Нанокомпозиционный биоцидный материал

Изобретение относится к области медицины и народного хозяйства, а именно к нанокомпозиционному биоцидному полимерному материалу, включающему 5-40 мас.% неорганической слоистой глины, модифицированной сополимером полидиаллилдиметиламмонийхлорида и полиметакрилатгуанидина, и 60-95 мас.% матричного полимера, который представляет собой сэвилен с содержанием винилацетатных звеньев 15-30 мас.%. Изобретение обеспечивает повышение биоцидных свойств нанокомпозитного материала и расширение диапазона его применения по отношению к различным микроорганизмам (грамположительным и грамотрицательным бактериям, грибам) при сохранении механических свойств. 3 табл., 1 ил.

 

Настоящее изобретение относится к области получения нанокомпозиционных материалов и более конкретно к получению бактерицидных композиционных материалов и может быть использовано в народном хозяйстве и медицине в качестве бактерицидных дезинфицирующих средств, а также заменителей тяжелых небактерицидных гипсовых шин при переломах и т.д.

Полимеры и сополимеры гуанидина (полигуанидины) получили широкое распространение как биоцидные средства. Они обладают широким спектром действия, способны воздействовать как на аэробные, так и на анаэробные микроорганизмы, нетоксичны, стабильны, могут длительно храниться без утраты биоцидных свойств, биоразлагаемы. Однако изготовление изделий непосредственно из полигуанидинов ограничено ввиду их растворимости или значительного набухания в воде. Кроме того, полигуанидины - полярные полимеры, что затрудняет их равномерное диспергирование в большинство полимеров. Поэтому рациональнее использовать полигуанидины в качестве биоцидных добавок к промышленно выпускаемым полимерам. При этом необходимо обеспечить их совместимость и равномерное распределение в полимерной матрице.

Для решения этой проблемы используют такой прием, как нанесение биоцидных добавок в неорганические носители с получением комплексных нанонаполнителей. В связи с тем, что частицы неорганической глины являются ультрадисперсными, имеют толщину 10-20 нм, с одной стороны, и со способностью неорганических глин к проведению ионно-обменных реакций за счет наличия обменных катионов в межслоевом пространстве, с другой, этот природный материал чрезвычайно интересен для применения в качестве носителя в наноматериалах и нанокомпозитах.

Так, например, известна стабильная дисперсия металлических наночастиц, описанный в заявке US 20090148484 А1, где заряды в промежуточном слое неорганической глины в результате катионно-обменной реакции были замещены на металлические частицы, обладающие предпочтительно сферической структурой, например Au, Ag, Cu и Fe. В качестве неорганической глины нанокомпозит содержит различные типы глин, в том числе монтмориллонит. Катионная емкость неорганической глины составляет 0,1-5,0 мэкв./г.

Недостатком описанного решения является то, что известный состав представляет собой порошок или суспензию, из которой невозможно сформировать композиционный материал. При смешении же его с полимерами полярная глина и неполярная или слабополярная полимерная матрица будут образовывать агрегаты, что приведет к частичной потере свойств материала.

Наиболее близким к предложенному по совокупности существенных признаков и техническому результату (прототипом) являются нанокомпозиционный биоцидный материал, описанный в патенте RU 2424797. Нанокомпозиционный полимерный материал на основе неорганической слоистой глины, модифицированной добавками, в качестве добавок содержит (со)полимеры производных гуанидина и четвертичной аммониевой соли, содержащие группы, способные к реакций радикальной полимеризации, и дополнительно содержит синтетическую гуттаперчу.

При этом достигаются следующие механические свойства: модуль упругости нанокомпозита - 39-62 МПа, предел текучести - 2-3 МПа, прочность - 2.6-6 МПа, деформация при разрыве - 87-286%. При испытании биоцидных свойств таких нанокомпозитов на примере культуры St. Aureus зона гибели составляет 1-6 мм.

Недостатком прототипа является то, что он проявляет биоцидные свойства только по отношению к стафилококку (St. Aureus). Другие недостатки прототипа:

сложный процесс модификации глины гуанидинсодержащим (со)полимером, включающий на первой стадии модификацию глины мономером, а на второй - полимеризацию привитого мономера при введении инициатора полимеризации и этого же или другого гуанидинсодержащего мономера;

использование гуттаперчи, которая не выпускается в отечественной промышленности в настоящее время, что ограничивает сферу применения нанокомпозитного материала и удорожает его получение.

Задачей предложенного изобретения является повышение биоцидных свойств нанокомпозитного материала и расширение диапазона его применения по отношению к различным микроорганизмам (грамположительным и грамотрицательным бактериям, грибам) при сохранении механических свойств, а также упрощении способа его получения при применении промышленно выпускаемого полимера - сэвилена.

Поставленная задача решается тем, что предложен нанокомпозиционный биоцидный полимерный материал на основе неорганической слоистой глины, модифицированной сополимером полидиаллилдиметиламмонийхлорида и полиметакрилатгуанидина, и матричного полимера, который в качестве матричного полимера содержит сэвилен с содержанием винилацетатных звеньев 15-30% мас. при следующем соотношении компонентов, % масс.:

указанный сэвилен 60-95
указанная модифицированная
неорганическая слоистая глина 5-40.

Сэвилен (иначе СЭВА) представляет собой сополимер этилена с винилацетатом, полученный аналогично полиэтилену низкого давления. По сравнению с полиэтиленом сэвилен отличается более высокой адгезией к различным материалам и эластичностью при низких температурах.

Свойства сэвилена зависят, главным образом, от содержания винилацетата (5-30% мас.) С повышением содержания винилацетата кристалличность, разрушающее напряжение при растяжении, твердость, теплостойкость уменьшаются, в то время как плотность, эластичность, прозрачность, адгезия увеличиваются. Введение винилацетатных (ВА) групп в цепь полиэтилена изменяет физические свойства получаемого полимера за счет повышения полярности и снижения степени кристалличности. Введение полярной ВА группы увеличивает адгезию полимера к различным поверхностям, улучшает совместимость с полярными полимерами и пластификаторами. Содержание винилацетатных (ВА) звеньев в значительной степени определяет свойства материала.

Выбор марки сэвилена для полимерной матрицы нанокомпозитов с комплексным наполнителем должен проводиться с учетом следующих требований:

- в полимере наполнитель должен хорошо диспергироваться и равномерно распределяться при смешении в расплаве;

- полимерная матрица не должна снижать биоцидные свойства гуанидинсодержащих полимеров.

Технический результат изобретения - повышение биоцидных свойств нанокомпозитного материала и расширение диапазона его применения по отношению к различным микроорганизмам (грамположительным и грамотрицательным бактериям, грибам) при сохранении механических свойств, упрощение способа его получения, экономичность.

Примеры осуществления изобретения

В микрокомпаундере-экструдере MiniLab HAAKE смешением в расплаве получают композиты с наполнителем (содержание наполнителя - 5% мас.) и сэвиленами производства КазаньОргсинтез марок 113, 117 и 122.

Время смешения - 15 мин, скорость вращения шнеков - 100 об/мин, температура - 160°С.

В табл. 1. приведены характеристики сэвиленов производства КазаньОргсинтез.

В качестве наполнителя используют модифицированную глину, получаемую перемешиванием 6%-ной суспензии монтмориллонита с 10%-ным раствором гуанидинсодержащего сополимера полидиаллилдиметиламмонийхлорида и полиметакрилатгуанидина (сополимера ПДАДМАХ/ПМАГ) в массовом соотношении 15/85 с последующей сушкой смеси.

Распределение наполнителя в сэвиленах различных марок характеризуют по данным рентгеноструктурного анализа. Дифрактограммы композитов в сэвиленах с различным содержанием ВА групп представлена на Фиг. 1. Верхняя линия на дифрактограмме относится к сэвилену 113, средняя - к сэвилену 177, нижняя - к сэвилену 122.

В сэвилене 113 с наименьшим содержанием ВА групп в диапазоне углов дифракции 3-7 град. наблюдаются рефлексы глины. В сэвиленах 117 и 122 рефлексов, относящихся к глине, не наблюдается, что позволяет характеризовать эти композиты, как эксфолиированные. Таким образом, сэвилены с содержанием винилацетатных групп до 14% мас. не пригодны

для получения нанокомпозитных материалов, так как не позволяют осуществить эксфолиирование глины в материале.

Результаты исследования механических свойств нанокомпозитного материала (нанокомпозита) представлены в табл. 2.

Из представленных данных видно, что при содержании наполнителя (модифицированной глины) 40% мас. механические свойства снижаются, хотя предел текучести и деформируемость остается на уровне прототипа. В связи с этим увеличение содержания наполнителя свыше 40% мас. нецелесообразно.

Исследование биоцидных свойств проводят по отношению к культурам стафилококка (Staphylococcus aureus, грамположительный), синегнойной палочки (Pseudomonas aeruginosa, грамотрицательный) и одноклеточным дрожжевым грибам (Candida lipolytica). Исследования проводят по следующей методике.

Сначала из каждой пленки нарезают по 4 образца в форме круга диаметром 1 см, стерилизуют их в стерильном боксе под воздействием жесткого УФ-излучения в течение часа. Культуры выращивают на скошенной агаризованной питательной среде LB в течение трех дней. Жидкую культуру получают в результате смыва культуры пятью мл стерильной жидкой среды LB в агаризованной среде. Полученный смыв добавляют в колбу, в которой содержится 50 мл стерильной среды LB; колбу инкубируют в течение суток при 30°С на качалке 150 об/мин.

На каждый образец наполненного СЭВА готовится по 4 пробирки системы Балч: 3 для культур и одна под холостой опыт (для контроля фоновой окраски). В каждую пробирку добавляют по 2,5 мл жидкой среды LB, после стерилизации пробирок в них стерильно вносят по одному стерильному образцу, далее проводят засев, добавляя в пробирки по 50 мкл культуры соответствующего микроорганизма (в пробирку под холостой опыт культуру не добавляют). После засева образцы инкубируются при 30°С на качалке 150 об/мин в течение суток.

Количественную оценку степени обрастания образцов проводят путем пятнадцатиминутного окрашивания СЭВА с адсорбированными на нем микроорганизмами 1%-ным раствором кристаллического фиолетового и последующим измерением оптической плотности связанного красителя. Проинкубированные образцы отмывают проточной водой от жидкой культуры (или просто среды, в случае холостого опыта), и в те же пробирки добавляют по 1 мл раствора красителя КФ.

По завершении окрашивания образцы в пробирках отмывают от красителя, с помощью пинцета их помещают в специальные планшеты, каждый образец СЭВА заливался 2,0 мл 96% этанола для экстракции связавшегося красителя. Экстракцию проводят в течение 40 минут.

По истечении 40 минут проводят измерение оптической плотности связанного КФ на фотоэлектроколориметре при длине волны 590 нм в стеклянных кюветах с длиной оптического пути 2,5 мм.

Для определения степени обрастания значение оптической плотности раствора связанного КФ образца, засеянного культурой (OD образца), делят на значение оптической плотности холостого опыта (OD сэвилена). Степень стимулирования роста биопленок в образцах с наполнителем оценивают в

процентах относительно роста тех же биопленок в образце СЭВА без добавления полигуанидина по формуле:

Если степень ингибирования роста биопленок на образцах с исследуемыми добавками выше 80%, можно говорить об отсутствии биоцидного эффекта на поверхности материала; для вариантов, где эта величина в диапазоне 10%-80% от контроля, можно говорить о слабом биоцидном эффекте. Материалы, степень ингибирования которых не превышает 10% от контроля, обладают высокими биоцидными свойствами.

Результаты исследований приведены в табл. 3.

Как видно из табл. 3, при содержании биоцидного наполнителя менее 15% мас. в композите на основе сэвилена 117 нанокомпозит проявляет лишь слабые биоцидные свойства по отношению к стафилококку. Только при содержании 15-20% мас. материал проявляет высокие биоцидные свойства

по отношению к стафилококку и слабые (ингибирующие) - по отношению к синегнойной палочке. При содержании наполнителя 30-40% мас. материал проявляет высокие биоцидные свойства по отношению ко всем исследуемым микроорганизмам.

При использовании сэвилена 122 биоцидные свойства наполнителя снижаются слабо: даже при его содержании 5% мас. материал способен ингибировать рост как стафилококка, так и дрожжевых грибов.

Таким образом, предложенный нанокомпозитный материал проявляет биоцидные свойства по отношению ко всем исследуемым микроорганизмам при сохранении достаточно высоких механических свойств.

Нанокомпозиционный биоцидный полимерный материал на основе неорганической слоистой глины, модифицированной сополимером полидиаллилдиметиламмонийхлорида и полиметакрилатгуанидина, и матричного полимера, отличающийся тем, что указанный материал в качестве матричного полимера содержит сэвилен с содержанием винилацетатных звеньев 15-30 мас.% при следующем соотношении компонентов, мас.%:

указанный сэвилен 60-95
указанная модифицированная
неорганическая слоистая глина 5-40



 

Похожие патенты:

Изобретение относится к области биотехнологии, конкретно к получению конъюгатов люминесцентных наночастиц диоксида кремния с антителами, и может быть использовано в диагностике для выявления гиперэкспрессирующегося на поверхности опухолевых клеток рецептора эпидермального фактора роста человека 2 (HER2/neu).

Изобретение относится к области биотехнологии. Предложен способ получения наночастиц золота или серебра, включающий получение бесклеточного фильтрата культуральной жидкости при культивировании Lentinus edodes.

Изобретение относится к области металлургии, в частности к изготовлению разветвленных нанонитей из тугоплавких металлов, которые могут использоваться в высокотемпературных приборах, в электронных устройствах и датчиках, в магнитных записывающих устройствах, в наномеханике, магнитоэлектронике, вакуумной электронике и материаловедении.

Изобретение относится к нанотехнологии и горной промышленности и может быть использовано при проведении буровых работ. Винтовая силовая секция для гидравлических забойных двигателей содержит ротор и статор, содержащий металлический наружный трубчатый элемент и усиленную графеном эластомерную внутреннюю обшивку, включающую графеновые частицы, гомогенно диспергированные в резине.

Изобретение может быть использовано при получении фотокатализаторов различной формы на основе диоксида титана для фотокаталитической очистки воды и воздуха от органических соединений.

Изобретение относится к электронной технике, в частности к полевым эмиссионным элементам, содержащим углеродные нанотрубки, используемые в качестве катодов, а также способу их изготовления.

Изобретение относится к области нанотехнологии и может быть использовано для получения нанокомпозитных материалов для создания источников питания, работающих в экстремальных условиях.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления затвора полевого транзистора с пониженными токами утечек.

Изобретение относится к области электрохимической энергетики, а именно к способу изготовления катализатора для топливных элементов, и может быть использовано для получения биметаллических катализаторов, применяемых в химических источниках тока, в частности, в низкотемпературных топливных элементах.

Изобретение относится к области изготовления микро-наноразмерных пористых структур на поверхности изделий из титана или его сплавов. Способ изготовления микро-наноструктурированного пористого слоя на поверхности внутрикостного имплантата заключается в предварительной подготовке поверхности основы имплантата, изготовленного из титана, включающей механическую полировку титановой основы и очистку поверхности.

Изобретение относится к соединениям формулы I, или его стереомерам, таутомерам или фармацевтически приемлемым солям, где кольцо В и фрагмент NH-C(=X)-NH находятся в транс-конфигурации, и R1, R2, Ra, Rb, Rc, Rd, X, Кольцо В и Кольцо С определены в формуле изобретения.

Изобретение относится к олигонуклеотиду, который может быть использован в медицине, включающему от двух до четырех последовательностей, каждая из которых представлена формулой 5'-X1X2CpGX3X4-3', имеющий длину, составляющую от 17 до 32 нуклеотидов, где CpG является неметилированным без модифицированных фосфатных остовов, где олигонуклеотид включает модифицированный фосфатный остов, включающий тиофосфат стереоизомера Sp-типа на сайте, за исключением частей, представленных формулой 5'-X1X2CpGX3X4-3', где Х1Х2 представляет собой один из АА, AT, GA или GT без модифицированных фосфатных остовов, и где Х3Х4 представляет собой ТТ, AT, АС, ТС или CG без модифицированных фосфатных остовов, и олигонуклеотид включает любую одну из последовательностей, где * означает Sp стереоизомер: Предложен новый CpG олигонуклеотид, обладающий высокой устойчивостью и уменьшенной цитотоксичностью, для выработки интерферона-α.

Изобретение относится к области органической химии, а именно к гетероциклическому соединению формулы IA1a или его фармацевтически приемлемой соли, где n равно 2-8; p равно 1; q равно 0; R1 обозначает водород, и R2 обозначает водород; R4 обозначает водород; и R5 выбран из группы, состоящей из галогена; алкокси, имеющего от 1 до 10 атомов углерода, незамещенного или замещенного фенилом; или где n равно 0; p равно 0; q равно 1; R1 обозначает водород, и R2 обозначает водород; R4 обозначает водород или галоген; и R5 обозначает алкокси, имеющий от 1 до 10 атомов углерода, фенокси или алкокси, имеющий от 1 до 10 атомов углерода, замещенный фенилом.

Изобретение относится к медицине. Для получения тиксотропных супрамолекулярных гидрогелей заданной прочности реализуют алгоритм на основе ранее выявленных зависимостей прочности гелей для различных концентраций хлорида натрия от соотношения концентраций нитрата серебра и L-цистеина для различных концентраций хлорида натрия.

Изобретение относится к биотехнологии. Описано выделенное канинизированное антитело или его антигенсвязывающий фрагмент, которое специфично связывается с Рецептором 1 Программируемой Клеточной Смерти (PD-1), отличающееся тем, что указанное антитело содержит тяжелую цепь собачьего IgG и собачью легкую цепь каппа; отличающуюся тем, что собачья легкая цепь каппа содержит три области, определяющие комплементарность (CDR): CDR 1 легкой цепи (CDRL1), CDR 2 легкой цепи (CDRL2) и CDR 3 легкой цепи (CDRL3); и тяжелая цепь собачьего IgG содержит три CDR тяжелой цепи: CDR 1 тяжелой цепи (CDRH1), CDR 2 тяжелой цепи (CDRH2) и CDR 3 тяжелой цепи (CDRH3); где CDRL1 содержит аминокислотную последовательность SEQ ID NO:20; CDRL2 содержит аминокислотную последовательность SEQ ID NO:22; CDRL3 содержит аминокислотную последовательность SEQ ID NO:24; CDRH1 содержит аминокислотную последовательность SEQ ID NO:14; CDRH2 содержит аминокислотную последовательность SEQ ID NO:16 и CDRH3 содержит аминокислотную последовательность SEQ ID NO:18; где антитело и его антигенсвязывающий фрагмент связываются с собачьим PD-1 и блокируют связывание собачьего PD-1 с собачьим Лигандом 1 Программируемой Клеточной Смерти (PD-L1).

Изобретение относится к области химии, а именно к способу получения N-(2,3-диметил-1Н-индол-7-ил)-2,2,2-трифторацетамида и N-(1,2,3-триметил-1Н-индол-7-ил)-2,2,2-трифторацетамида, которые могут найти применение для получения лекарственных препаратов, обладающих противомикробным действием.

Группа изобретений относится к технологии создания лекарственного средства в форме ректальных свечей на основе интерферона для лечения инфекционно-воспалительных заболеваний.

Изобретение относится к соединению, имеющему структуру формулы (II), или его фармацевтически приемлемой соли, которые обладают свойством ингибирования ферментов гистондеацетилаз (HDAC).

Изобретение относится к медицине и касается средства для местного применения, обладающего биоцидным действием, содержащего пептид H2N-His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly-COOH и вспомогательные вещества.

Изобретение относится к медицине, в частности к антимикробной композиции эвтектического типа. Композиция содержит бинарную эвтектическую комбинацию, отвечающую составу двойной эвтектики ±2% мол., выбранную из: Сульфадимезин : Триметоприм 51:49% мол.; Сульфагуанидин : Триметоприм 56:44% мол.; Сульфадимезин : Нифуратель 44:56% мол.; Сульфален : Нифуратель 52:48% мол.; Сульфаметоксипиридазин : Нифуратель 44:56% мол.; Левофлоксацин : Сульфадимезин 42:58% мол.; Левомицетин : Триметоприм 57:43% мол.; Левофлоксацин : Триметоприм 57:43% мол.; Левомицетин : Сульфацедамид 52:48% мол.

Группа изобретений относится к области фармацевтики и ветеринарии, а именно к комбинации для местного нанесения на кожу, которая представляет собой биоадгезивный гель и содержит: i) 1-5 % мас.

Изобретение относится к области медицины и народного хозяйства, а именно к нанокомпозиционному биоцидному полимерному материалу, включающему 5-40 мас. неорганической слоистой глины, модифицированной сополимером полидиаллилдиметиламмонийхлорида и полиметакрилатгуанидина, и 60-95 мас. матричного полимера, который представляет собой сэвилен с содержанием винилацетатных звеньев 15-30 мас.. Изобретение обеспечивает повышение биоцидных свойств нанокомпозитного материала и расширение диапазона его применения по отношению к различным микроорганизмам при сохранении механических свойств. 3 табл., 1 ил.

Наверх