Способ упрочнения гидрогелей



Владельцы патента RU 2660588:

Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" (RU)

Изобретение относится к медицине, а именно к тканевой инженерии и регенеративной медицине, и предназначено для восстановления различных дефектов ткани. Для упрочнения гидрогелей осуществляют обработку гидрогелевого скаффолда в реакторе в среде сверхкритического диоксида углерода при температуре выше комнатной с последующим понижением температуры и постепенным снижением давления в реакторе до атмосферного. Обработку в реакторе ведут в течение 1-2 часов при температуре 40-50°С и давлении 5-15 МПа. Постепенное снижение давления диоксида углерода после обработки производят в течение 0,5-2 часов, при этом скорость потока диоксида углерода, обтекающего скаффолд, поддерживают в диапазоне 0,05-1 мм/с. Использование изобретения позволяет повысить прочность гидрогелевого скаффолда. 1 ил., 1 пр.

 

Предлагаемое изобретение относится к медицине, а именно к тканевой инженерии и регенеративной медицине, и может быть использовано для создания имплантированных в организм скаффолдов для восстановления различных дефектов ткани.

Скаффолд - трехмерная пористая или волокнистая матрица, применяемая для восстановления дефектов тканей и органов, основная функция которой состоит в обеспечении механического каркаса для клеток и поддержки тканевого дефекта [Stella J.A., D'Amore A., Wagner W.R., Sacks M.S. On the biomechanical function of scaffolds for engineering load-bearing soft tissues. Acta Biomater, 2010. V. 6 N. 7. P. 2365-2381, doi: 10.1016/j.actbio. 2010.01.001]. Механические свойства скаффолда должны быть схожи с механическими свойствами окружающей ткани. Это важно, во-первых, для дифференцировки в нужном направлении клеток, помещенных на поверхность скаффолда, во-вторых, для ослабления тканевого ответа при их имплантации, в-третьих, для регулирования скорости биодеградации скаффолдов (она должна соответствовать скорости восстановления ткани пациента).

Гидрогели являются перспективным материалом для создания скаффолдов (Zhu J., Marchant R.E. Design properties of hydrogel tissue-engineering scaffolds // Expert review of medical devices. 2011. V. 8. №5. P. 607-626). Основной особенностью, ограничивающей применение гидрогелевых скаффолдов, является их механическая прочность (низкие значения модуля Юнга). Сами по себе гидрогели являются мягкими и хрупкими, не могут долгое время выдерживать большие деформации, что происходит, главным образом из-за наличия в полимерной сетке несшитых компонентов. В связи с этим важно делать гидрогели более прочными (повысить модуль Юнга).

Известен способ упрочнения гидрогелей (заявка США 20060134050, МПК А61K 8/80, опубл. 22 июня 2006), основанный на химическом взаимодействии и заключающийся в добавлении в материал гидрогеля для получения дополнительных сшивок биоактивных веществ с молекулярной массой от 2000 до 1000000.

Основной недостаток данного способа заключается в том, что из подобного гидрогеля невозможно сформировать структуру скаффолда заданной архитектоники, например, используя лазерные технологии трехмерного принтинга.

Известен также способ упрочнения гидрогелей, основанный на использовании наноразмерных материалов, которые вводят в структуру гидрогеля. Например, при введении в гидрогель неорганических частиц наноглины его механические характеристики могут увеличиться в несколько раз в сравнении с исходным гидрогелем (K. Haraguchi, Т. Takehisa, Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties // Adv. Mater. 2002. V. 14. P. 1120-1124, doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9).

Однако известный способ имеет ряд недостатков. Один из них заключается в том, что наноразмерный наполнитель в структуре гидрогеля при его введении распределяется не достаточно равномерно, поэтому повышение механических свойств по всему объему происходит неравномерно. Помимо этого, введение наноразмерного наполнителя может вызывать токсическое действие на клетки (Carrola, J., Bastos, V., Jarak, I., Oliveira-Silva, R., Malheiro, E., Daniel-da-Silva, A.L., et al. Metabolomics of silver nanoparticles toxicity in HaCaT cells: structure-activity relationships and role of ionic silver and oxidative stress // Nanotoxicology. 2016. V. 10, N. 8. P. 1105-1117).

Указанных недостатков лишен наиболее близкий к предлагаемому способ упрочнения гидрогелей, принятый за прототип (Тимашев П.С, Бардакова К.Н., Чурбанов С.Н., Кротова Л.И., Григорьев A.M., Новиков М.М., Лакеев С.Г., Севастьянов В.И., Баграташвили В.Н. Сверхкритическая флюидная обработка трехмерных гидрогелевых матриксов, полученных из производных хитозана // Вестник трансплантологии и искусственных органов. 2016. Т. 18. №3. С. 85-93. doi: 10.15825/1995-1191-2016-3-85-93). Способ заключается в обработке гидрогеля в среде сверхкритического диоксида углерода с температурой 40°С и давлением 12 МПа в течение 1.5 часов, после чего нагревательный элемент выключается, а давление в реакторе постепенно снижается до атмосферного в течение 1 часа. Известный способ позволяет практически на порядок повысить модуль Юнга для гидрогелей, за счет эффективного удаления из материала гидрогеля несшитых компонентов. Важно, что известный способ не изменяет химическую структуру материала и не влияет на его токсичность. Недостаток известного способа заключается в низкой эффективности, поскольку повышение прочности материала в среднем на один порядок недостаточно для создания гидрогелевых скаффолдов для регенерации хрящевой ткани с модулем Юнга 0,45-0,80 МПа (в кн. Mansour J.М. Biomechanics of cartilage // Kinesiology: the mechanics and pathomechanics of human movement. 2003. C. 66-79). Невозможность увеличить модуль Юнга существенно больше, чем на порядок, связано с низкой эффективностью удаления несшитых компонентов из материала.

Технической задачей предлагаемого изобретения является разработка эффективного способа упрочнения гидрогелей.

Техническим результатом является повышение модуля Юнга (увеличение прочности) гидрогелевых скаффолдов на два и более порядка в сравнении с необработанным скаффолдом.

Такие скаффолды могут успешно использоваться для регенерации тканей с высокими значениями модуля Юнга, например хрящевых тканей.

Поставленная техническая задача, обеспечивающая получение заданного результата, достигается тем, что в способе упрочнения гидрогелей, заключающемся в обработке гидрогелевого скаффолда в реакторе в среде сверхкритического диоксида углерода при температуре выше комнатной с последующим понижением температуры и постепенным снижением давления в реакторе до атмосферного, обработку в реакторе ведут в течение 1-2 часов при температуре 40-50°С и давлении 5-15 МПа, а постепенное снижение давления диоксида углерода после обработки производят в течение 0.5-2 часов, при этом скорость потока диоксида углерода, обтекающего скаффолд, поддерживают в диапазоне 0.05-1 мм/с.

Результаты испытаний образцов, полученных при реализации предложенного способа, представлены на чертеже, на котором показаны графики распределения модуля Юнга по поверхности образцов необработанного (а) и обработанного (б) гидрогелевого скаффолда.

Пример осуществления способа

Для экспериментов использовали образцы, полученные на основе фоточувствительных гидрогелей методом лазерной стереолитографии (Тимашев П.С., Бардакова К.Н., Чурбанов С.Н., Кротова Л.И., Григорьев A.M., Новиков М.М., Лакеев С.Г., Севастьянов В.И., Баграташвили В.Н. Сверхкритическая флюидная обработка трехмерных гидрогелевых матриксов, полученных из производных хитозана //Вестник трансплантологии и искусственных органов. 2016. Т. 18. №3. С. 85-93. doi: 10.15825/1995-1191-2016-3-85-93). Измерение модуля Юнга образцов проводилось с помощью наноиндентера Piuma Nanoindenter (Opticsll, Нидерланды) (Ernst Breel. Characterizing the micro-mechanical properties of immersed hydrogels by nanoindentation. Technical Report. 2015. DOI: 10.13140/2.1.3580.9606).

Образцы помещали в реактор из нержавеющей стали объемом 25 мл внутрь термостата. Образец, параметры которого представлены на фиг. 1, обрабатывался следующим образом. В термостате устанавливали температуру 40-50°С и по достижении заданных температур начинали подавать в реактор углекислый газ из баллона до давления ~5 МПа. Затем включали плунжерный насос с давлением 15 МПа. Когда давление в реакторе достигало заданных величин, постепенно открывали вентиль тонкой регулировки таким образом, чтобы давление в системе не падало, а поток минимально отклонялся от заданного и составлял 5-7 мл/мин, что соответствовало скорости перемещения СО2 в реакторе 0.08-0.12 мм/с. Обработку проводили в течение 1.5 часов, после чего спускали давление в системе до атмосферного в течение 1.5 часов.

Как видно из фиг. 1, после обработки образцов предлагаемым способом модуль Юнга материала образца по сравнению с исходными показателями увеличился более чем на два порядка.

Проведенные эксперименты показали, что обработка скаффолдов сверхкритическим СО2 значительно увеличивает прочность материала по сравнению с необработанными образцами и образцами, обработанными способом, который был принят за аналог. Средние значения модуля Юнга составили: для исходных гидрогелевых скаффолдов - 3,3±0,9 кПа; для обработанных аналогом - 54±18 кПа; для обработанных предлагаемым способом - 600±220 кПа.

Полученный технический результат обусловлен тем, что в процессе обработки гидрогелевых скаффолдов в проточном реакторе с постоянным потоком сверхкритического диоксида углерода интенсифицируются массообменные процессы и происходит эффективный отвод из полимерной сетки несшитых компонентов, которые в большей степени определяют низкие значения модуля Юнга (низкую прочность) необработанного гидрогеля.

Таким образом, поставленная задача полностью решена, а именно разработан эффективный способ упрочнения гидрогелей.

Способ упрочнения гидрогелей, заключающийся в обработке гидрогелевого скаффолда в реакторе в среде сверхкритического диоксида углерода при температуре выше комнатной с последующим понижением температуры и постепенным снижением давления в реакторе до атмосферного, отличающийся тем, что обработку в реакторе ведут в течение 1-2 часов при температуре 40-50°C и давлении 5-15 МПа, а постепенное снижение давления диоксида углерода после обработки производят в течение 0.5-2 часов, при этом скорость потока диоксида углерода, обтекающего скаффолд, поддерживают в диапазоне 0.05-1 мм/с.



 

Похожие патенты:
Изобретение относится к области косметологии и представляет собой способ получения композиции, содержащей стволовые клетки, полученные из жировой ткани (ASC), первичной культуры (Р0), выращенные ex-vivo, смешанные с отобранной жировой тканью, включающий: выращивание ASC ex-vivo из выделенной стромальной сосудистой фракции (SVF) в питательной среде, состоящей из модифицированной по способу Дульбекко среды Игла (DMEM) или альфа-минимальной питательной среды (α-МЕМ), 1-5% пенициллин-стрептомицина, 1-5 МЕ/мл гепарина без консервантов и 2-20% объединенного человеческого тромбоцитарного лизата (pHPL), сбор указанных ASC в первичном пассаже (Р0) и смешивание указанных ASC с отобранной жировой тканью в соотношении 20×106 - 20×107 ASC/мл жира, а также композицию для применения в качестве агента для обогащенного стволовыми клетками липофилинга молочной железы или филинга стволовыми клетками молочной железы, косметический способ обогащенного стволовыми клетками липофилинга молочной железы или филинга стволовыми клетками молочной железы, косметический способ обогащенного стволовыми клетками липофилинга лица или филинга стволовыми клетками лица и косметический способ введения агента в кожу.

Изобретение относится к области композиционных материалов, а именно к материалам, применяемых в медицине, в частности в офтальмологии, для изготовления интраокулярных линз, предназначенных для коррекции зрения после удаления катаракты.

Изобретение относится к медицине, в частности к биомедицинскому материаловедению, и раскрывает метод получения гидрогелей с заданными механическими свойствами и архитектоникой.

Изобретение относится к области медицинской техники, а именно технологии формирования пористых биоинертных металлических покрытий на внутрикостных частях титановых имплантируемых конструкций.

Изобретение относится к медицинским протезам и может быть использовано для восполнения дефицита тканей в области удаленного сосково-ареолярного комплекса (САК) у пациенток, перенесших операцию на молочной железе.

Изобретение относится к биотехнологии. Описана биоинженерная конструкция для восстановления больных или поврежденных тканей.

Изобретение относится к области медицины, а именно к пластической офтальмохирургии. Для хирургического лечения выворота нижнего века проводят расщепление нижнего века на две пластинки: кожно-мышечную и конъюнктивально-хрящевую и введение между ними аллотрансплантата «Аллоплант для пластики век», который фиксируют аллосухожильными нитями к наружной и внутренней связкам века.

Изобретение относится к области металлургии, а именно к магниевым сплавам, и может быть использовано для изготовления биоразлагаемого имплантата. Биоразлагаемый имплантат содержит магниевый сплав, содержащий: Zn в количестве от 3 до 5 мас.
Изобретение относится к производству изделий из корунда медицинского назначения для хирургии, стоматологии, ортопедии, травматологии, изготовления конструкционной керамики, эндопротезов и имплантатов.
Изобретение относится к области медицины и представляет собой способ получения биологических имплантатов, характеризующийся тем, что хирургически очищенный и механически фрагментированный исходный биоматериал из костной ткани подвергают двум-трем циклам замораживания-размораживания, проводят очистку в ультразвуковой ванне раствором 0,1 М этилендиаминтетрауксусной кислоты и 0,01 М гидроксида натрия, затем раствором 1М соляной кислоты и 1М хлорида натрия, затем обрабатывают раствором 1М хлорида натрия и 0,1 М фосфатного буфера с промывкой 0,1 М раствором фосфатного буфера до рН 7-8, затем раствором 0,1% Triton х-100 и 1% додецилсульфата натрия, а затем раствором 0,1-1% трипсина и 0,125-0,3% папаина в соотношении 1:1, после чего биоматериал подвергают обработке в ультразвуковой ванне в 3% перекиси водорода, а затем обрабатывают смесью этанол или изопропанол и диэтиловый эфир или хлороформ в соотношении 1:2, затем обработку ведут в сверхкритическом диоксиде углерода в автоклаве при давлении 75-700 атм и температуре 32-50°С с периодическим сбрасыванием давления ниже критической точки, на второй стадии в автоклав вводят дистиллированную воду и диоксид углерода в соотношении 1:(1-3) при давлении 150-350 атм и температуре 15-25°С, а после декомпрессии автоклава биоматериал подвергают лиофилизации и стерилизации.

Изобретение относится к медицине и представляет собой покрытие для ран, включающее подложку и эластомерную матрицу, формирующую контактирующий с раной слой и имеющую гидрофобизированный полимерный бигуанид в качестве действующего вещества, гомогенно распределенного в эластомерной матрице.

Изобретение относится к медицине. Описаны улучшенные кожно-адгезивные композиции для прикрепления субстрата, такого как впитывающее изделие, к коже.
Изобретение относится к медицине и может быть использовано при лечении заболеваний опорно-двигательного аппарата, а также при лечении заболеваний кожи. .
Изобретение относится к медицине, а именно челюстно-лицевой области. .

Изобретение относится к медицине, а именно к чрескожной матричной системе для чрескожного введения гормона, при этом матричная система имеет подложку и самоклеящуюся матрицу, которая включает матрицу, содержащую 20 - 42 мас.
Группа изобретений относится к термоплавкому клеящему веществу и изделию одноразового использования, полученному при использовании термоплавкого клеящего вещества.

Раскрыт тонкий абсорбционный композиционный материал, в котором нетканый поддерживающий слой (лист) является гидропереплетенным с чесаной фиброй для получения нетканого субстрата.

Группа изобретений относится к одноразовому абсорбирующему изделию и к способу сборки этого изделия. Одноразовое абсорбирующее изделие собрано из набора компонентов листов с применением адгезива.

Группа изобретений относится к медицине. Описан перевязочный материал для ран при происшествиях с большим количеством пострадавших от ожогов, который: может находиться на хранении в течение длительных периодов времени без специальных условий хранения; может быть наложен лицами с малым опытом или без него; сразу же восстанавливает барьерную функцию кожи и ослабляет боль; справляется с экссудатом раны, вмещает отек и является прозрачным.

Настоящее изобретение относится к прекурсорному композитному материалу (60), имеющему последовательность (50) слоев, содержащую адгезионный слой (20), несущий слой (10) на адгезионном слое (20), высвобождающий слой (40) на несущем слое (10) и разделительный слой (30) на высвобождающем слое (40), причем последовательность (50) слоев расположена так, что сторона адгезионного слоя (20), обращенная в направлении от последовательности (50) слоев, расположена по меньшей мере в подобластях на стороне разделительного слоя (30), обращенной в направлении от последовательности (50) слоев, причем адгезионная сила обеспечена между адгезионным слоем (20) и разделительным слоем (30), причем адгезионная сила является большей, чем сила расслаивания между несущим слоем (10) и высвобождающим слоем (40).

Изобретение относится к медицине, а именно к тканевой инженерии и регенеративной медицине, и предназначено для восстановления различных дефектов ткани. Для упрочнения гидрогелей осуществляют обработку гидрогелевого скаффолда в реакторе в среде сверхкритического диоксида углерода при температуре выше комнатной с последующим понижением температуры и постепенным снижением давления в реакторе до атмосферного. Обработку в реакторе ведут в течение 1-2 часов при температуре 40-50°С и давлении 5-15 МПа. Постепенное снижение давления диоксида углерода после обработки производят в течение 0,5-2 часов, при этом скорость потока диоксида углерода, обтекающего скаффолд, поддерживают в диапазоне 0,05-1 ммс. Использование изобретения позволяет повысить прочность гидрогелевого скаффолда. 1 ил., 1 пр.

Наверх