Способ обработки регенерационного криолита

Изобретение может быть использовано при получении фтористых солей, используемых в производстве алюминия электролитическим способом. Обработку регенерационного криолита проводят сульфатом алюминия или хлоридом алюминия при температуре 60-80°C в течение 20-120 минут при поддержании рН 2-4. После этого продукт обезвоживают и сушат. Изобретение позволяет получить смесь криолита и хиолита с низким содержанием натрия без использования плавиковой кислоты и коррозионно-стойкого оборудования. Снижение содержания натрия в регенерируемых фтористых солях позволяет вернуть в производство большее количество солей. 1 ил., 3 табл., 1 пр.

 

Изобретение относится к химической технологии производства фтористых солей, используемых при производстве алюминия электролитическим способом.

При производстве алюминия фтористые соли являются средой в которой осуществляется процесс электрохимического восстановления оксида алюминия. Фтористые соли в конечную продукцию (металлический алюминий) не переходят, они распределяются между выбросами в виде газов и твердыми отходами. Потери фторсолей восполняются дорогостоящими фтористым алюминием и синтетическим криолитом. По экономическим и экологическим соображениям осуществляется регенерация фтористых солей из отходящих газов и твердых отходов.

Алюминиевые заводы регенерируют из отходящих газов фтор в виде высокомодульного криолита (3NaF⋅AlF3) с содержанием натрия 30-32%. В связи с использованием в технологии производства алюминия кислых электролитов (снижение криолитового отношения в электролите с 2,8 до 2,4) произошло изменение в балансе потребления фтористых солей. В этих условиях часть фтористых солей с высоким содержанием натрия становится избыточными при производстве алюминия и не находит применения в других отраслях народного хозяйства. Снижение содержания натрия в регенерируемых фтористых солях позволяет вернуть в производство большее количество солей при сохранении баланса по натрию.

Таким образом, задача снижения содержания натрия в регенерируемых фтористых солях является актуальной.

Известен способ получения криолита (АС СССР 929561, МПК C01F 7/54, опубл. 23.05.1982 г.) путем обработки фторсодержащего раствора газоочистки раствором фторалюминиевой кислоты при повышенной температуре, что позволяет получить криолит достаточно высокого качества.

Общими признаками с заявляемым способом является возможность получения криолита высокого качества. Недостатком способа является сложность приготовления фторалюминиевой кислоты с использованием агрессивной плавиковой кислоты. Способ не нашел промышленного применения.

Известен способ получения криолита (АС СССР 415955, МПК C01F 7/54, опубл. 05.03.1979 г.) из фторсодержащих содобикарбонатных растворов газоочистных сооружений путем осаждения раствором алюмината натрия при повышенной температуре, в котором процесс ведут при избытке фторида на 10-50% относительно стехиометрического количества. Недостаток известного способа - высокое содержание натрия (30-32%) в криолите.

Известен способ получения криолита (фактически смеси криолита и хиолита) (Патент SU 1801101 A3, МПК C01F 7/54, опубл. 07.03.1993 г.), в котором криолит, полученный из растворов газоочистки, с целью повышения качества, дополнительно обрабатывается раствором фторалюминий содержащего реагента. Фторалюминиевый реагент готовится из гидроокиси алюминия и плавиковой кислоты. Недостатком способа является использование привозной очень агрессивной плавиковой кислоты, что значительно удорожает процесс за счет применения коррозионно-стойкого оборудования и цены на плавиковую кислоту. Данный способ принят за прототип как наиболее близкий к предлагаемому техническому решению.

Задачей предлагаемого технического решения является повышение технико-экономических показателей регенерации фтористых солей при производстве алюминия, повышение качества и потребительских свойств получаемого продукта, за счет снижения в нем содержания натрия.

Техническим результатом является получение востребованного фторсодержащего продукта с пониженным содержанием натрия.

Технический результат достигается тем, в способе обработки регенерационного криолита раствором реагента, при том что в качестве реагента используют сульфат алюминия или хлорид алюминия, обработку криолита осуществляют при температуре 60-80°C в течение 20-120 минут при поддержании рН 2-4, после чего проводят обезвоживание и сушку продукта.

Сравнительный анализ предлагаемого технического решения с решением, выбранным в качестве ближайшего аналога, показывает следующее. Известное решение и предлагаемое характеризуется сходными общими признаками:

- способ обработки криолита с целью повышения его качества и потребительских свойств;

в качестве исходного продукта используется криолит, регенерируемый из газов и других отходов производства алюминия;

- криолит смешивается с реагентами и подвергается гидрохимической обработке;

- в качестве основного продукта получают смесь солей фтора (криолита и хиолита) с криолитовым отношением 1,9-2,4, то есть содержанием натрия 20-23%.

Предлагаемое решение так же характеризуется признаками, отличительными от признаков, характеризующих решение по ближайшему аналогу:

- в известном решении реагент готовится из дорогой плавиковой кислоты, требующей применения коррозионно-стойкого оборудования, в предлагаемом решении используется реагент, не содержащий дополнительно дорогих соединений фтора, и поставляется в виде твердого продукта, предпочтительно сульфата алюминия;

- в известном решении весь натрий остается в криолите, то есть происходит увеличение объема производимой продукции за счет перехода во фтористые соли фтора и алюминия при снижении удельного содержания натрия в продукции, что снижает возможности потребления, в предлагаемом решении натрий выводится в виде сульфата натрия и утилизируется в виде товарного продукта в схеме переработки растворов газоочистки.

Наличие в предложенном решении признаков, отличительных от признаков характеризующих решение, принятое в качестве прототипа, позволяет сделать вывод о соответствии предлагаемого технического решения условию патентоспособности «новизна». Сравнение предлагаемого технического решения с другими известными решениями в данной области показывает следующее.

Не выявлено в результате поиска и сравнительного анализа технических решений, характеризующихся аналогичной с предлагаемым решением совокупностью признаков, обеспечивающих при использовании аналогичных результатов, что позволяет сделать вывод о соответствии предлагаемого технического решения условию патентоспособности «изобретательский уровень».

Техническая сущность предлагаемого решения заключается в следующем.

В настоящее время, в связи с переходом технологии получения алюминия электролитическим способом на кислые электролиты, снизилась потребность в высокомодульном криолите, регенирируемом из газов и содержащем 30-32% натрия. Часть производимого криолита стала избыточной, несмотря на высокое содержание фтора 43-50%. Решение данной проблемы возможно при снижении содержания натрия в производимых фтористых солях, что возможно при снижении криолитового отношения. Криолитовое отношение это мольное отношение фтористого натрия к фтористому алюминию. При перекристаллизации криолита (Na3AlF6 или 3NaF⋅AlF3) в хиолит (Na5Al3F14 или 5NaF⋅3AlF3) происходит снижение криолитового отношения, то есть снижается содержание натрия. Разработка параметров перекристаллизации является сущностью настоящего технического решения.

Известен способ получения низкокомодульного криолита путем обработки высокомодульного криолита раствором фторалюминийсодержащего реагента (патент SU 1801101 А3, АС SU 888448 А). Недостаток - использование привозной концентрированной плавиковой кислоты, а также практическое сохранение всего натрия в криолите, то есть увеличение объема производимой продукции при снижении удельного содержания натрия в криолите.

Целью настоящего изобретения является обработка высокомодульного криолита таким способом, чтобы натрий выводился из процесса в виде растворимых соединений.

Другой целью является использование реагентов, которые могут быть получены непосредственно на алюминиевом заводе или завезены в виде сухих солей.

Способ осуществляется следующим способом.

Фтористые соли с пониженным содержанием натрия получают из криолита, регенерированного из газов, либо полученного другим способом и имеющим криолитовое отношение около 3,0 и содержащего 30-32% натрия. Технология включает приготовление реагента - раствора солей алюминия, предпочтительно сульфата алюминия, обработку криолита с высоким содержанием натрия раствором реагента, обезвоживание и сушку. Реагент подают в количестве, необходимом на связывание части натрия в сульфат натрия в соответствии со стехиометрией реакции (1), предпочтительно на 10-20% превышающем стехиометрическое. Процесс осуществляется при температуре 60-80°C в течение 20-120 минут при рН 2-4. Раствор после разделения фаз, содержащий соединения алюминия, фтора и сульфаты направляется в схему получения высокомодульного криолита. Обработка высокомодульного криолита раствором солей алюминия необходима для осуществления реакций:

Возможно, также использование других солей алюминия, но это нецелесообразно по экологическим и технологическим соображениям. Использование раствора хлористого алюминия также нецелесообразно, так как этот реагент в твердом виде не выпускается, а его приготовление на месте связано с изготовлением сложной схемы, хранилищем кислоты и т.п. Сульфат алюминия выпускается в виде твердого коагулянта Al2(SO4)3⋅18H2O и приготовление раствора осуществляется в стандартных условиях. Для более полного удаления сульфатов после обезвоживания осуществляется отмывка фтористых солей от сульфатов.

Пример. Заявленный способ получения фтористых солей повышенного качества испытан в лабораторных условиях. Пробу 100 грамм регенерационного криолита имеющую состав, мас. %: F - 46,15; Na - 31,5; Al - 12,6; SO4 - 3,2; Са - 0,6; Fe - 0,2; прочие - 5,75 в течение 2 часов при температуре 80°C и Ж:Т=4:1 обрабатывали раствором сульфата алюминия с концентрацией 55 г/л при РН 3,1. Полученный осадок после фильтрации репульпировали в воде при температуре 80°C в течение 15 минут с целью отмывки от сульфатов. После фильтрации и сушки получено 91% осадка следующего состава, мас. %: F - 48,2; Na - 21,4; Al - 18,4; SO4 - 1,9; Са - 0,65; Fe - 0,25; прочие - 9,2. Результаты экспериментальных данных представлены в табл. 1

Как видно из приведенных данных процесс обработки криолита раствором сернокислого алюминия эффективен при рН от 2 до 4. По результатам лабораторных исследований проведены промышленные испытания. Опытно-промышленные испытания проводились в отделении фтористых солей алюминиевого завода. Принципиальна схема процесса приведена на чертеже.

Общая продолжительность процесса обработки составила порядка 2 часов. В табл. 2 приведены данные по химическому составу исходного и конечного продукта испытаний. Дифрактометрический анализ показал, что криолитовое отношение исходного регенерационного криолита снизилось с 3,0 до 1,78, основные фазы хиолит и криолит.

Дисперсный анализ исходного и конечного продуктов выявил некоторое снижение средней крупности кристаллов с 47,9 до 32,3 мкм (табл. 3).

Проведенные опытно-промышленные испытания показали промышленную применимость способа.

По сравнению с прототипом предлагаемый способ позволяет отказаться от использования дорогостоящей плавиковой кислоты и коррозионно-стойкого оборудования, упростить процесс. Получение смеси фтористых солей (криолита и хиолита) с содержанием натрия на уровне 20-23% расширяет возможности использования регенерируемых фтористых солей при производстве алюминия и заменить часть дорогостоящего фтористого алюминия.

Способ обработки регенерационного криолита раствором реагента, отличающийся тем, что в качестве реагента используют сульфат алюминия или хлорид алюминия, обработку криолита осуществляют при температуре 60-80°C в течение 20-120 минут при поддержании рН 2-4, после чего проводят обезвоживание и сушку продукта.



 

Похожие патенты:

Изобретение относится к способу и устройству для футеровки катодного устройства электролизера для получения алюминия. Способ включает укладку материалов одновременно с его распределением по поверхности цоколя и выравниванием по уровню, отсчитываемому от плоскости верхнего края кожуха катодного устройства электролизера путем последовательного перемещения устройства для инсталляции неформованных футеровочных материалов вдоль продольной оси катода алюминиевого электролизера.
Изобретение относится к способу выравнивания подошвы анода алюминиевого электролизера. Способ включает подачу под анод глинозема под давлением 1-2 атм, при этом первую подачу глинозема осуществляют через 2-4 часа после установки нового анода в электролизер, дальнейшие подачи глинозема осуществляют в течение последующих 16-18 часов с периодичностью 6-8 часов, по истечении которых подачу глинозема под анод до его полного износа осуществляют с периодичностью один раз в течение 1-2 суток.

Изобретение относится к производству алюминия в электролизерах с обожженными анодами. Способ включает подачу воздушно-глиноземной смеси в течение 5÷60 с под углом от 3 до 10° по отношению к аноду при соотношении глинозема и сжатого воздуха 1:0,1÷0,15.

Изобретение относится к электролизерам для получения алюминия. Электролизер включает размещенный в анодном кожухе самоспекающийся анод, токоподводящие штыри и систему газоотсоса, при этом самоспекающийся анод на границе между коксопековой композицией и зоной полукокса разделен горизонтальной перегородкой, размещенной на высоте от нижней кромки анодного кожуха, равной 0,7÷0,8 от его высоты, и оборудованной вертикальными ячейками с образованием анодных блоков, удерживаемых от падения в расплав токопроводящими штырями, при этом ячейки выполнены длиной, равной 0,1÷0,2 длины анодного кожуха, и шириной, равной 0,45÷0,495 ширины анодного кожуха, и размещены с зазором между ними для обеспечения движения образующихся анодных газов в систему газоотсоса.

Изобретение относится к цветной металлургии, в частности к процессу пиления пазов в обожженных углеродных анодах, используемых при электролитическом получении алюминия, а именно к устройству с режущими сегментами и способу обработки обожженных углеродных анодов Режущие сегменты поочередно с левым и правым исполнением располагаются на дисках пилы на одинаковом расстоянии между собой.

Изобретение относится к способу и устройству для определения состава электролита на основе дифференциально-термических измерений для управления процессом электролиза алюминия.

Изобретение относится к способу получения алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку оксидно-солевой смеси, содержащей криолит, оксид алюминия, фториды алюминия, кальция и магния, а также металлический алюминий, в период запуска электролизера и ведение электролиза в расплаве электролита после периода запуска, при этом загруженная оксидно-солевая смесь содержит (мас.%): фторид магния (MgF2) – до 1.5, фторид кальция (CaF2) – 6.0-10.0, фторид алюминия (AlF3) – до 8.0, оксид алюминия (Al2O3) – до 4.0, криолит (Na3AlF6) остальное, а после периода запуска электролизера в него загружают корректирующие солевые добавки: фторид калия (KF) - до 5 мас.%, фторид алюминия (AlF3) - до 10 мас.%, фторид лития (LiF) - до 3 мас.% от массы загруженной в электролизер оксидно-солевой смеси.

Предлагаемое изобретение относится к электролитическому производству алюминия в электролизерах с предварительно обожженными анодами и может быть использовано в период ввода электролизера в эксплуатацию и при выводе электролизера из эксплуатации.

Настоящее изобретение относится к электролизеру для получения алюминия (варианты) и способу защиты боковой стенки электролизера для получения алюминия от воздействия электролита.
Изобретение относится к способу горячего ремонта локальных разрушений подины алюминиевого электролизера при электролитическом получении алюминия. Способ включает определение участка разрушения углеродистой подины, приготовление ремонтной смеси, заливку ремонтной смеси расплавленным алюминием с получением ремонтной массы, доставку ремонтной массы к месту разрушения, заполнение участка разрушения ремонтной массой, при этом в качестве ремонтной смеси используют неформованный оксид магния с композиционным покрытием на основе диборида титана.

Изобретение относится к цветной металлургии. Осуществляют измельчение до 1 мм отходов теплоизоляционной части алюминиевого электролизера, содержащих фтор, алюминий, натрий и кремний.

Изобретение относится к получению алюминия и может быть использовано в цветной металлургии. Способ переработки отработанной углеродсодержащей футеровки алюминиевого электролизера включает измельчение футеровки, выщелачивание водным раствором каустической соды, разделение жидкой и твердой фаз пульпы, обработку раствора с выделением фтористого продукта.

Изобретение относится к цветной металлургии, в частности к переработке фторуглеродсодержащих отходов электролитического производства алюминия. .
Изобретение относится к области получения неорганических коагулянтов на основе соединений железа и алюминия. .

Изобретение относится к области цветной металлургии, в частности к способу очистки регенерационного криолита от соединений серы при электролитическом получении алюминия.
Изобретение относится к области неорганической химии и может быть использовано в производстве фтористых солей, в частности при получении криолита, используемого в процессе электролитического получения алюминия.

Изобретение относится к области химико-металлургической переработки рудного сырья, содержащего алюминий, с получением технических соединений алюминия, в частности криолита (Na 3AlF6).
Изобретение относится к способам очистки регенерационного криолита от сульфата натрия. .

Изобретение относится к области пылеулавливания и очистки газов в цветной металлургии, в частности в производстве алюминия, и может быть использовано в процессе приготовления содового раствора, используемого для абсорбции фторсодержащих газов электролиза.

Изобретение может быть использовано при получении фтористых солей, используемых в производстве алюминия электролитическим способом. Обработку регенерационного криолита проводят сульфатом алюминия или хлоридом алюминия при температуре 60-80°C в течение 20-120 минут при поддержании рН 2-4. После этого продукт обезвоживают и сушат. Изобретение позволяет получить смесь криолита и хиолита с низким содержанием натрия без использования плавиковой кислоты и коррозионно-стойкого оборудования. Снижение содержания натрия в регенерируемых фтористых солях позволяет вернуть в производство большее количество солей. 1 ил., 3 табл., 1 пр.

Наверх