Способ изготовления импульсного фотодетектора



Способ изготовления импульсного фотодетектора
Способ изготовления импульсного фотодетектора
Способ изготовления импульсного фотодетектора
Способ изготовления импульсного фотодетектора
H01L31/1844 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с

Владельцы патента RU 2676221:

Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ (RU)

Изобретение относится к области разработки и изготовления фоточувствительных полупроводниковых приборов на основе GaAs. Способ изготовления мощного импульсного фотодетектора, работающего в фотовольтаическом режиме (с нулевым напряжением смещения), на основе GaAs включает последовательное выращивание методом жидкофазной эпитаксии на n-GaAs подложке слоя n-AlxGa1-xAs при х=0,10-0,15, слоя i-GaAs, слоя р-GaAs и слоя p-AlxGa1-xAs при х=0,2-0,3 в начале роста и при х=0,09-0,16 в приповерхностной области слоя. Изобретение обеспечивает возможность создания импульсного фотодетектора на основе GaAs, работающего в фотовольтаическом режиме (без смещения), с уменьшенной емкостью, повышенными быстродействием и фоточувствительностью, и тем самым увеличения кпд преобразования импульсов мощного лазерного излучения, модулированного в гигагерцовом диапазоне частот. 4 з.п. ф-лы, 4 ил., 2 пр.

 

Настоящее изобретение относится к области разработки и изготовления фоточувствительных полупроводниковых приборов на основе GaAs, в частности, к импульсным полупроводниковым сверхвысокочастотным (СВЧ) фотодетекторам (ФД), работающим в фотовольтаическом режиме (без смещения).

Разработкой СВЧ ФД для аналоговой оптоволоконной связи наиболее активно занимаются последние 20 лет научные коллективы из США, Японии и Тайваня. Одной из используемых и востребованных конструкций СВЧ ФД является p-i-n-структура с транспортом носителей одного заряда, как правило, электронами. Однако, для того, чтобы фотодетектор работал при нулевом смещении и удовлетворял требованию сохранения быстродействия при преобразовании импульсного мощного лазерного излучения, необходима дальнейшая оптимизация его конструкции.

Известен способ изготовления фотодетектора (см. патент US 7259439, МПК H01L 31/00, опубликован 21.08.2007), включающий последовательное формирование методом газофазной эпитаксии из металлорганических соединений (МОСГФЭ) на полуизолирующей подложке GaAs (с вытравленным микрорельефом по высоте подложки для исключения паразитной канализации излучения) слоя n-GaAs толщиной 0,5-2 мкм, слоя i-GaAs толщиной 0,5-5 мкм, слоя p-GaAs толщиной 0,005-0,002 мкм, создания омических контактов на лицевой поверхности ФД к n- и р-областям прибора поочередно и нанесения антиотражающего покрытия.

Недостатком известного способа является большое количество технологических операций, включающих предварительное прецизионное травление подложки для создания микрорельефа по высоте, формирование маски для селективного роста эпитаксиальных слоев с заданным рисунком, создание масок для осаждения контактов на лицевой стороне ФД поочередно к n- и p-областям прибора и другие. При осуществлении известного способа необходимо использовать токсичные газы (в частности арсин, фосфин и металлорганические соединения), особо чистые химические вещества, а также применять сложное и дорогостоящее оборудование.

Известен способ изготовления фотодетектора (см. заявка US 20050014321, МПК H01L 021/8238, опубликована 20.01.2005), включающий последовательное формирование методом МОСГФЭ на подложке GaAs буферного слоя GaAs толщиной 0,5 мкм, стоп-слоя AlxGa1-xAs с х>0,5 толщиной 1 мкм, поглощающего свет слоя GaAs толщиной 2 мкм, слоя широкозонного окна AlxGa1-xAs с х>0,3 толщиной 1 мкм, нанесения антиотражающего покрытия SiNx и слоя SiO2, которым выращенная структура присоединяется к стеклу методом сплавления при температуре 500-700°С, после этого удаляют подложку и стоп-слой, и формируют контакты.

Недостатком известного способа является технологически сложные операции удаления подложки, а также наличие операции сплавления структуры ФД к стеклу при температурах 500-700°С, что возможно влияет на перераспределение примесей в полученной структуре. При этом применяют дорогостоящий метод МОСГФЭ с использованием токсичных веществ.

Известен способ изготовления полупроводниковой p-i-n-структуры на основе соединений GaAs-AlGaAs методом жидкостной эпитаксии (см. патент РФ 2488911, МПК H01L 21/208, опубликован 27.07.2013), включающий последовательное выращивание в графитовой кассете прокачного типа на подложке p+-GaAs, легированной Zn, многослойной р-p-i-n-n+-структуры, состоящей из буферного p-слоя толщиной 5-25 мкм, слоев p-i-n-структуры толщиной до 90 мкм и контактного n+-слоя, при этом компонентные составы растворов-расплавов формируют в обезвоженной атмосфере путем предварительного введения в исходную шихту двух дополнительных твердых компонентов, представляющих собой диоксид кремния SiO2 и оксид галлия(III) с последующим нагревом этой многокомпонентной шихты до температуры начала эпитаксии и выдержкой при этой температуре заранее установленное время.

Недостатком известного способа является использование подложи GaAs p+-типа проводимости, легированной цинком, так как при температурах процесса 940-835°С коэффициент диффузии Zn достаточно высокий, следовательно, возникает необходимость выращивания достаточно толстого буферного слоя толщиной до 25 мкм, чтобы снизить вероятность загрязнения чистых слоев данной примесью. Другим недостатком известного способа является необходимость выращивания достаточно толстого (до 90 мкм) p-i-n-слоя, что приводит к снижению фоточувствительности. Кроме того, p-i-n-фотодиоды, полученные данной технологией, как правило, не используют для работы в фотовольтаическом режиме.

Известен способ изготовления импульсного фотодетектора на основе GaAs (см. патент RU 2547004, МПК H01L 31/18, опубликован 10.04.2015), совпадающий с настоящим техническим решением по наибольшему числу существенных признаков и принятый за прототип. Способ-прототип включает последовательное выращивание методом жидкофазной эпитаксии на подложке n-GaAs слоя n-GaAs, легированного оловом или теллуром, слоя n-GaAs, легированного оловом или теллуром, слоя p-GaAs, легированного магнием, и слоя p-AlxGa1-xAs, легированного магнием или германием, при х=0,3-0,4 в начале роста слоя и при х=0,10-0,15 в приповерхностной области слоя. Далее проводят осаждение тыльного контакта термическим вакуумным напылением, отжигают осажденный тыльный контакт в атмосфере водорода, осаждают через маску фоторезиста лицевой контакт термическим вакуумным испарением и отжигают осажденный лицевой контакт в атмосфере водорода, проводят металлизацию лицевого контакта гальваническим осаждением через маску из фоторезиста при одновременном осаждении золота на тыльную поверхность, осуществляют разделительное травление структуры через маску из фоторезиста на отдельные фотопреобразователи и наносят антиотражающее покрытие.

Недостатками способа-прототипа является недостаточно высокие значения квантовой эффективности и параметров быстродействия изготавливаемого прибора, что не позволяет применять такие преобразователи в качестве СВЧ фотодетекторов.

Задачей настоящего изобретения являлось создание такого способа изготовления импульсного фотодетектора на основе GaAs, работающего в фотовольтаическом режиме (без смещения), который бы позволил уменьшить емкость, повысить быстродействие и фоточувствительность фотодетекторов, тем самым увеличить КПД преобразования импульсов мощного лазерного излучения, модулированного в гигагерцовом диапазоне частот.

Поставленная задача решается тем, что способ изготовления импульсного фотодетектора на основе GaAs включает последовательное выращивание методом жидкофазной эпитаксии на подложке n-GaAs слоя n-AlxGa1-xAs при х=0,10-0,15, легированного оловом, слоя i-GaAs, слоя p-GaAs, легированного магнием, с концентрацией магния в расплаве 0,05-0,12 ат. %, и слоя p-AlxGa1-xAs, легированного магнием, с концентрацией магния в расплаве 0,05-0,12 ат. %, при х=0,2-0,3 в начале роста слоя и х=0,09-0,16 в приповерхностной области слоя. Далее проводят осаждение тыльного контакта термическим вакуумным напылением, отжиг осажденного тыльного контакта в атмосфере водорода, осаждение через маску фоторезиста лицевого контакта термическим вакуумным испарением и отжиг осажденного лицевого контакта в атмосфере водорода, металлизацию лицевого контакта гальваническим осаждением через маску из фоторезиста при одновременном осаждении золота на тыльную поверхность, осуществляют разделительное травление структуры через маску из фоторезиста на отдельные фотодетекторы и наносят антиотражающее покрытие.

Новым в настоящем способе является выращивание слоя i-GaAs, слоя тыльного потенциального барьера n-AlxGa1-xAs при х=0,10-0,15, управляемого формирования достаточно тонкого р-n перехода в GaAs толщиной 0,2-0,5 мкм.

Выращивание методом жидкофазной эпитаксии на подложке n-GaAs слоя n-AlxGa1-xAs при х=0,10-0,15, легированного оловом, является барьером для неосновных носителей заряда, таким образом, в данном ФД осуществляется транспорт только электронов, скорость которых на порядок выше, чем дырок, тем самым повышается быстродействие прибора.

Слой n-AlnGa1-xAs может иметь толщину 3-5 мкм.

Легирование магнием слоя p-AlxGa1-xAs, с концентрацией магния в расплаве 0,05-0,12 ат. %, обусловлено тем, что при концентрации магния в расплаве менее 0,05 ат. % уровень легирования слоя будет менее Np=5⋅1018 см-3, а при концентрации магния в расплаве более 0,12 ат. % морфология поверхности выращиваемой структуры ухудшается, а, следовательно, снижается фоточувствительность прибора.

Выбор магния обусловлен относительно малым удельным давлением его паров при температурах процесса 755-600°С и позволяет получать как достаточно тонкий p-n переход с контролируемой толщиной, например, 0,2-0,5 мкм, так и обеспечивает высокий уровень легирования слоев с концентрацией носителей тока Np=5⋅1018-2⋅1019 см-3, что, в свою очередь, дает низкое сопротивление растекания и возможность получения низкоомных контактов.

Изменение содержания AlAs в слое p-AlxGa1-xAs в твердой фазе от х=0,2-0,3 до 0,09-0,16 в процессе роста из одной жидкой фазы обеспечивает как пассивацию поверхности фотоактивного слоя (при х=0,2-0,3), так и возможность получения низкоомных контактов к поверхностному слою за счет высокого уровня легирования Np=5⋅1018-2⋅1019 см-3 структуры (при х=0,09-0,16), а также прозрачность этого слоя для падающего лазерного излучения в диапазоне длин волн 0,81-0,86 мкм, что дает возможность изготавливать фотодетекторы для преобразования импульсов мощного лазерного излучения.

Слой i-GaAs может быть выращен при температуре 710°С в начале роста слоя и при температуре 705°С в конце роста слоя толщиной 1-1,5 мкм с концентрацией примеси (1-5)⋅1016 см-3, что уменьшает емкость и повышает быстродействие фотодетектора.

Слой р-GaAs может быть выращен толщиной 0,2-0,5 мкм при температуре 705°С в начале роста слоя и температуре 700°С в конце роста слоя.

Слой p-AlxGa1-xAs может быть выращен толщиной 5-7 мкм с концентрацией носителей тока Np=5⋅1018-2⋅1019 при температуре 700°С в начале роста слоя и при температуре 600°С в конце роста слоя.

Тыльный контакт может быть получен последовательным напылением слоев: сплава золота с германием Au(Ge) и слоя золота Au. Отжиг осажденного тыльного контакта может быть проведен в атмосфере водорода при температуре 220-250°С.

Лицевой контакт может быть получен последовательным нанесением слоя хрома Cr и слоя золота Au. Отжиг осажденного лицевого контакта может быть проведен в атмосфере водорода при температуре 200-220°С.

Может быть проведена дополнительная металлизация лицевого контакта гальваническим осаждением металла через маску из фоторезиста при одновременном гальваническом осаждении металла на тыльную поверхность.

На лицевую поверхность подложки может быть нанесено антиотражающее покрытие, например, из слоя оксида тантала Ta2O5 для минимизации оптических потерь в диапазоне длин волн 0,81-0,86 мкм.

Ниже приведена последовательность операций настоящего способа:

Настоящий способ поясняется чертежами.

На фиг. 1 приведено поперечное сечение импульсного фотодетектора, изготовленного настоящим способом.

На фиг. 2 представлена спектральная фоточувствительность (SR) фотоактивной части поверхности импульсного фотодетектора (кривая 1) и значения коэффициента отражения (кривая 2) от поверхности ФД при использовании антиотражающего покрытия Та2О5.

На фиг. 3 представлена вольт-амперная характеристика импульсного фотодетектора, изготовленного настоящим способом.

На фиг. 4 показаны формы импульса фотоответа фотодетектора, изготовленного в соответствии с разработанным способом.

Импульсный фотодетектор содержит полупроводниковую подложку 1 из GaAs n-типа проводимости; слой 2 (слой тыльного потенциального барьера) из AlxGa1-xAs n-типа проводимости, слой 3 из i-GaAs, слой 4 из p-GaAs, эпитаксиальный слой 5 из AlxGa1-xAs р-типа проводимости; тыльный омический контакт 6; фронтальный омический контакт 7. На лицевую поверхность структуры нанесено антиотражающее покрытие 8 (из Ta2O5).

Настоящий способ изготовления фотодетектора на основе GaAs обычно проводят в кварцевом проточном реакторе в атмосфере очищенного водорода в графитовой кассете, например, поршневого типа. Подготавливают полупроводниковую подложку 1 из арсенида галлия n-типа проводимости. В качестве металла-растворителя используют галлий. Полупроводниковую подложку 1 приводят в контакт с расплавом. Выращивают посредством техники жидкофазной эпитаксии, слой 2 n-AlxGa1-xAs, легированный оловом, с содержанием AlAs в твердой фазе х=0,10-0,15 толщиной 3-5 мкм предпочтительно при температуре 755°С в начале роста слоя и при температуре 710°С в конце роста слоя. Слой 2 n-AlxGa1-xAs является барьером для неосновных носителей заряда и одновременно буферным слоем. Затем выращивают слой i-GaAs 3, например, толщиной 1-1,5 мкм с концентрацией примеси (1-5)⋅1016 см-3 при начальной температуре роста 710°С и конечной 705°С. Далее из следующего расплава выращивают слой 4 p-GaAs, легированный магнием, предпочтительно толщиной 0,2-0,5 мкм при температуре 705°С в начале роста слоя и при температуре 700°С в конце роста слоя. Из последнего расплава осуществляют рост слоя 5 p-AlGaAs, легированный магнием, толщиной 5-7 мкм с концентрацией носителей тока Np=5⋅1018-2⋅1019 см-3 при начальной температуре роста 700°С и конечной 600°С. Слой p-AlxGa1-xAs с содержанием AlAs в твердой фазе х=0,2-0,3 в начале роста слоя и х=0,09-0,16 в приповерхностной области слоя является одновременно пассивирующим покрытием, играет роль широкозонного окна и контактного слоя. Тыльный контакт 6 можно создавать последовательным напылением, например, слоя из сплава Au(Ge) и слоя Au. Отжиг осажденного тыльного контакта в атмосфере водорода предпочтительно проводить при температуре 220-250°С. Наносят на лицевую поверхность подложки маску из фоторезиста, соответствующую топологии лицевого контакта, через которую термическим вакуумным испарением создают лицевой контакт 7 последовательным нанесением, например, Cr и Au и удаляют фоторезист. Хром улучшает адгезию металлического контакта с полупроводником, золото снижает контактное сопротивление. Отжиг осажденного лицевого контакта в атмосфере водорода предпочтительно проводить при температуре 200-220°С. В случае недостаточной толщины созданных контактов возможно также дополнительно создание маски из фоторезиста посредством взрывной фотолитографии для гальванического осаждения золота с целью увеличения толщины лицевого и одновременно тыльного контактов, а также улучшения их омических свойств. Настоящим способом может быть одновременно изготовлено несколько фотодетекторов. В этом случае дополнительно проводят фотолитографию для создания соответствующего рисунка в маске фоторезиста с целью проведения разделительного травления структуры. На лицевую поверхность подложки можно наносить антиотражающее покрытие 8, например, из оксида тантала Та2О5 для минимизации оптических потерь фотодетектора. Завершающей операцией является резка структуры на отдельные приборы.

Пример 1. Процесс проводили в кварцевом проточном реакторе в атмосфере очищенного водорода в графитовой кассете поршневого типа. Выращивали на монокристаллической подложке арсенида галлия n-типа, методом жидкофазной эпитаксии (ЖФЭ) слой n-AlxGa1-xAs при х=0,1 толщиной 5 мкм, легированный оловом, при начальной температуре 755°С, понижая ее по мере роста слоя до 710°С. Затем из второго расплава выращивали при начальной температуре 710°С и конечной 705°С слой i-GaAs толщиной 1 мкм, из третьего расплава осуществляли рост p-GaAs, легированный магнием, с концентрацией Mg в расплаве 0,05 ат. %, толщиной 0,5 мкм, при начальной температуре роста 705°С и конечной 700°С, и из последнего расплава выращивали при начальной температуре роста 700°С и конечной 620°С слой p-AlxGa1-xAs толщиной 5 мкм, легированный магнием, с концентрацией Mg в расплаве 0,05 ат. %, с содержанием AlAs в твердой фазе х=0,3 в начале роста слоя и х=0,16 в приповерхностной области слоя с концентрацией носителей тока Np=5⋅1018 см-3. Далее осаждали тыльный контакт из сплава золота с германием Au(Ge) и слоя золота Au методом термического вакуумного испарения и отжигали его в атмосфере водорода при температуре 220°С. Создавали маску из фоторезиста посредством фотолитографии для формирования лицевого контакта, осаждали его методом термического вакуумного испарения последовательным нанесением Cr и Au, удаляли фоторезист с помощью техники взрывной фотолитографии и отжигали лицевой контакт в атмосфере водорода при температуре 200°С. Создавали маску из фоторезиста посредством фотолитографии для гальванического осаждения золота на лицевую поверхность и проводили это осаждение. Одновременно проводилось гальваническое осаждение золота на тыльную поверхность. Проводили процесс фотолитографии для создания рисунка в маске фоторезиста с целью разделительного травления структуры на отдельные фотодетекторы и осуществляли само травление. На светочувствительной поверхности структуры осаждали антиотражающее покрытие (Та2О5).

Пример 2. Выращивали на монокристаллической подложке n-GaAs, методом жидкофазной эпитаксии в кварцевом проточном реакторе в атмосфере очищенного водорода в графитовой кассете слой n-AlxGa1-xAs при х=0,15 толщиной 3 мкм, легированный оловом, при начальной температуре 755°С, понижая ее по мере роста слоя до 710°С. Затем из второго расплава выращивали при начальной температуре 710°С и конечной 705°С слой i-GaAs толщиной 1,5 мкм, из третьего расплава осуществляли рост p-GaAs, легированный магнием с концентрацией Mg в расплаве 0,12 ат. %, толщиной 0,2 мкм при начальной температуре роста 705°С и конечной 700°С и из последнего расплава выращивали слой p-AlxGa1-xAs толщиной 7 мкм при начальной температуре 700°С и конечной 600°С, легированный магнием с концентрацией Mg в расплаве 0,12 ат. %, с содержанием AlAs в твердой фазе х=0,2 в начале роста слоя и содержанием AlAs в твердой фазе х=0,09 в приповерхностной области слоя с концентрацией носителей тока Np=2⋅1019 см-3. Далее осаждали тыльный контакт из сплава золота с германием Au(Ge) и слоя золота Au методом термического вакуумного испарения и проводили его отжиг. Создавали маску из фоторезиста посредством фотолитографии для формирования лицевого контакта, осаждали его методом термического вакуумного испарения последовательным нанесением Cr и Au, удаляли фоторезист с помощью техники взрывной фотолитографии и отжигали лицевой контакт. Создавали маску из фоторезиста посредством фотолитографии для гальванического осаждения золота на лицевую поверхность и проводили это осаждение. Одновременно проводилось гальваническое осаждение золота на тыльную поверхность. Проводили процесс фотолитографии для создания рисунка в маске фоторезиста с целью разделительного травления структуры на отдельные приборы и осуществляли само травление. На светочувствительной поверхности структуры осаждали антиотражающее покрытие (из оксида тантала Та2О5).

Были сняты спектральная и вольт-амперная характеристики полученных фотодетекторов (фиг. 2 и фиг. 3). Вольт-амперная характеристика была измерена на образцах с диаметром фоточувствительной поверхности 250 мкм при интенсивности лазерного излучения 104 Вт/см2 (мощности лазерного излучения 58 мВт) при этом фактор заполнения вольт-амперной характеристики составил 81,1% и КПД=54,4%. Достигнуты высокие значения спектральной фоточувствительности (близкие к предельно возможным) и низкие значения коэффициента отражения при использовании антиотражающего покрытия из оксида тантала. Для определения быстродействия прибора возбуждение фотодетектора осуществлялось лазерными импульсами длительностью 10 пс (фиг. 4). В зависимости от мощности лазерного излучения длительность импульсов фотоответа (на уровне 50% от основания) находилась в диапазоне 0,1-0,2 нс. Это подтверждает возможность преобразования данных фотодетекторов импульсов лазерного излучения, модулированного в гигагерцовом диапазоне частот.

Высокие значения рабочих параметров полученных фотодетекторов свидетельствует о том, что заявленный способ позволяет изготавливать высокоэффективные фотодетекторы для преобразования импульсов лазерного излучения.

1. Способ изготовления импульсного фотодетектора на основе GaAs, включающий последовательное выращивание методом жидкофазной эпитаксии на подложке n-GaAs слоя n-AlxGa1-xAs при х=0,10-0,15, легированного оловом, слоя i-GaAs, слоя p-GaAs, легированного магнием, с концентрацией магния в расплаве 0,05-0,12 ат. %, и слоя p-AlxGa1-xAs, легированного магнием, с концентрацией магния в расплаве 0,05-0,12 ат. %, при х=0,2-0,3 в начале роста слоя и х=0,09-0,16 в приповерхностной области слоя, осаждение тыльного контакта термическим вакуумным напылением, отжиг осажденного тыльного контакта в атмосфере водорода, осаждение через маску фоторезиста лицевого контакта термическим вакуумным испарением и отжиг осажденного лицевого контакта в атмосфере водорода, металлизацию лицевого контакта гальваническим осаждением через маску из фоторезиста при одновременном осаждении золота на тыльную поверхность, разделительное травление структуры через маску из фоторезиста на отдельные фотодетекторы и нанесение антиотражающего покрытия.

2. Способ по п. 1, отличающийся тем, что выращивают слой n-AlxGa1-xAs толщиной 3-5 мкм при температуре 755°C в начале роста слоя и при температуре 710°C в конце роста слоя.

3. Способ по п. 1, отличающийся тем, что выращивают слой i-GaAs толщиной 1,0-1,5 мкм с концентрацией фоновой примеси (1-5)⋅1016 см-3 при температуре 710°C в начале роста слоя и при температуре 705°C в конце роста слоя.

4. Способ по п. 1, отличающийся тем, что слой p-GaAs выращивают толщиной 0,2-0,5 мкм при температуре 705°C в начале роста слоя и при температуре 700°C в конце роста слоя.

5. Способ по п. 1, отличающийся тем, что антиотражающее покрытие выполняют из оксида тантала Ta2O5.



 

Похожие патенты:

Изобретение относится к оптоэлектронике и может быть использовано для создания мощного СВЧ фотодетектора на основе эпитаксиальных структур GaAs/AlxGa1-xAs, чувствительных к излучению на длине волны 810-860 нм.

Изобретение относится к солнечной энергетике и может быть использовано для снабжения потребителей электроэнергией и горячей водой. Комбинированная гелиоколлекторная установка содержит корпус с крышкой, прозрачное покрытие, теплоизолирующий слой, защитный кожух.

Изобретение может быть использовано для создания мощных СВЧ фотодетекторов на основе эпитаксиальных структур GaAs/AlxGa1-xAs, чувствительных к излучению на длине волны 810-860 нм.

Изобретение относится к технологиям формирования базовых слоев тонкопленочных фотоэлектрических преобразователей (ФЭП) на основе CdTe. Способ изготовления в квазизамкнутом объеме базовых слоев гибких фотоэлектрических преобразователей на основе CdTe, в котором расстояние от зоны испарения теллурида кадмия до зоны его конденсации соизмеримо с диаметром реактора.

Изобретение относится к кремниевым полупроводниковым технологиям, в частности к кремниевым фотовольтаическим преобразователям, изготовленным по гетероструктурной технологии.

Изобретение относится к технике преобразования световой энергии в электрическую. Оптопара содержит источник света, фотопреобразователь, корпус.

Изобретение относится к устройствам для преобразования электромагнитной энергии в электрическую энергию Устройство преобразователя мощности лазерного излучения «ПМЛИ» для приема падающего электромагнитного излучения на длине волны примерно 1550 нм, содержащее подложку, содержащую InP; и активную область, содержащую n-легированный слой и p-легированный слой, причем эти n-легированный и p-легированный слои образованы из InyGa1-yAsxP1-x, согласованного по параметрам решетки с подложкой и выполненного с возможностью поглощать фотоны электромагнитного излучения с соответствующей длиной волны примерно 1550 нм, где x=0,948, 0,957, 0,965, 0,968, 0,972 или 0,976, а y=0,557, 0,553, 0,549, 0,547, 0,545 или 0,544 соответственно.
Изобретение относится к технике преобразования световой энергии в электрическую. Оптопара содержит источник света, фотопреобразователь и корпус.

Изобретение относится к полупроводниковым фотопреобразователям, которые преобразуют солнечное излучение в электроэнергию, и может быть использовано в полупроводниковой промышленности для создания систем генерации электрической энергии.

Изобретение относится к способам определения ширины запрещенной зоны темновой и фотопроводимости органических полупроводников на основе гетероатомных соединений.

Изобретение относится к оптоэлектронике и может быть использовано для создания мощного СВЧ фотодетектора на основе эпитаксиальных структур GaAs/AlxGa1-xAs, чувствительных к излучению на длине волны 810-860 нм.

Изобретение относится к оптоэлектронике и может быть использовано для создания мощного СВЧ фотодетектора на основе эпитаксиальных структур GaAs/AlxGa1-xAs, чувствительных к излучению на длине волны 810-860 нм.

Изобретение относится к технологии изготовления полупроводниковых двухспектральных гибридизированных сборок и может использоваться для создания матричных фотоприемников (МФП) различного назначения.

Изобретение относится к способу получения органо-неорганического светопоглощающего материала с перовскитоподобной структурой, который может быть использован при изготовлении перовскитных солнечных ячеек.

Изобретение может быть использовано для создания мощных СВЧ фотодетекторов на основе эпитаксиальных структур GaAs/AlxGa1-xAs, чувствительных к излучению на длине волны 810-860 нм.

Изобретение может быть использовано для создания мощных СВЧ фотодетекторов на основе эпитаксиальных структур GaAs/AlxGa1-xAs, чувствительных к излучению на длине волны 810-860 нм.

Изобретение относится к технологиям формирования базовых слоев тонкопленочных фотоэлектрических преобразователей (ФЭП) на основе CdTe. Способ изготовления в квазизамкнутом объеме базовых слоев гибких фотоэлектрических преобразователей на основе CdTe, в котором расстояние от зоны испарения теллурида кадмия до зоны его конденсации соизмеримо с диаметром реактора.

Изобретение относится к технологиям формирования базовых слоев тонкопленочных фотоэлектрических преобразователей (ФЭП) на основе CdTe. Способ изготовления в квазизамкнутом объеме базовых слоев гибких фотоэлектрических преобразователей на основе CdTe, в котором расстояние от зоны испарения теллурида кадмия до зоны его конденсации соизмеримо с диаметром реактора.

Оптоэлектронное устройство (10) содержит первую подложку (12), имеющую первую поверхность (14) и вторую поверхность (16), оптоэлектронное покрытие (17), расположенное поверх второй поверхности (16) и содержащее подстилающий слой (18), расположенный поверх второй поверхности (16), первый проводящий слой (20), расположенный поверх подстилающего слоя (18), верхний слой (22), расположенный поверх первого проводящего слоя (20), полупроводниковый слой (24), расположенный поверх первого проводящего слоя (20), и второй проводящий слой (26), расположенный поверх полупроводникового слоя (24).
Изобретение относится к способам коммутации ячеек фотоэлектрических преобразователей, в частности к способу механического закрепления фотоэлементов и электрического их соединения в батарею.

Использование: для изготовления индиевых микроконтактов в матричных фотоприемниках. Сущность изобретения заключается в том, что способ улучшения адгезии индиевых микроконтактов с помощью ультразвуковой обработки на полупроводниковых пластинах с матрицами БИС считывания или фотодиодными матрицами включает формирование металлического подслоя под индий, формирование защитной фоторезистивной маски с окнами в местах микроконтактов, напыление слоя индия, изготовление индиевых микроконтактов одним из способов: удаление защитной маски со слоем индия вокруг микроконтактов (метод взрыва), формирование маски для травления на слое индия с последующим травлением слоя одним из известных способов (химическое травление, ионное травление) с последующим удалением слоев фоторезиста, при этом после формирования системы микроконтактов проводится обработка пластин в ультразвуковой ванне в течение нескольких минут. Технический результат: обеспечение возможности высокой адгезии индиевых микроконтактов и высокой однородности ее значений в пределах больших массивов. 5 ил.

Изобретение относится к области разработки и изготовления фоточувствительных полупроводниковых приборов на основе GaAs. Способ изготовления мощного импульсного фотодетектора, работающего в фотовольтаическом режиме, на основе GaAs включает последовательное выращивание методом жидкофазной эпитаксии на n-GaAs подложке слоя n-AlxGa1-xAs при х0,10-0,15, слоя i-GaAs, слоя р-GaAs и слоя p-AlxGa1-xAs при х0,2-0,3 в начале роста и при х0,09-0,16 в приповерхностной области слоя. Изобретение обеспечивает возможность создания импульсного фотодетектора на основе GaAs, работающего в фотовольтаическом режиме, с уменьшенной емкостью, повышенными быстродействием и фоточувствительностью, и тем самым увеличения кпд преобразования импульсов мощного лазерного излучения, модулированного в гигагерцовом диапазоне частот. 4 з.п. ф-лы, 4 ил., 2 пр.

Наверх