Устройство для обнаружения радиоактивности технологического оборудования и дозиметрического контроля обслуживающего персонала

Изобретение относится к устройствам, используемым для обнаружения, измерения и радиационного контроля окружающей среды и радиоактивных излучений от элементов конструкции технологического оборудования. Сущность изобретения заключается в том, что устройство для обнаружения радиоактивности технологического оборудования и дозиметрического контроля обслуживающего персонала обеспечивает возможность обнаружения и локализации радиоактивных элементов оборудования, контроля изменений уровня радиации во времени с совмещением функций по одновременному индивидуальному контролю получаемых доз и состояния обслуживающего персонала, находящегося в зоне радиационной опасности. Технический результат – расширение функциональных возможностей устройства для обнаружения радиоактивности технологического оборудования и дозиметрического контроля обслуживающего персонала. 1 ил.

 

Область техники

Изобретение относится к устройствам, используемым для обнаружения, измерения и радиационного контроля окружающей среды и радиоактивных излучений от элементов конструкции технологического оборудования, в частности оборудования морских нефтегазовых сооружений. Заявленное устройство также может применяться для контроля потоков гамма- и нейтронного излучений в составе систем непрерывного мониторинга береговых нефтегазопроводов, насосных и компрессорных станций.

Конечная цель применения подобных устройств - защита обслуживающего персонала опасных объектов, а также обеспечение экологической безопасности для населения и окружающей среды.

Уровень техники

Известно «Устройство для многоточечной сигнализации» [авторское свидетельство на изобретение №888160, опубл. 07.12.1981 г.], реагирующее на отклонение от заданных параметров различных объектов. Устройство имеет самое широкое назначение и содержит источник питания, источник импульсного напряжения, подключенный к первым входам блоков контроля n - ячеек сигнализации, а выходы блоков контроля соединяются с отдельными входами блока световой сигнализации и блока звуковой сигнализации, причем ко второму, третьему, четвертому, пятому и шестому входу каждого блока контроля подключены соответственно отдельные датчики сигналов, датчики сигналов блокировок, общий квитирующий элемент, общие замыкающий и размыкающий ключи тестового блока.

В аналоге не указан тип и принцип действия датчиков, этот элемент сформулирован на общефункциональном уровне. Если в качестве упомянутых датчиков использовать датчики дозиметрического контроля излучения от элементов оборудования, мест нахождения персонала и окружающей среды, с которыми данное устройство обеспечивает функции оповещения о наличии и превышении установленных и допустимых уровней гамма- и нейтронного излучений в местах установки, то его можно рассматривать как объект того же назначения, что и заявляемый комплекс.

Недостатками указанного устройства являются отсутствие персональных блоков дозиметрии, информации и связи и, соответственно, возможности представления текущих значений измеряемых и регистрируемых величин, функции интегрирования их текущих значений для контроля энергии или потока частиц (дозы), поглощаемых защищаемым объектом, а также дополнительных локальных блоков контроля отдельных элементов оборудования с повышенным уровнем радиации и, соответственно, возможности контролировать зоны с увеличенным уровнем радиации с их обозначением и сигнализацией о превышении установленных допустимых значений.

В качестве прототипа предлагаемого изобретения принято «Устройство для обнаружения радиоактивных материалов» [патент РФ №2129289, опубл. 20.04.1999 г.], содержащее блок детектирования (здесь и далее - датчик) гамма-излучения, датчик нейтронного излучения, датчик присутствия, датчик вскрытия, каждый из которых подключен к отдельным входам контроллера, а блок сигнализации и пульт управления - к отдельным выходам этого контроллера.

В прототипе не раскрыт состав и принцип действия пульта управления, этот элемент представлен на общефункциональном уровне.

Недостатками указанного устройства является отсутствие персональных блоков дозиметрии, информации и связи с идентификаторами, дозиметрами, информационными табло, сигнализаторами и переговорными устройствами, связанных с контроллером посредством магистрального интерфейса и предназначенных для измерения уровня и определения доз радиации, предупреждения их превышения, оперативного оповещения пользователей и их связи с оператором, а также дополнительных локальных блоков контроля отдельных элементов оборудования с повышенным уровнем радиации и, соответственно, возможности контролировать зоны с увеличенным уровнем радиации, с их обозначением и сигнализацией о превышении установленных допустимых значений.

Раскрытие изобретения

Решаемая изобретением задача - обеспечение централизованного радиационного контроля и обеспечение процесса эвакуации персонала из опасных зон в случае превышения допустимых доз или при возникновении условий, недопустимых для нахождения персонала в контролируемых зонах.

Достигаемый технический результат - расширение функциональных возможностей устройства путем обеспечения возможности обнаружения и локализации радиоактивных элементов оборудования, контроля изменений уровня радиации во времени с совмещением функций по одновременному индивидуальному контролю получаемых доз и состояния обслуживающего персонала, находящегося в зоне радиационной опасности.

Поставленная задача решается введением новых функциональных элементов и связей между ними.

Предлагаемое устройство для обнаружения радиоактивности технологического оборудования и дозиметрического контроля обслуживающего персонала содержит контроллер, датчики измерений излучений от элементов контролируемого оборудования, датчики присутствия персонала, датчики радиационного контроля окружающей среды, каждый из упомянутых датчиков подключен к соответствующему входу контроллера, также содержит пульт информации и управления и блок сигнализации, также подключенный к выходу контроллера. При этом устройство содержит вновь введенные персональные переносные блоки дозиметрии, информации и связи, каждый из которых имеет встроенные идентификатор, дозиметр, информационное табло, звуковой сигнализатор, переговорный модуль пользователя, причем перечисленные элементы персональных блоков связаны через адресуемый преобразователь интерфейсов каждого блока и магистральный интерфейс устройства с упомянутым контроллером. Контроллер вместе с упомянутым блоком сигнализации встроен в пульт и непосредственно связан с дополнительно введенными в схему пульта переговорным модулем оператора, клавиатурой и монитором, а также содержит дополнительные локальные блоки контроля отдельных элементов оборудования с повышенным уровнем радиации, каждый из которых имеет встроенные идентификатор, датчик измерения излучений, информационное табло, светозвуковой сигнализатор, причем перечисленные элементы локальных блоков контроля связаны через адресуемый преобразователь интерфейсов каждого блока и магистральный интерфейс устройства с встроенным в пульт контроллером.

Перечень фигур

Фиг. 1 - Устройство для обнаружения радиоактивности технологического оборудования и дозиметрического контроля обслуживающего персонала.

Осуществление изобретения

Устройство для обнаружения радиоактивности технологического оборудования и дозиметрического контроля обслуживающего персонала, представленное на фиг. 1, содержит контроллер 1, датчики 2 измерений излучений от элементов контролируемого оборудования, датчики 3 присутствия персонала, датчики 4 радиационного контроля окружающей среды, а каждый из упомянутых датчиков подключен к соответствующему входу контроллера 1, также содержит пульт 5 информации и управления и блок 6 сигнализации, также подключенный к выходу контроллера 1, а также содержит вновь введенные персональные переносные блоки 7 дозиметрии, информации и связи, каждый из которых имеет встроенные идентификатор 8, дозиметр 9, информационное табло 10, звуковой сигнализатор 11, переговорный модуль 12 пользователя, причем перечисленные элементы персональных блоков 7 связаны через адресуемый преобразователь 13 интерфейсов каждого блока и магистральный интерфейс 14 устройства с упомянутым контроллером 1, который вместе с упомянутым блоком 6 сигнализации встроен в пульт 5 и непосредственно связан с дополнительно введенными в схему пульта 5 переговорным модулем 15 оператора, клавиатурой 16 и монитором 17, а также содержит дополнительные локальные блоки 18 контроля отдельных элементов оборудования с повышенным уровнем радиации, каждый из которых имеет встроенные идентификатор 19, датчик 20 измерения излучений, информационное табло 21, светозвуковой сигнализатор 22, причем перечисленные элементы локальных блоков 18 контроля связаны через адресуемый преобразователь 23 интерфейсов каждого блока и магистральный интерфейс 14 устройства с встроенным в пульт 5 контроллером 1.

Устройство работает следующим образом.

Датчики 2 дозиметрических измерений, установленные на элементах оборудования, которые могут накапливать солевые отложения и становиться источниками радиации в ближнее пространство, а также датчики 4 радиационного контроля окружающей среды и датчики 3 присутствия, контролирующие нахождение персонала в радиационно опасных местах, передают информацию по своим контролируемым параметрам в контроллер 1.

Сигналы, поступающие с блоков 7 дозиметрии, информации и связи в контроллер 1 по магистральному интерфейсу 14, передают:

- от идентификатора 8 через преобразователь 13 интерфейса персональные данные о пользователе конкретного блока 7, находящемся в контролируемой зоне;

- от дозиметра 9 через преобразователь 13 интерфейса показания об уровне радиации и полученной пользователем дозе.

При этом контроллер 1 воспринимает, обрабатывает и передает оператору информацию, воспроизводимую монитором 17.

Сигналы, выводимые на табло 10 блоков 7, представляют информацию о текущих значениях параметров, контролируемых в местах установки датчиков, показания дозиметра и сигналы о приближении или превышении предельно допустимой дозы.

При превышении допустимой дозы радиации сигнализатор 11 блока 7 подает пользователю светозвуковые сигналы о необходимости прекратить работу и покинуть радиационно опасное помещение. При этом информация о полученной дозе выводится на табло 10.

Оператор пульта 5 получает звуковой сигнал от сигнализатора 6, информацию по персональным данным, дозе и месте присутствия пользователя по показаниям датчиков 3 с монитора 17, связывается с пользователем, используя переговорные модули 15 пульта и 12 блока 7. После переговоров с пользователем квитирует звуковые сигналы блока 6 сигнализации и сигнализатора 14 с помощью кнопки клавиатуры 16 пульта.

На элементе оборудования, контролируемого датчиками 2, с выявленным повышенным уровнем радиации установлены дополнительные локальные блоки 18 контроля. Блок 18, устанавливаемый непосредственно в зоне вблизи максимального уровня излучения, имеющий свой идентификатор 19 (для привязки к месту установки), передает информацию от своего датчика 20 излучений в контроллер 1 пульта и на информационное табло 21 своего блока. При этом светозвуковой сигнализатор 22 блока постоянно подает прерывистые предупредительные световые сигналы желтого цвета, например, от светодиода, установленного на лицевой панели блока 18.

При превышении допустимых уровней радиации, контролируемых датчиками 2 и/или датчиками 20 блоков 18, от контроллера 1 в блоки 7 пользователей, находящихся в опасном помещении, передается информация на табло 10 с сопровождением звуковыми сигналами от блока 6 сигнализации и светозвуковых сигнализаторов 14 и 22. Звуковые сигналы от сигнализаторов 6 и 14 квитируются кнопками клавиатуры 16 пульта и блока 7 оператором и пользователем, соответственно, а светозвуковые сигнализаторы 22 блоков 18 светят постоянным красным цветом в сопровождении прерывистого звука заданной громкости для предупреждения персонала.

Информация о контролируемых параметрах через заданные промежутки времени и в моменты превышения допустимых значений фиксируется в долговременной памяти контроллера 1.

Оператор пульта 5 контролирует общее состояние объекта и окружающей среды по выводимым на монитор 17 параметрам, величины доз, получаемых персоналом (пользователями блоков 7 дозиметрии), а также имеет возможность с помощью клавиатуры 16 вызвать на экран текущие контролируемые параметры и параметры из долговременной памяти контроллера 1. При этом информация, запрашиваемая с помощью клавиатуры 16, может быть представлена на экране монитора 17 в виде отдельных кадров по дозам, полученным пользователями, по присутствию персонала и уровню радиации оборудования, расположенного в помещениях и вне их, по контролируемым параметрам окружающей среды с датчиков 4 и т.д. Параметры могут представляться в виде графиков по показаниям отдельных датчиков во времени для выявления тенденций к возрастанию уровня радиации, а также в обобщенном виде.

В долговременной памяти контроллера 1 хранятся персональные данные и ранее полученные дозы пользователей, что позволяет обеспечить допуск к работе персонала с учетом ранее полученных доз радиации.

Связь оператора с каждым пользователем (или пользователя с оператором по звуковому сигналу вызова с блока 6 пульта) осуществляется через переговорные модули 15 и 12, встроенные в пульт 5 и блоки 7, что важно в случае угрозы превышения допустимых доз или при возникновении условий, недопустимых для нахождения персонала в контролируемых зонах.

Устройство для обнаружения радиоактивности технологического оборудования и дозиметрического контроля обслуживающего персонала, содержащее контроллер, датчики измерений излучений от элементов контролируемого оборудования, датчики присутствия персонала, датчики радиационного контроля окружающей среды, при этом каждый из упомянутых датчиков подключен к соответствующему входу контроллера, также содержит пульт информации и управления и блок сигнализации, также подключенный к выходу контроллера, отличающееся тем, что содержит вновь введенные персональные переносные блоки дозиметрии, информации и связи, каждый из которых имеет встроенные идентификатор, дозиметр, информационное табло, звуковой сигнализатор, переговорный модуль пользователя, причем перечисленные элементы персональных блоков связаны через адресуемый преобразователь интерфейсов каждого блока и магистральный интерфейс устройства с упомянутым контроллером, который вместе с упомянутым блоком сигнализации встроен в пульт и непосредственно связан с дополнительно введенными в схему пульта переговорным модулем оператора, клавиатурой и монитором, а также содержит дополнительные локальные блоки контроля отдельных элементов оборудования с повышенным уровнем радиации, каждый из которых имеет встроенные идентификатор, датчик измерения излучений, информационное табло, светозвуковой сигнализатор, причем перечисленные элементы локальных блоков контроля связаны через адресуемый преобразователь интерфейсов каждого блока и магистральный интерфейс устройства с встроенным в пульт контроллером.



 

Похожие патенты:

Изобретение относится к сцинтилляционному составу на основе граната для применения при обнаружении ионизирующего излучения, который может быть использован для обнаружения гамма-квантов в ПЭТ-визуализации.

Изобретение может быть использовано при изготовлении сцинтилляционных материалов для томографов. Порошок для производства сцинтилляционного материала помещают в форму и сжимают одноосным или изостатическим сжатием.

Изобретение может быть использовано для обнаружении гамма-фотонов, а также в медицинских устройствах, содержащих детекторы гамма-фотонов, например в системах визуализации позитронно-эмиссионной томографии (ПЭТ).

Изобретение относится к области реакторных измерений и может быть использовано в системах контроля ядерных реакторов. Для повышения точности калибровки счетного канала реактиметра и расширения функциональных возможностей способа детектор нейтронов подключают к счетному и токовому каналам реактиметра.

Группа изобретений относится к области регистрации уровня продукта в баке-сборнике или бункере. Ядерный уровнемер для измерения уровня продукта в бункере использует множество сцинтилляторов, размещенных последовательным образом.

Группа изобретений относится к области измерительной техники, а именно к радиометрии фотонов, и может быть использована при обнаружении ядерных и радиоактивных материалов на контрольно-пропускных пунктах предприятий, где используются, хранятся или (и) перерабатываются радиоактивные нуклиды.

Группа изобретений относится к способу контроля коэффициента усиления и установки в ноль многопиксельного счетчика фотонов. Способ контроля коэффициента усиления многопиксельного счетчика фотонов содержит этапы, на которых сигналы, генерируемые устройством, принимают в течение заданных периодов, пока не будет достигнуто заданное суммарное время измерений, формируют гистограмму амплитуд на основе принятых сигналов, определяют позиции двух последовательных пиков, измеримых на этой гистограмме, генерируют сигнал ошибки, равный девиации между этими двумя пиками, и на основе этого сигнала ошибки регулируют напряжение, подаваемое на устройство, чтобы поддерживать девиацию, равную заданной величине.

Изобретение относится к способам контроля характеристик порошкообразных сцинтилляторов и люминофоров, полученных одним из известных способов, например, методами со-осаждения, твердофазного синтеза и др., и применяемых в качестве самостоятельного материала.

Изобретение относится к сенсорному устройству для обнаружения сигналов излучения. Для обеспечения высокой целостности сигналов и сохранения способности к четырехсторонней стыковке сенсорное устройство содержит сенсорную матрицу, содержащую множество детекторов, сенсорный элемент для преобразования принятых сигналов излучения в множество соответствующих электрических сигналов, элемент интерпозера, простирающийся поперечно между первой боковой стороной и второй боковой стороной, и элемент интегральной схемы.

Изобретение относится к сцинтилляционным неорганическим оксидным монокристаллам со структурой граната, предназначенным для датчиков ионизирующего излучения в задачах медицинской диагностики, экологического мониторинга, неразрушающего контроля и разведке полезных ископаемых, экспериментальной физике, устройствах для измерения в космосе.

Изобретение относится к аппаратуре, используемой для радиационного контроля технологических процессов. Аппаратура радиационного контроля технологических процессов содержит блок детектирования, соединенный с узлом пороговым, состоящим из входного цифрового счетчика импульсов; генератора тактовой частоты, таймерного цифрового счетчика импульсов, вход которого подсоединен к выходу генератора тактовой частоты, а выход подсоединен ко входу сброса входного цифрового счетчика импульсов; порогового RS-триггера, вход R которого подсоединен к выходу входного цифрового счетчика импульсов и входу сброса таймерного цифрового счетчика импульсов, вход S подсоединен к входу сброса входного цифрового счетчика импульсов и к выходу таймерного цифрового счетчика импульсов, а выход является управляющим выходом порогового блока управления.

Изобретение относится к области гигиены труда и медицины и раскрывает способ проведения радиационного контроля в случае ингаляционного поступления содержащих актиниды радиоактивных аэрозолей в организм персонала.

Изобретение относится к измерению интенсивности альфа-излучения радона с поверхности грунтов и может быть использовано для оценки радоноопасности территорий застройки.

Изобретение относится к области радиационного контроля (РК) и предназначено для поиска (обнаружения и определения местоположения) источников ионизирующих излучений (ИИИ) наземными малогабаритными мобильными комплексами РК в случае радиационных аварий, утери или незаконного обращения с ИИИ и радиоактивными отходами, при проведении радиационного мониторинга территорий.

Изобретение относится к области исследований устройств на герметичность и может быть использовано для контроля герметичности капсул с источником ионизирующего излучения.

Изобретение относится к разделению или сортировке рудных материалов сухим способом, в частности к сухому обогащению алмазосодержащей руды с применением радиационных методов, а именно с измерением вторичной эмиссии характерного ядерного гамма-излучения, возникающего под действием быстрых меченых нейтронов.

Группа изобретений относится к средствам радиохимического нейтронно-активационного анализа (НАА) процессов очистки воздуха (воздушной смеси) от различного рода токсичных примесей фильтрующими и фильтрующе-поглощающими элементами средств защиты органов дыхания и иных устройств очистки воздуха.

Группа изобретений относится к медицинской визуализации, а именно к позитронно-эмиссионной томографии (ПЭТ). Система ПЭТ содержит память, сконфигурированную с возможностью непрерывной записи обнаруживаемых совпадающих пар событий, обнаруживаемых ПЭТ-детекторами, опору субъекта для поддержки субъекта и перемещения в режиме непрерывного движения через поле видения ПЭТ-детекторов, группирующий блок для группировки записанных совпадающих пар в каждый из множества пространственно ограниченных виртуальных кадров на основании времяпролетной информации, при этом обнаруженные события некоторых из обнаруженных совпадающих пар событий расположены в двух разных виртуальных кадрах, и группирующий блок распределяет совпадающую пару событий одному из двух виртуальных кадров, и блок реконструкции сгруппированных совпадающих пар каждого виртуального кадра в изображение кадра и объединения изображений кадров в общее удлиненное изображение.

Изобретение относится к области дозиметрии, а именно к способу осуществления, поиска и обнаружения источников гамма-излучения. Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения дополнительно содержит этапы, на которых определяют источник с максимально активным излучением, проводят замер мощности излучения коллимированным детектором и одновременно определяют расстояние до источника с помощью детекторного лазерного дальномера, при этом оси коллимированного детектора и лазерного дальномера направляют параллельно с разнесением по горизонтали, регистрируют показания лазерного дальномера и значение дозы мощности, фиксируемой детектором, затем на основании этих данных вычисляют мощность дозы излучения реального источника, после чего для проверки адекватности измеренного расстояния до источника излучения перемещают ось нацеливания дальномера на величину разнесения по горизонтали, повторно измеряют и регистрируют расстояние, результаты поочередных измерений расстояния сравнивают и при расхождении в замерах в пределах погрешности лазерного дальномера информацию признают достоверной.

Группа изобретений относится к области формирования рентгеновских изображений в многокадровом режиме. Рентгеновская система содержит источник рентгеновского излучения; детектор изображения; монитор; устройство ввода, выполненное с возможностью предоставления координат, относящихся к рентгеновскому изображению, отображаемому на мониторе; контроллер, соединенный с устройством ввода, причем контроллер выполнен с возможностью определения по меньшей мере одной области исследования (ОИ) на отображаемом изображении на основании координат, предоставленных указанным устройством ввода; коллиматор, выполненный с возможностью подвергать различные зоны пациента различным уровням излучения в соответствии с определенной областью исследования (ОИ); блок обработки изображений, соединенный с детектором и монитором, причем блок обработки изображений выполнен с возможностью обработки изображения, фиксируемого посредством коллиматора, путем коррекции по меньшей мере одной части изображения, находящейся за пределами одной ОИ, в соответствии с ранее полученными данными, содержащими часть изображения, которая находилась в одной бывшей ОИ, используя функцию коррекции тона.

Изобретение относится к технологии получения сцинтилляционного кристаллического материала для детекторов излучения, используемых для приборов позитронно-эмиссионной томографии (ПЭТ), рентгеновской компьютерной томографии (КТ), различных радиметров в области физики высоких энергий, ресурсодобывающих приборов. Кристаллический материал представлен общей химической формулой (RExA1-x-y-sByM's)2+α(Si1-t,M''t)2+βO7+γ, имеет структуру типа пирохлора, обладает нестехиометрическим составом и представляет собой конгруэнтно плавящийся состав. В химической формуле A содержит по меньшей мере один или более, выбранных из Gd, Y, La, Sc, Yb и Lu; B содержит по меньшей мере один или более, выбранных из La, Gd, Yb, Lu, Y и Sc; 0,1 < y < 0,4; RE содержит по меньшей мере один или более, выбранных из Ce, Pr, Nd, Eu, Tb и Yb; 0 < x < 0,1; M' и M'' содержат по меньшей мере один или более, выбранных из Li, Na, K, Mg, Ca, Sr, Ba, Ti, Zr, Hf, Fe, Ta и W; 0 ≤ s < 0,01 и 0 ≤ t < 0,01; и 0 < |α| < 0,3, и 0 ≤ |β| < 0,3, и 0 ≤ |γ| < 0,5. Полученный материал имеет высококачественное прозрачное объемное тело, обладает большой величиной свечения и коротким временем жизни флюоресценции. 7 н. и 8 з.п. ф-лы, 14 ил., 3 табл.
Наверх