Радиационный монитор и способ определения мощности эквивалентной дозы гамма-излучения

Группа изобретений относится к области измерительной техники, а именно к радиометрии фотонов, и может быть использована при обнаружении ядерных и радиоактивных материалов на контрольно-пропускных пунктах предприятий, где используются, хранятся или (и) перерабатываются радиоактивные нуклиды. Сущность изобретений заключается в том, что в схему устройства вводится пиковый детектор, два ключа и схема управления ими и аналого-цифровой преобразователь, откалиброванный по энергии фотонного излучения в области 40 кэВ - 3 МэВ, а в способе определения мощности эквивалентной дозы эту область разбивают на шесть энергетических зон, измеряют счет в каждой из них и по заранее измеренной градуировочной зависимости определяют мощность эквивалентной дозы. Технический результат – повышение эффективности работы устройства, расширение области применения радиационного монитора. 2 н.п. ф-лы, 3 ил., 1 табл.

 

Изобретение относится к области измерительной техники, а именно к радиометрии фотонного излучения, и может быть использовано при обнаружении ядерных и радиоактивных материалов на контрольно-пропускных пунктах и проходных предприятий, где используются, хранятся или (и) перерабатываются радиоактивные нуклиды, в том числе при выполнении контроля радиоактивного загрязнения одежды, обуви и кожных покровов работников радиационных предприятий и персонала АЭС.

Известен радиационный монитор МРП-АТ920В производства предприятия «АТОМТЕХ», выполненный в виде стойки, которая включает в себя интеллектуальный блок детектирования с неорганическим сцинтиллятором NaI(Tl), микроконтроллером и устройством световой и звуковой сигнализации. ГУП «АТОМТЕХ». Рекламный проспект, 2016. Недостатком известного радиационного монитора является отсутствие измерения мощности эквивалентной дозы, что не позволяет контролировать дозовую нагрузку и оперативно принимать решение о превышении норм радиационной безопасности персонала предприятий или населения.

Известен пешеходный радиационный монитор ТСРМ82 производства ФГУП ВНИИА им. Н.Л. Духова, который содержит четыре блока детектирования (БД) фотонов на основе неорганического сцинтиллятора CsI(Tl), а также выносной блок питания и управления (БПУ) со световой и звуковой сигнализацией. Пешеходный радиационный монитор γ-излучения ТСРМ82, ФГУП «ВНИИА им. Н.Л. Духова». Рекламный проспект, 2016. Данное техническое решение принято в качестве прототипа. Недостатком является ограниченная область применения и недостаточная эффективность применения из-за отсутствия измерения мощности эквивалентной дозы.

Известен способ измерения мощности эквивалентной дозы известного моноэнергетического фотонного излучения, заключающийся в том, что регистрируют фотоэлектронным умножителем (ФЭУ) световые вспышки света, которые образует излучение, взаимодействуя с веществом сцинтиллятора, получают скорость счета импульсов и устанавливают связь между скоростью счета и мощностью дозы. В.И. Иванов. Курс дозиметрии. 3 издание, переработанное и дополненное. - М.: Атомиздат, 1978, с. 130-139. Результат определения мощности эквивалентной дозы существенно зависит от энергии фотонов. Сложность в измерении мощности эквивалентной дозы неизвестного фотонного излучения детекторами, выполненными на основе неорганических сцинтилляторов, заключается в неопределенности энергии фотонов и неоднозначной зависимости от нее сечения взаимодействия с материалом детектора. Например, на фиг. 1 приведен ход сечения от энергии Е регистрируемых фотонов для сцинтиллятора CsI(T1). Решение принято в качестве прототипа.

Задачей изобретения является определение дозовой характеристики обнаруженного радиационным монитором неизвестного фотонного излучения, позволяющее принимать решение о превышении предельно допустимых уровней дозы, повышение эффективности работы устройства, расширение области применения радиационного монитора.

Техническим результатом является измерение радиационным монитором с детекторами на основе неорганических сцинтилляторов мощности эквивалентной дозы неизвестного фотонного излучения в диапазоне 40 кэВ-3 МэВ, позволяющей повысить эффективность работы устройства, расширить область применения радиационного монитора.

Технический результат достигается тем, что в способе определения мощности эквивалентной дозы гамма-излучения, заключающемся в том, что измерения проводят с применением радиационного монитора с детектором на основе неорганического сцинтиллятора счет измеряют в шести энергетических зонах интервала от 40 кэВ до 3 МэВ, по которому определяют мощность эквивалентной дозы фотонов в соответствии с измеренной заранее градуировочной зависимостью счета импульсов от мощности эквивалентной дозы в каждой зоне; зону №1 определяют в диапазоне от 40 кэВ до 80 кэВ, зону №2 - от 80 кэВ до 220 кэВ, зону №3 - от 220 кэВ до 400 кэВ, зону №4 - от 400 кэВ до 800 кэВ, зону №5 - от 800 кэВ до 1450 кэВ, зону №6 - от 1450 кэВ до 3000 кэВ, а в радиационном мониторе, содержащем блок питания и управления, блок детектирования, включающий в себя неорганический сцинтиллятор, соединенный с ним фотоэлектронный умножитель, светодиод со схемой управления, высоковольтный блок питания со схемой управления, высоковольтный делитель, микропроцессор, дискриминатор нижнего уровня, дополнительно содержится два ключа №1, №2 и схема управления ими, первый выход схемы управления подключен к ключу №1, второй к ключу №2, выход ключей соединен с пиковым детектором, а он соединен с отградуированным по энергии фотонов аналого-цифровым преобразователем.

Сущность изобретения по способу измерения мощности эквивалентной дозы заключается в следующем: область энергий регистрируемых фотонов от 40 кэВ до 3 МэВ разбивают на 6 зон, каждая из которых соответствует определенному источнику фотонов. Зона №1 находится в диапазоне энергий от 40 кэВ до 80 кэВ (241Am), №2 от 80 кэВ до 220 кэВ (57Со), №3 от 220 кэВ до 400 кэВ (133Ва), №4 от 400 кэВ до 800 кэВ (137Cs), №5 от 800 кэВ до 1450 кэВ (60Со), №6 от 1450 кэВ до 3000 кэВ (226Ra). Для каждой зоны измеряют градуировочную характеристику - зависимость счета импульсов N от мощности эквивалентной дозы Р фотонного излучения, которая вычисляется по формуле

где Kγ - ионизационная постоянная источника фотонов с энергией Е, мЗв⋅см2 /(МБк⋅ч);

R - расстояние от точечного источника до ионизируемого объекта, см;

А - активность источника, кБк (В.П. Машкович., А.В. Кудрявцева. Защита от ионизирующих излучений. Справочник. - М.: Энергоатомиздат, 1995. - С. 42); изменяя расстояние до источника или его активность, получают градуировочную характеристику - зависимость счета от мощности дозы для каждого выбранного интервала энергии фотонов N=f(P); полученные зависимости аппроксимируют полиномом; степень полинома определяют максимальной близостью коэффициента корреляции к значению 1 (пример на фиг. 2); определяют принадлежность излучения к одной из зон; измеряют счет импульсов N в этой зоне, по значению которого определяют мощность эквивалентной дозы.

Сущность изобретения по устройству поясняется на фиг. 3.

На фиг. 3 представлена схема радиационного монитора, где: 1 - сцинтиллятор; 2 - ФЭУ; 3 - схема управления светодиодом; 4 - светодиод; 5 - схема управления высоковольтным блоком питания; 6 - высоковольтный блок питания; 7 - высоковольтный делитель; 8 - микропроцессор; 9 - аналого-цифровой преобразователь (АЦП); 10 - пиковый детектор; 11 - ключ №1; 12 - ключ №2; 13 - схема управления ключами; 14 - дискриминатор нижнего уровня; 15 - зарядочувствительный усилитель; 16 - БД; 17 - БПУ.

Сцинтиллятор 1 соединен с ФЭУ 2 и светодиодом 4, связанным со схемой управления 3 и микропроцессором 8. ФЭУ 2 последовательно соединен с высоковольтным блоком 6, его схемой управления 5, высоковольтным делителем 7 и микропроцессором 8, а также связан с зарядочувствительным усилителем 15, соединенным с дискриминатором нижнего уровня 14, который сопряжен с микропроцессором 8. Дискриминатор 14 соединен со схемой управления ключами 13, связанной с микропроцессором 8 и имеющей выходы, соединенные с ключами №1 11 и №2 12, связанными с пиковым детектором 10, который сопряжен с АЦП 9 и микропроцессором 8. Выход БД 16 соединен с БПУ 17.

Радиационный монитор работает следующим образом.

После включения монитор осуществляет самоконтроль, потом переходит в режим измерения фона, а потом автоматически или по команде с БПУ 17 в состояние контроля объекта. Напряжение с высоковольтного блока питания 6, которым управляет схема 5, подают на высоковольтный делитель 7, который питает ФЭУ 2. Фотоны излучения вызывают световые вспышки в сцинтилляторе 1 блока детектирования 16. Световые вспышки регистрируют с помощью ФЭУ, преобразуя их в электрические импульсы, которые подают на зарядочувствительный усилитель 15. Усиленные импульсы напряжения направляют на дискриминатор нижнего уровня 14, импульсы, амплитуда которых ниже порогового значения, отбрасывают, остальные направляют на схему управления ключами 13 и АЦП 9. Схема управления ключами 13 не запущена, ключ №1 11 и ключ №2 12 закрыты. Импульсы подают на АЦП 9, который оцифровывает их, и микропроцессор 8, который формирует счет. Информацию о счете с микропроцессора 8 направляют в БПУ 17, счет сравнивают с пороговым значением и принимают решение о наличии источника. Если принято решение о наличии источника, то с БПУ 17 на микропроцессор 8 БД 16 подают сигнал на запуск схемы управления ключами 13, ключ №1 11 открывают, идет заряд пикового детектора 10 в течение времени, установленного схемой управления. Затем ключ №1 11 закрывают и сигнал с пикового детектора 10, поступает на АЦП 9 микропроцессора 8. Амплитуду импульса запоминают, после чего открывают ключ №2 12, происходит разряд пикового детектора. Информацию об импульсах накапливают в памяти микропроцессора 8 в виде массива данных и передают на БПУ 17. В памяти БПУ 17 находится программа поиска пиков по известному методу второй производной и калибровка АЦП 9 по энергии. Полученный массив разбивают на 6 энергетических зон. Программа на БПУ определяет принадлежность найденного пика к одной из зон, по измеренному счету определяют мощность эквивалентной дозы с помощью градуировочной зависимости N=f(P) в определенной энергетической зоне. Измерение мощности эквивалентной дозы осуществляют введением в схему устройства пикового детектора 10, ключей №1 11 и №2 12, схемы управления ключами 13 и АЦП 9.

Стабилизацию измерений осуществляют с применением светодиода 4, который с помощью схемы управления 3 светит на ФЭУ 2 с определенной частотой.

В таблице для примера приведены результаты измерения радиационным монитором мощности дозы Р и соответствующий счет импульсов N для различных источников гамма-излучения с активностью А на расстоянии 10 см.

Выбор зоны среди измеренных импульсов АЦП производят с помощью поиска пиков полного поглощения нуклидов (Н.Г. Волков, Ю.И. Малахов, Ю.В. Пятков. Математические методы обработки спектров. Линейчатые спектры.- Москва, 1986. - С. 11). По градуировочной характеристике определяют мощность эквивалентной дозы гамма-излучения. Если пик полного поглощения обнаружить невозможно, находят средневзвешенную мощность эквивалентной дозы. Для каждой из шести зон исходя из счета в этой зоне определяют мощность эквивалентной дозы. Средневзвешенную мощность эквивалентной дозы гамма-излучения Рср определяют как

где Pi - мощность дозы в i-й зоне в мкЗв/ч, wi - вес i-й зоны. Вес зоны назначают в соответствии с важностью энергии этой зоны. Например, если заранее известно, что определяющим излучателем является уран, обогащенный изотопом 235U, то назначают больший вес зоны №2, в которую входят энергии от 80 до 220 кэВ, соответствующие основным энергиям гамма- и рентгеновского излучения урана.

1. Способ измерения мощности эквивалентной дозы гамма-излучения, заключающийся в том, что измерения проводят с применением радиационного монитора с детекторами на основе неорганических сцинтилляторов, отличающийся тем, что область энергий регистрируемых фотонов от 40 кэВ до 3 МэВ разбивают на 6 зон: зону №1 определяют в диапазоне от 40 до 80 кэВ, зону №2 - от 80 до 220 кэВ, зону №3 - от 220 до 400 кэВ, зону №4 - от 400 до 800 кэВ, зону №5 - от 800 до 1450 кэВ, зону №6 - от 1450 до 3000 кэВ, для каждой зоны измеряют градуировочную характеристику - зависимость счета импульсов N от мощности эквивалентной дозы Р фотонного излучения, которая вычисляется по формуле

где Kγ - ионизационная постоянная источника фотонов с энергией Е, мЗв⋅см2/(МБк⋅ч);

R - расстояние от точечного источника до ионизируемого объекта, см;

А - активность источника, кБк; изменяя расстояние до источника или его активность, получают градуировочную характеристику - зависимость счета от мощности дозы для каждого выбранного интервала энергии фотонов N=f(P), полученные зависимости аппроксимируют полиномом, степень полинома определяют максимальной близостью коэффициента корреляции к значению 1, определяют принадлежность излучения к одной из зон, по счету импульсов N в этой зоне определяют мощность эквивалентной дозы.

2. Устройство для измерения мощности эквивалентной дозы, содержащее блок питания и управления, блок детектирования, включающий в себя неорганический сцинтиллятор, соединенный с ним фотоэлектронный умножитель, сопряженный с зарядочувствительным усилителем, соединенным с дискриминатором нижнего уровня, высоковольтный блок питания со схемой управления, высоковольтный делитель, светодиод со схемой управления, микропроцессор, отличающееся тем, что дополнительно содержит два ключа №1, №2 и схему управления ими, первый выход схемы управления подключен к ключу №1, второй - к ключу №2, выход ключей соединен с пиковым детектором, а он соединен с отградуированным по энергии фотонов аналого-цифровым преобразователем.



 

Похожие патенты:

Группа изобретений относится к способу контроля коэффициента усиления и установки в ноль многопиксельного счетчика фотонов. Способ контроля коэффициента усиления многопиксельного счетчика фотонов содержит этапы, на которых сигналы, генерируемые устройством, принимают в течение заданных периодов, пока не будет достигнуто заданное суммарное время измерений, формируют гистограмму амплитуд на основе принятых сигналов, определяют позиции двух последовательных пиков, измеримых на этой гистограмме, генерируют сигнал ошибки, равный девиации между этими двумя пиками, и на основе этого сигнала ошибки регулируют напряжение, подаваемое на устройство, чтобы поддерживать девиацию, равную заданной величине.

Изобретение относится к способам контроля характеристик порошкообразных сцинтилляторов и люминофоров, полученных одним из известных способов, например, методами со-осаждения, твердофазного синтеза и др., и применяемых в качестве самостоятельного материала.

Изобретение относится к сенсорному устройству для обнаружения сигналов излучения. Для обеспечения высокой целостности сигналов и сохранения способности к четырехсторонней стыковке сенсорное устройство содержит сенсорную матрицу, содержащую множество детекторов, сенсорный элемент для преобразования принятых сигналов излучения в множество соответствующих электрических сигналов, элемент интерпозера, простирающийся поперечно между первой боковой стороной и второй боковой стороной, и элемент интегральной схемы.

Изобретение относится к сцинтилляционным неорганическим оксидным монокристаллам со структурой граната, предназначенным для датчиков ионизирующего излучения в задачах медицинской диагностики, экологического мониторинга, неразрушающего контроля и разведке полезных ископаемых, экспериментальной физике, устройствах для измерения в космосе.

Изобретение относится к средствам получения рентгеновских изображений путем конвертирования рентгеновского излучения в оптический диапазон и последующего преобразования в электрические сигналы.

Группа изобретений относится к области радиологической визуализации, области эмиссионной томографической визуализации, области детекторов излучения и связанным областям.

Изобретение относится к области регистрации наносекундных импульсов мягкого рентгеновского излучения (МРИ) с получением информации о спектре излучения. Технический результат – расширение эксплуатационных возможностей сцинтилляционного детектора, повышение технологичности конструкции, сборки и обслуживания сцинтилляционного детектора.

Группа изобретений относится к формированию временных меток обнаруженных квантов излучения и находит применение в области физики частиц с высокой энергией. Устройство содержит пиксельную матрицу оптического детектора, блок срабатывания метки времени и блок синхронизации.

Группа изобретений относится к медицинской визуализации, а именно к позитронно-эмиссионной томографии (ПЭТ). Система ПЭТ содержит память, сконфигурированную с возможностью непрерывной записи обнаруживаемых совпадающих пар событий, обнаруживаемых ПЭТ-детекторами, опору субъекта для поддержки субъекта и перемещения в режиме непрерывного движения через поле видения ПЭТ-детекторов, группирующий блок для группировки записанных совпадающих пар в каждый из множества пространственно ограниченных виртуальных кадров на основании времяпролетной информации, при этом обнаруженные события некоторых из обнаруженных совпадающих пар событий расположены в двух разных виртуальных кадрах, и группирующий блок распределяет совпадающую пару событий одному из двух виртуальных кадров, и блок реконструкции сгруппированных совпадающих пар каждого виртуального кадра в изображение кадра и объединения изображений кадров в общее удлиненное изображение.

Изобретение относится к области атомной физики и может быть использовано для регистрации ионизирующих излучений. Сущность изобретения заключается в том, что способ регистрации импульсного ионизирующего излучения дополнительно содержит этапы, на которых в качестве чувствительного элемента применяют пластину из диэлектрика с высокой энергетической ценой образования свободных носителей заряда ΔЕ, например стекла KU1 (ΔЕ~150 эВ), первый контакт, находящийся на стороне пластины, ориентированной навстречу ионизирующему излучению, заземляют, а возникающий на противоположной стороне пластины отклик отрицательного напряжения по коаксиальному кабелю транслируют к регистрирующей аппаратуре, например осциллографу, при этом один конец центрального проводника коаксиального кабеля соединяют со вторым контактом чувствительного элемента и первым выводом нагрузочного сопротивления, второй конец центрального проводника коаксиального кабеля соединяют с регистрирующей аппаратурой, а оплетку коаксиального кабеля и второй вывод нагрузочного сопротивления заземляют.
Изобретение относится к области дозиметрии. Способ индивидуального дозиметрического контроля внутреннего облучения профессиональных работников на основе Байесовского подхода, который содержит: этап из серии индивидуальных измерений активности радионуклидов в биологических объектах; этап получения информации о пути и скорости поступления радионуклида в организм работника; этап определения физико-химических свойств радионуклида для периодов времени контроля с использованием априорных распределений параметров периода контроля; этап использования биокинетических моделей поведения радионуклида в организме условного работника в зависимости от физико-химических свойств, связанных с измеряемыми биологическими объектами; этап использования методики выполнения расчетов в компьютерной программе, ее реализующей.

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и парамагнитное вещества при следующих количественных соотношениях, мас.%: проба зубной эмали свиньи 80-87 связующее вещество 12,9-19,8 парамагнитное вещество 0,1-0,2, при этом в качестве пробы зубной эмали свиньи используют порошок с размерами крупинок от 0,1 мм до 0,3 мм.

Изобретение относится к области ядерного приборостроения и может быть использовано при создании измерителей мощности дозы гамма-излучения ядерной энергетической установки, размещаемой на космическом аппарате.

Использование: для проверки и градуировки радиометров и дозиметров при их массовом производстве. Сущность заключается в том, что устройство для градуировки и поверки дозиметров состоит из коромысла, стойки, на которой крепится заслонка, стойка опирается на конец коромысла, уравновешенного грузом, и шарнирно соединена со штангой, которая другим концом также шарнирно соединена с корпусом свинцового контейнера под определенным углом, обеспечивающим плотное примыкание заслонки к поверхности контейнера.

Изобретение относится к измерительной технике, а именно к дозиметрам и радиометрам, и может быть использовано в схемах и устройствах измерения интенсивности электромагнитных и ионизирующих излучений и/или индикации опасного уровня радиационного фона окружающей среды, а также накопленных уровней радиации, включая альфа, бета излучение, протоны, нейтроны, гамма и рентген диапазоны.

Изобретение относится к области измерений рентгеновского излучения, в частности относится к устройству индикации для осведомления о дозе для определения данных по индивидуальной дозе штатного сотрудника во время рентгеновского исследования диагностического или интервенционного типа представляющего интерес объекта.

Изобретение относится к техническим средствам, а именно к устройствам измерения дозы низкоэнергетического ионизирующего излучения в условиях открытого космического пространства во время орбитальных полетов летательных аппаратов вокруг Земли.

Изобретение относится к установке для обнаружения и запуска индикации доз излучения. .

Изобретение относится к области дозиметрии ионизирующих излучений и может быть использовано в радиационно-химической технологии и радиационных испытаниях для измерения поглощенных доз ионизирующих излучений.

Изобретение относится к ядерной физике, дозиметрии, биофизике, радиационной медицине, химии, экологии и может быть использовано для детектирования газов в разных отраслях промышленности.

Группа изобретений относится к области измерительной техники, а именно к радиометрии фотонов, и может быть использована при обнаружении ядерных и радиоактивных материалов на контрольно-пропускных пунктах предприятий, где используются, хранятся или перерабатываются радиоактивные нуклиды. Сущность изобретений заключается в том, что в схему устройства вводится пиковый детектор, два ключа и схема управления ими и аналого-цифровой преобразователь, откалиброванный по энергии фотонного излучения в области 40 кэВ - 3 МэВ, а в способе определения мощности эквивалентной дозы эту область разбивают на шесть энергетических зон, измеряют счет в каждой из них и по заранее измеренной градуировочной зависимости определяют мощность эквивалентной дозы. Технический результат – повышение эффективности работы устройства, расширение области применения радиационного монитора. 2 н.п. ф-лы, 3 ил., 1 табл.

Наверх