Способ определения функционального состояния системы гемостаза

Изобретение относится к медицине, а именно к гемокоагулогии. Способ определения функционального состояния системы гемостаза, заключающийся в том, что проводят измерение амплитуды записи процесса свертывания крови в его начале, определяют показатели начала и конца процесса свертывания электрокоагулограммы крови и сравнивают их с одноименными показателями процесса свертывания крови в норме и при разнонаправленных отклонениях диагностируют нарушения функционального состояния системы гемостаза, отличается тем, что определяют предельное напряжение по калибровочной характеристике, калибровку проводят априори для двух измеренных и известных значений верхней и нижней границ адаптивного диапазона, калибровочной характеристикой служит функция постоянной времени, компенсирующая неопределенность предельного напряжения, выбранного произвольно, и связывающая эталонную и измеренную характеристики за счет нормирования измеренных значений известными, по калибровочной характеристике находят действительные значения постоянной времени и предельного напряжения крови, по которым последовательно строят калибровочную характеристику постоянной времени, эталонную характеристику и определяют показатели начала и конца процесса свертывания крови. 4 ил.

 

Изобретение относится к медицине, а именно к гемокоагулогии, и может быть использовано для выявления лиц группы риска развития гемокоагуляционных осложнений.

Известен инструментальный способ оценки функционального состояния системы гемостаза - тромбоэластография (ТЭГ), заключающийся в графической (фотооптической или механической) регистрации вязкостных характеристик крови и плазмы в процессе их свертывания, с последующим определением показателей тромбоэластограммы. характеризующих исследуемый процесс [Авторское свидетельство СССР N1520450, М.кл. G01N 33/86, опубл. 07.11.89, БИ N41].

Недостатками данного способа являются низкая чувствительность и воспроизводимость, невозможность выявлять тонкие сдвиги в системе свертывания крови и проводить аналитическую оценку выявленных нарушений.

Известен способ определения функционального состояния системы гемостаза путем регистрации электрокоагулограммы крови [см. кн. Коблов Л.Ф. Методы и приборы для исследования гемостаза. - М: Медицина, 1975, с. 75-79], заключающийся в регистрации изменения электрического сопротивления пробы крови, залитой в ячейку с двумя электродами. Ячейка совершает колебательные движения, благодаря чему кровь попеременно замыкает и размыкает электроды. Запись результата исследований имеет вид ряда периодических импульсов с частотой следования 0,1 Гц (6 импульсов в минуту), огибающая которых характеризует процесс свертывания крови. Амплитуда импульсов соответствует сопротивлению крови, находящейся в данный момент между электродами измерительной ячейки. При оценке электрокоагулограммы учитывают следующие показатели: TI - время начала свертывания: Т2 - время конца свертывания; Т - продолжительность свертывания; Ам - величина максимальной амплитуды; Ао - величина минимальной амплитуды. По изменениям этих параметров получают представления о различных нарушениях свертывающей системы крови.

Недостатками данного способа являются инерционность, сравнительно низкие точность и чувствительность измерений вследствие протекания интенсивных побочных физико-химических процессов, сопутствующих перемещению электродов и исследуемой среды относительно друг друга.

Известен способ определения функционального состояния системы гемостаза [см. патент РФ №2109297, G01N 33/86, 1998], заключающийся в том, что проводят измерения амплитуд записи процесса свертывания крови в его начале, затем спустя одну, две и три минуты от его начала определяют скорости свертывания крови за вторую и третью минуты, вычисляют обратные им величины и сравнивают все четыре с одноименными показателями свертывания крови в норме. При наличии разнонаправленных отклонений диагностируют нарушение функционального состояния системы гемостаза.

Недостатками способа являются низкая точность и длительность его выполнения.

За прототип принят способ определения функционального состояния системы гемостаза [см. патент РФ №2430380, G01N 33/86, 2011], заключающийся в том, что проводят измерение амплитуды записи процесса свертывания крови в его начале, определяют показатели начала и конца процесса свертывания электрокоагулограммы крови и сравнивают их с одноименными показателями процесса свертывания крови в норме и при разнонаправленных отклонениях диагностируют нарушения функционального состояния системы гемостаза, регистрируют текущую амплитуду сопротивления крови в первый момент времени и измеряют второе сопротивление крови в кратный момент времени от первоначального значения времени, по двум сопротивлениям и моментам времени находят предельное сопротивление крови и постоянную времени, по которым вычисляют сопротивление крови в начале и конце процесса свертывания и по найденным параметрам определяют показатели начала и конца процесса свертывания крови.

Недостатками прототипа являются сравнительно низкие точность и чувствительность измерения и длительность измерения.

Технической задачей способа являются повышение метрологической эффективности, а именно точности измерений, и сокращение времени исследования.

Поставленная техническая задача достигается следующим образом.

В способе определения функционального состояния системы гемостаза, заключающемся в том, что проводят измерение амплитуды записи процесса свертывания крови в его начале, определяют показатели начала и конца процесса свертывания электрокоагулограммы крови и сравнивают их с одноименными показателями процесса свертывания крови в норме и при разнонаправленных отклонениях диагностируют нарушения функционального состояния системы гемостаза, в отличие от прототипа, определяют предельное напряжение по калибровочной характеристике, калибровку проводят априори для двух измеренных и известных значений верхней и нижней границ адаптивного диапазона, калибровочной характеристикой служит функция постоянной времени, компенсирующая неопределенность предельного напряжения, выбранного произвольно, и связывающая эталонную и измеренную характеристики за счет нормирования измеренных значений известными, по калибровочной характеристике находят действительные значения постоянной времени и предельного напряжения крови, по которым последовательно строят калибровочную характеристику постоянной времени, эталонную характеристику и определяют показатели начала и конца процесса свертывания крови.

Сущность предлагаемого способа поясняют фиг. 1, 2.

1. Определяют предельное напряжение крови U0 по калибровочной функции T0i(u).

2. Калибровку проводят априори для двух известных эталонных Uэi (фиг. 1 кривая 1) и измеренных Ui, (фиг. 1 кривая 2) значений верхней и нижней границ адаптивного диапазона процесса гемостаза. У пациентов с известным значением амплитуды напряжения крови Uэ1, Uэ2 для интервалов времени измерения t1 и t2 регистрируют измеренные значения амплитуды напряжения крови U1 и U2.

3. Калибровочной характеристикой служит характеристика T0i (фиг. 2) постоянной времени, компенсирующая неопределенность предельного напряжения U*, выбранного произвольно, и связывающая эталонную Tэi и измеренную Ti зависимости за счет нормирования измеренных значений известными

По калибровочной характеристике T0i восстанавливают характеристику Ui, тождественную эталонной

,

которая максимально приближена к эталонной кривой Uэi:

.

Эталонная характеристика Uэi=U и характеристика ей тождественная Ui получены из экспоненциальной динамической характеристики с искомыми информативными параметрами Т0, U0:

где T0 - постоянная времени процесса гемостаза и U0 - предельное напряжение крови. Физический смысл информативных параметров следует из предельных соотношений:

,

т.е. U0 - предельное напряжение крови для t=0;

,

т.е. Т0 - постоянная времени.

На практике один из информативных параметров исследуемой характеристики, как правило, неизвестен. В этом случае один параметр задается произвольно U*, а второй принимает вид функции T0i, которая компенсирует незнание первого информативного параметра. С помощью этой функции калибруется измеренная кривая.

Задаем произвольно параметр U*=const вместо неизвестного действительного значения постоянной времени U0. Для компенсации произвольности константы U* постоянную времени T0 превратиться в характеристику T0i, компенсирующую незнание предельного напряжения U0.

Калибровочной функцией для известных параметров T0, U0 служит экспоненциальная динамическая характеристика (2).

Калибровочную характеристику T0i выразим из системы уравнений с известными параметрами Т0, U0 характеристики Uэi, являющейся эталонной (получено путем аппроксимации экспериментальных данных), и характеристики Ui, являющейся измеренной, с произвольной константой U* и характеристикой T0i:

Поделим одно уравнение системы на другое, чтобы выразить калибровочную характеристику:

.

В соответствии с закономерностями калибровки и tэi=ti, следует калибровочная характеристика T0i, связывающая между собой эталонную и измеренную кривые:

Следовательно, калибровочной характеристикой служит функция постоянной времени, компенсирующая неопределенность предельного напряжения крови, выбранной произвольно (фиг. 2).

4. По калибровочной характеристике T0i находят действительные значения предельного напряжения крови U0 и постоянной времени T0, которые являются информативными параметрами, доставляющими оптимум калибровочной характеристике. Из характеристики (4) составим систему уравнений для :

Поделив одно уравнение системы (5) на другое

и прологарифмировав, определяют алгоритм предельного напряжения крови U0:

Выразив U0 из первого и второго уравнений системы (5) и приравняв их друг другу, находят алгоритм определения постоянной времени:

5. По действительным значениям постоянной времени T0 и предельного напряжения крови U0, последовательно строят калибровочную характеристику T0i постоянной времени эталонную характеристику Uэi. Результатом калибровки служит тождественность измеряемой характеристики Ui эталонной Uэi, т.е. Ui≡Uэi.

Для информативных параметров (6) и (7) строят (аппроксимируют) калибровочную характеристику T0i (4) (фиг. 2), по которой находят согласно (3) откалиброванную характеристику Tdi (фиг. 1 кривая 3), тождественную эталонной искомой характеристике.

По найденным информативным параметрам определяют начало и конец процесса свертывания крови:

Полученные значения начала Tн и конца Tк процесса гемокоагуляции сравнивают по величине с одноименными параметрами процесса гемокоагуляции здоровых людей. При обнаружении разнонаправленных отклонений от нормы диагностируют нарушение функционального состояния системы гемостаза.

1. Докажем метрологическую эффективность предлагаемого способа относительно прототипа по методической погрешности ε1 (фиг. 3):

Из графика (фиг. 3) видно, что методическая погрешность прототипа больше 10%.

Оценим методическую погрешность ε2, между эталонной 1 и откалиброванной 3 характеристиками (фиг. 1)

Из графика (фиг. 4) видно, что относительная погрешность не превышает 2,8⋅Е-6%, за счет использования калибровочной характеристики в адаптивном диапазоне с нормированными значениями на границах.

2. Оценим метрологическую эффективность по времени свертывания.

Время начала свертывания по эталонной характеристике (фиг. 1, кривая 1) Tн1=170, время конца свертывания Tк1=460 для нормированных амплитуд Uн=7,34 Uк=4,33. Найденные по алгоритмам (6) и (7) предельные параметры U0=10, T0=550.

Найдем действительные значения времени (фиг. 1, кривая 3) по алгоритмам (8):

Тн=170,09 и Тк=460,36.

Вычислим погрешность времени начала свертывания между характеристиками (3) и (1)

и конца свертывания

.

По характеристике (2) (фиг. 1, кривая 2) для нормированных порогов амплитуд Uн=7,34 Uк=4,33 находим время свертывания прототипа Тн2=225 и Tк2=515.

Оценим погрешность времени конца свертывания между эталонной 1 и измеренной 2 характеристиками

и погрешность начала свертывания

.

Эффективность η по точности времени свертывания рассчитывают как отношение первой ко второй погрешности , из которого видно, что эффективность предлагаемого решения на четыре порядка выше прототипа, т.к. соответствуют ηк=6,69Е-3 и ηн=1,55Е-3.

Таким образом, определение действительных значений за счет нормирования измеренных значений известными по калибровочной характеристике постоянной времени, в отличие от известных решений, снижает методическую погрешность на десятки порядков, точность времени свертывания повышает на 3 порядка, а оперативность сокращает в три раза, что в итоге повышает метрологическую эффективность компьютерных анализаторов для автоматизации выявления лиц группы риска развития гемокоагуляционных осложнений.

Способ определения функционального состояния системы гемостаза, заключающийся в том, что проводят измерение амплитуды записи процесса свертывания крови в его начале, определяют показатели начала и конца процесса свертывания электрокоагулограммы крови и сравнивают их с одноименными показателями процесса свертывания крови в норме и при разнонаправленных отклонениях диагностируют нарушения функционального состояния системы гемостаза, отличающийся тем, что определяют предельное напряжение по калибровочной характеристике, калибровку проводят априори для двух известных эталонных Uэ1 и Uэ2 и измеренных U1 и U2 значений нижней t1 и верхней t2=kt1 границ адаптивного диапазона, калибровочной характеристикой служит функция постоянной времени T0i, компенсирующая неопределенность предельного напряжения U0, выбранного произвольно U*, и связывающая эталонную Uэi и измеренную Ui характеристики за счет нормирования измеренных значений известными

по калибровочной характеристике T0i находят действительные значения постоянной времени T0 и предельного напряжения U0 крови

' ,

где k=t2/t1,

по которым последовательно строят калибровочную характеристику постоянной времени T0i, эталонную характеристику Uэi

и определяют показатели начала Тн и конца Тк процесса свертывания крови

где Uн, Uк - нормированные пороги напряжения начала и конца процесса свертывания крови.



 

Похожие патенты:

Изобретение относится к медицинской технике, а именно к устройствам для регистрации процесса свертывания крови, преимущественно к тромбоэластографам. Анализатор коагуляции - тромбоэластограф - содержит кювету 1 с исследуемой жидкостью 2, погруженный в кювету поплавок 3, установленный на штоке с возможностью совершения возвратно-поворотного перемещения, жестко связанные со штоком поплавка датчики вращающего момента 4 и угла поворота 5, последовательно соединенные усилитель 6, фазовый детектор 7 и регистрирующее устройство 8, а также генератор синусоидальных колебаний 9, связанный с датчиком угла поворота 5 и фазовым детектором 7.

Изобретение относится к применению коагулирующих композиций, содержащих в основном выделенные или по меньшей мере частично очищенный активатор протромбина змеиного яда, а также к контейнерам, содержащим указанные коагулирующие композиции, и к родственным способам применения.9 н.

Изобретение относится к практической медицине и клинико-лабораторной диагностике и касается способа индивидуального прогнозирования клинической эффективности двойной антитромбоцитарной терапии у больных острым коронарным синдромом.

Изобретение относится к области медицины и предназначено для прогнозирования преэклампсии (ПЭ) у беременных при носительстве генотипов G/A и А/А гена фактора V Лейдена (FVL) 1691.

Изобретение относится к области биотехнологии и медицины. Описан способ химической модификации антитромбинового аптамера и к получения нового антитромбинового аптамера, обладающего антикоагулянтными свойствами и пролонгированной антитромботической активностью.

Изобретение относится к медицине, а именно к способу прогнозирования исхода беременности при угрожающих преждевременных родах. Способ прогнозирования исхода беременности при угрожающих преждевременных родах путем исследования периферической венозной крови до начала сохраняющей терапии у беременных женщин с клиническими признаками угрожающих преждевременных родов в сроках гестации 24-34 недели, заключающийся в том, что в плазме крови определяют показатель резистентности активного V фактора свертывания крови к активированному протеину С и при его значении, равном 0,94 или менее, прогнозируют преждевременные роды.

Изобретение относится к определению времени свертывания жидкой среды, такой как кровь или плазма. Способ определения времени свертывания в жидкой среде, такой как кровь или плазма, включает получение микрожидкостного устройства, введение в него образца, непрерывный контроль положения фронта жидкости как функции времени L(t) и получение теоретического значения распространения фронта жидкой среды как функции времени перед свертыванием.

Изобретение относится к практической медицине и клинико-лабораторной диагностике. Способ определения агрегационной активности тромбоцитов у больных острым коронарным синдромом, включающий забор венозной крови, стабилизацию ее, внесение индукторов агрегации, проведение оценки агрегационной активности тромбоцитов импедансным методом с параллельным определением динамики реакции высвобождения АДФ методом люминесцентной агрегации, определение максимальной амплитуды агрегации тромбоцитов, отличается тем, что вносят рабочую суспензию коллагена до конечной концентрации в растворе 2 μg/mL, записывают агрегатограмму и кривую высвобождения АДФ, определяют время выхода агрегатограммы на плато максимальной амплитуды импеданса как отсутствие значимых колебаний агрегатограммы менее 1 Ω/30 сек, после чего болюсным способом вносят раствор АДФ до конечной концентрации в растворе 10 μМ, осуществляют запись агрегатограммы и кривой высвобождения АДФ до выхода максимальной амплитуды импеданса на плато и по максимальной амплитуде кривой агрегации и максимальной амплитуде кривой высвобождения АДФ судят об агрегационной активности тромбоцитов.

Изобретение относится к области медицинской диагностики и мониторинга лекарственных средств и касается способа измерения совместной активности только факторов свертывания крови II и Х для контроля антикоагулянтной терапии и набора для осуществления этого способа.

Изобретение относится к медицине, в частности - к кардиологии и лабораторной диагностике, и может быть использовано для прогнозирования аспиринорезистентности у больных артериальной гипертонией с высоким риском сердечно-сосудистых осложнений, длительно принимающих аспирин в профилактической дозе.

Изобретение относится к медицине, биологии, биотехнологии, фармакологии и может быть использовано для оценки цитотоксичности компонентов, входящих в состав скаффолдов, используемых в тканевой инженерии, а именно при пластике или замещении дефектов тканей организма с обеспечением стимуляции их регенерации.

Способ прогнозирования риска развития ишемического инсульта с учетом генетических факторов относится к биохимии. Изобретение может быть использовано для выявления риска развития инсульта у индивидуумов русской национальности, являющихся жителями Центрального Черноземья.

Изобретение относится к медицине, а именно к терапии, и может быть использовано для индивидуального прогнозирования обострений хронической обструктивной болезни легких (ХОБЛ) у больных с ожирением в течение ближайшего года наблюдения.

Изобретение относится к области медицины и предназначено для ранней диагностики острого инфекционного эндокардита (ИЭ). Проводят забор образцов венозной крови, выделение геномной ДНК, аллель-специфическую полимеразную цепную реакцию и генотипирование полиморфного локуса -455G-A гена FGB у лиц группы риска.
Изобретение относится к области медицины, к биохимической лабораторной диагностике, а именно к способу определения карбонилированного тиоредоксина. Способ включает инкубацию 0,25 мл лизированных 1% раствором тритона Х-100 клеток с 0,5 мл 10 мМ раствора 2,4-динитрофенилгидразина в 2 М НСl, связывающегося с карбонильными группами белков, инкубацию пробы при комнатной температуре в течение 1 ч, добавление 0,5 мл 20% ТХУ и центрифугирование при 11000 g 10 минут, промывание осадка 3 раза 1 мл раствора этанол: этилацетат (1:1) для экстракции избытка 2,4-динитрофенилгидразина, не прореагировавшего с карбонильными группами окисленных белков, высушивание осадка и ресуспендирование, дальнейшее инкубирование клеточного лизата с 0,5 мл магнитных частиц, нагруженных антителами к 2,4-динитрофенолу, в течение 3 ч при 25°С и непрерывном перемешивании.

Изобретение относится к медицине, а именно к акушерству и гинекологии, микроэкологии, инфекционной патологии и иммунологии, может быть использовано при ведении беременности.
Изобретение относится к медицине, в частности к педиатрии, и касается диагностики остеомиелита у детей. Способ основан на использовании лабораторных и лучевых диагностических критериев.

Изобретение относится к области медицины и касается дифференциальной диагностики красного плоского лишая и лейкоплакии слизистой оболочки полости рта. Способ включает иммуногастохимическое исследование биоптата очага поражения.

Изобретение относится к медицине, а именно к акушерству и гинекологии, и может быть использовано для диагностики нарушений биоценоза влагалища. Для этого проводят измерение влагалищной рН эндоскопическим рН-зондом с использованием цифрового рН-метра в шести точках по циферблату на 12:00, 13:30, 16:30, 18:00, 19:30, 22:30 часах, которые условно обозначают рН-1 рН-2 рН-3 рН-4 рН-5 рН-6.
Изобретение относится к области медицины и предназначено для прогнозирования риска развития генитального эндометриоза. Из периферической венозной крови выделяют ДНК.

Изобретение относится к медицине, а именно к гемокоагулогии. Способ определения функционального состояния системы гемостаза, заключающийся в том, что проводят измерение амплитуды записи процесса свертывания крови в его начале, определяют показатели начала и конца процесса свертывания электрокоагулограммы крови и сравнивают их с одноименными показателями процесса свертывания крови в норме и при разнонаправленных отклонениях диагностируют нарушения функционального состояния системы гемостаза, отличается тем, что определяют предельное напряжение по калибровочной характеристике, калибровку проводят априори для двух измеренных и известных значений верхней и нижней границ адаптивного диапазона, калибровочной характеристикой служит функция постоянной времени, компенсирующая неопределенность предельного напряжения, выбранного произвольно, и связывающая эталонную и измеренную характеристики за счет нормирования измеренных значений известными, по калибровочной характеристике находят действительные значения постоянной времени и предельного напряжения крови, по которым последовательно строят калибровочную характеристику постоянной времени, эталонную характеристику и определяют показатели начала и конца процесса свертывания крови. 4 ил.

Наверх