксплуатации.

Пример расчета коррозионного состояния ЗУ

Определяем коррозийность ЗУ, находящегося в эксплуатации в течение 2 лет со следующими параметрами:

- длина вертикального электрода Lв = 4 м;

- количество вертикальных электродов nв = 36;

- сечение вертикального электрода Sв = 23,760 мм2;

- суммарная длина горизонтальных электродов 650 м;

- сечение горизонтальных электродов Sг = 50,27 мм2;

- среднее значение влажности грунта за период эксплуатации в месте нахождения заземляющих электродов 16,5%;

- среднее значение токов, протекающих по заземляющим электродам (блуждающие токи или токи нулевой последовательности), 113 мА.

Общая длина вертикальных электродов

LΣв = Lв⋅nв = 36⋅4 = 144 м

Общая масса вертикальных электродов

mв = LΣв⋅k = 144⋅23,76 = 3421,44 кг

где значение k выбирают из табл. 1.

Общая масса горизонтальных электродов

mг = Lr⋅k = 650⋅4 = 2600 кг

Общая масса вертикальных и горизонтальных электродов

mΣ = mв + mг = 3421,44 + 2600 = 6021,44 кг

Определяем кодированное значение влажности грунта и блуждающего тока.

Кодированное значение влажности грунта

Кодированное значение блуждающего тока

Определение потери массы заземляющих электродов и изменение сопротивления растеканию тока для десяти суток проводятся по уравнениям (y1 и y2):

Определяем коэффициент времени для y1 и y2.

Определяем потерю массы ЗУ, находящегося в эксплуатации в течение 2-х лет.

Таким образом, можно сделать вывод, что заземляющие электроды, находящиеся в эксплуатации в течение 2-х лет, при вышеуказанной влажности грунта и наличии блуждающих токов, из-за коррозии потеряют массу более чем на 6 процентов.

Способ определения коррозионного состояния заземляющих устройств, включающий определение общей массы элементов заземляющих устройств, влажности грунта в месте нахождения заземляющего устройства, сопротивления растеканию тока, наличия и величины блуждающих токов, при этом дополнительно определяют потерю массы заземляющих электродов и изменение сопротивления растекания тока по уравнениям:

где и - значение влажности грунта и величины блуждающих токов соответственно при кодированном значении;

переходят от физических значений переменных к кодированным по уравнению:

где - кодированное значение влажности грунта и величины блуждающего тока; X - физическое значение влажности грунта и величины блуждающего тока; Хi0 - нулевое значение влажности грунта и величины блуждающего тока; λi - интервал варьирования влажности грунта и величины блуждающего тока; определяют коэффициент времени kв1 потери массы металла, применяемого для изготовления заземляющих электродов и kв2 изменения сопротивления растеканию тока ЗУ по формулам:

где n=10 - продолжительность измерения;

коррозионное состояние заземляющих устройств рассчитывают по потере массы заземляющих электродов или изменения сопротивления растекания тока заземлителя по формулам:

Δm=kв1⋅Т,

ΔR=kв2⋅Т,

где Δm - потеря массы электродов, ΔR - изменения сопротивления растекания тока ЗУ, Т - продолжительность эксплуатации ЗУ, сутки.



 

Похожие патенты:

Изобретение относится к системе мониторинга и, в особенности, к системе мониторинга материала при изгибе для стальных канатов при действии на них коррозии и переменной нагрузки.

Изобретение относится к средствам для мониторинга и диагностики коррозионных процессов внутри технологических аппаратов и трубопроводов. Способ включает установку метки, отбор флюида и контроль индикаторов.

Использование: для оценки индивидуальных вкладов компонентов антикоррозионной системы в ее суммарную защитную эффективность при коррозии металлических конструкционных материалов в воздушной атмосфере или в объеме жидкой агрессивной среды любой природы.

Изобретение относится к области измерительной техники и может быть использовано для определения остаточных технологических напряжений в образцах, вырезанных из исследуемой детали.

Изобретение относится к испытательной контролирующей технике, а именно к коррозионным водородным зондам. Коррозионный водородный зонд содержит корпус, датчик водорода, поршни, манометры, тензодатчики и регистрирующий прибор.

Изобретение относится к сельскому хозяйству и может быть использовано для оценки опасности водной эрозии почв. Способ оценки эрозионной опасности дождя на орошаемых участках, обработанных раствором гербицида глифосат, включает создание капельного потока воды, торможение капель дождя в среде поровой жидкости, измерение в ней давления и оценку эрозионной опасности по средней величине давления в поровой жидкости.

Изобретение относится к транспортной, энергетической, строительной и другим отраслям промышленности и может быть использовано для непрерывного (on-line) мониторинга скорости коррозии на таких объектах, как мосты, путепроводы, эстакады, градирни, дымовые трубы, резервуары и др.

Изобретение относится к области мониторинга коррозии и может быть использовано в нефте- и газотранспортных системах, а также теплосетях. Заявленное устройство для измерения коррозии трубопроводов, содержащее крышку, уплотняющую прокладку и пластину-свидетель, при этом в крышке закреплен центральный стержень, расположенный в отверстии на стенке трубопровода, снабженном сальниковым уплотнением, состоящим из прокладки и крышки сальника, в качестве пластины-свидетеля используют часть внутренней поверхности трубопровода, ограниченной внутренним диаметром крышки, на ограниченной части внутренней поверхности трубопровода расположены два патрубка с кранами на расстоянии 0,4-0,5 диаметра крышки от оси центрального стержня, а на расстоянии 0,2-0,3 диаметра крышки расположен серебряный электрод.

Изобретение относится к оценке эксплуатационных свойств топлив, в частности к оценке коррозионной активности реактивных топлив. Сущность изобретения заключается в том, что топливо циркулирует в вертикально расположенном замкнутом контуре из нержавеющей стали, представляющем собой конструкцию из труб круглого сечения, пластинку из бронзы ВБ-23НЦ размещают в верхнем горизонтальном участке контура, циркуляцию топлива в контуре осуществляют в 3 этапа по 3 ч каждый, со сменой топлива после 1-го и 2-го этапов, перед началом первого этапа непосредственно за пластинкой по ходу потока устанавливают фильтрующий элемент.

Изобретение относится к области исследований устойчивости материалов к световому воздействию и касается способа оценки светостойкости текстильных материалов. Способ включает в себя использование эталонов, проб и источника света.

Способ включает установку центрального тралового передатчика на верхней подборе трала и приемо-передающих блоков на одном из траловых ваеров с направлением их излучения в сторону судна.

Изобретение относится к области метрологии, в частности к средствам неразрушающего контроля. Внутритрубный снаряд-дефектоскоп содержит цилиндрический гермоконтейнер, опорные элементы в виде эластичных манжет, датчики, расположенные снаружи по периметру гермоконтейнера и соединенные с размещенным внутри гермоконтейнера электронным блоком.

Изобретение относится к метрологии, в частности к средствам мониторинга напряженно-деформированного состояния объектов. Датчик содержит устройство на ПАВ, состоящее из корпуса, образованного верхней и нижней крышками с упругими мембранами, жестко соединенными с металлическим штоком, имеющим выступ, контактирующий с прокладкой, расположенной на свободном конце консольно закрепленной с помощью прижимных пластин внутри корпуса платы с резонаторами на ПАВ, электрически связанными с антенной, размещенной над верхней крышкой корпуса.

Изобретение относится к измерительной технике и может быть применено в системах измерения линейного перемещения в заявленном устройстве и способе, реализующем указанное устройство.

Изобретение относится к области метрологии. Cпособ предполагает определение оптимальных размеров и формы судовой забойной трубы, трассы её расположения на судне.

Способ коррекции линейных и угловых координат заключается в том, что на шлеме оператора в реперных точках размещают четыре нашлемных ультразвуковых приемников, а в кабине над шлемом оператора в связанной системе координат кабины - четыре ультразвуковых излучателя.

Изобретение относится к измерительной технике и может найти применение для измерения параметров радиальных вибраций и при балансировке шнековых механизмов в различных отраслях машиностроения.

Изобретение относится к области метрологии, в частности к средствам измерения расстояний, размеров и формы различных объектов. Устройство содержит жезл с двумя акустическими излучателями, пусковую кнопку и наконечник, контактирующий с поверхностью измеряемого объекта, акустический приемник с тремя микрофонами, снабженными формирователями переднего фронта импульса и закрепленными в вершинах жесткого треугольника.

Изобретение относится к измерительной технике и может найти применение для измерения параметров угловых вибраций и малых углов поворота шнековых механизмов в различных отраслях машиностроения.

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля толщины изделий с помощью ультразвука. Способ измерения толщины изделия с помощью ультразвуковых импульсов состоит в том, что с помощью ультразвукового преобразователя излучают ультразвуковые импульсы, регистрируют момент излучения зондирующего импульса в изделие, регистрируют на уровне выше паразитных шумов преобразователя момент выхода из изделия переднего фронта первого отраженного эхо-импульса, определяют временной интервал между этими моментами, а затем вычисляют толщину исходя из этого временного интервала и известной скорости звука в материале изделия, при этом с момента регистрации выхода из изделия переднего фронта первого отраженного эхо-импульса на уровне выше паразитных шумов преобразователя с задержкой на время, равное 0,25…0,5 периода колебаний резонансной частоты преобразователя, регистрируют момент выхода из изделия переднего фронта первого отраженного эхо-импульса на уровне выше паразитных шумов усилителя, но ниже паразитных шумов преобразователя, определяют временной интервал между моментом излучения зондирующего импульса в изделие и данным моментом и этот временной интервал используют для расчета толщины изделия.

Изобретение относится к контрольно-измерительной технике и может быть использовано для количественной оценки коррозионного состояния элементов заземляющих устройств электроустановок подстанций различного вида и назначения без проведения вскрышных работ. Заявлен способ определения коррозионного состояния заземляющих устройств, включающий определение общей массы элементов заземляющих устройств, влажности грунта в месте нахождения заземляющего устройства, сопротивления растеканию тока, наличия и величины блуждающих токов. При этом дополнительно определяют потерю массы заземляющих электродов и изменению сопротивления растекания тока. Переходят от физических значений переменных к кодированным. Коррозионное состояние заземляющих устройств рассчитывают по потере массы заземляющих электродов или изменения сопротивления растекания тока заземлителя. Технический результат - повышение точности определения коррозионного состояния элементов заземляющих устройств без вскрытия грунта. 2 табл., 1 ил.

Наверх