Патенты автора Козлов Александр Николаевич (RU)

Использование: в области электротехники. Технический результат – повышение коэффициента мощности, потребляемой от сборных шин ГРУ электродвигателями собственных нужд (с.н.), снижение максимальных значений токов всех потребителей с.н. и обеспечение их бесперебойного электроснабжения. Система электроснабжения собственных нужд (СЭ с.н.) предназначена для использования на тех электрических станциях (ЭС) и подстанциях различного назначения, в которых для электропривода машин и механизмов вспомогательного оборудования устанавливаются двигатели новых разновидностей с регулируемой скоростью, которые начинают применяться взамен асинхронных короткозамкнутых и синхронных двигателей, подключавшихся к СЭ с.н. непосредственно, в том числе и двигатели, которые должны получать питание от источников постоянного тока. СЭ с.н., получающая питание от сборных шин главного распределительного устройства (ГРУ) ЭС, к которому подключены генераторы ЭС и трансформаторы, связывающие ГРУ с распределительным устройством высшего напряжения ЭС, содержит распределительные щиты (РЩ): РЩ1, к которому подключены первые потребители, являющиеся потребителями собственных нужд (с.н.) переменного тока высокого напряжения (ВН), и РЩ2, к которому подключены вторые потребители, являющимися потребителями с.н. переменного тока низкого напряжения (НН), а также другие компоненты: шины постоянного тока ВН, подключенные к сборным шинам ГРУ через управляемые выпрямители напряжения, снабженные пусковыми устройствами этих выпрямителей, систему распределения электроэнергии постоянного тока, подключенную к указанным шинам постоянного тока ВН, первые, вторые и третьи транзисторные автономные инверторы напряжения, снабженные пусковыми устройствами этих инверторов и подключенные своими входными зажимами, через эти пусковые устройства, к системе распределения электроэнергии постоянного тока, и транзисторные импульсные преобразователи постоянного напряжения, снабженные пусковыми устройствами этих преобразователей и подключенные своими входными зажимами, через эти пусковые устройства, к системе распределения электроэнергии постоянного тока, причем микропроцессорные системы управления всех перечисленных управляемых выпрямителей напряжения и автономных инверторов напряжения придают этим устройствам энергетической электроники свойства обратимого преобразователя напряжения при максимально возможном значении коэффициента мощности на зажимах переменного тока. 2 ил.

Изобретение относится к электротехнике, а именно к конструкции дифференцирующих индукционных преобразователей тока (ДИПТ), и предназначено для измерения тока в проводниках высоковольтных электроэнергетических систем. Катушка охватывает изолятор ввода в какое-либо электрооборудование: выключатель, силовой трансформатор или другое. Шина ввода является проводником, по которому проходит измеряемый ток. Катушка ДИПТ содержит несущий тороид, выполненный на основе эластичной трубки из диэлектрического материала, стыковочные поверхности которой плотно соединены одна с другой при установке катушки ДИПТ на соединительную втулку изолятора ввода. N одинаковых секционных круговых соленоидов имеют однослойные обмотки. Обмоточные соединители с разъемными контактами и (n-1) соединительных муфт выполнены из жесткого изоляционного материала и прикреплены к несущему тороиду. Каждая из соединительных муфт снабжена двумя имеющими форму кругового цилиндра шипами, первый шип m–й муфты плотно соединен с цилиндрическим отверстием каркаса m–го соленоида, а второй шип m–й муфты - с цилиндрическим отверстием каркаса (m+1)–го соленоида. Секционные муфты равномерно распределены вдоль осевой линии несущего соленоида. Обратный провод проходит внутри катушки через сквозные цилиндрические каналы соединительных муфт в направлении, обратном по отношению к продольной осевой линии катушки. Начало обратного провода подключено к концу обмотки n–го соленоида. Начало обмотки первого соленоида и конец обратного провода соединены с зажимами катушки. Технический результат состоит в снижении стоимости ДИПТ путем упрощения технологии изготовления и монтажа. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области металлургии, а именно к изготовлению листов из титанового сплава ОТ4, и может быть использовано для получения изделий сложной конфигурации глубокой вытяжкой и штамповкой. Способ изготовления листов из титанового сплава ОТ4 включает деформацию слитка в сляб, механическую обработку сляба, многоэтапную прокатку сляба на подкат, резку подката на листовые заготовки, их сборку в пакет, прокатку листовых заготовок в листы в составе пакета и адъюстажные операции листов после пакетной прокатки. Слиток деформируют в сляб в два этапа, при этом на первом этапе в β-области в интервале температур выше температуры полиморфного превращения (ТПП) на 150-250°C с суммарной степенью деформации 30-80%, а на втором этапе в (α+β)-области в интервале температур ниже ТПП на 30-50°C с суммарной степенью деформации 20-50%, многоэтапную прокатку сляба на подкат осуществляют последовательно в четыре этапа, при этом на первом этапе в β-области в интервале температур выше ТПП на 90-160°C с суммарной степенью деформации 30-90%, на втором этапе в (α+β)-области в интервале температур ниже ТПП на 30-70°C с суммарной степенью деформации 15-40%, на третьем этапе в β-области в интервале температур выше ТПП на 90-160°C с суммарной степенью деформации 15-25% и на четвертом этапе в (α+β)-области в интервале температур ниже ТПП на 30-70°C с суммарной степенью деформации 40-70%, разрезают подкат на листовые заготовки, собирают их в пакет, укладывают с обеспечением перпендикулярности предыдущей прокатки листовой заготовки к направлению последующей прокатки листовой заготовки и прокатывают пакет на готовый размер в интервале температур ниже ТПП на 30-70°C с суммарной степенью деформации 40-70%. Полученные листы имеют высокие значения пластичности, низкую анизотропию механических свойств. 5 ил., 3 табл.

Изобретение относится к области металлургии, а именно к способам создания текстуры в тонких листах из титанового сплава Ti-6Al-2Sn-4Zr-2Mo методом горячей прокатки. Способ получения листов из жаропрочного сплава Ti-6Al-2Sn-4Zr-2Мо включает предварительную обработку слитка ковкой или штамповкой в β-области с получением сляба, горячую продольную прокатку сляба на подкат с последующим отжигом и травлением, резку подката на листовые заготовки, их адъюстажную обработку и сборку в пакет, пакетную поперечную прокатку в листовую заготовку с последующими отжигами и адъюстажной обработкой полученных листов. Горячую продольную прокатку сляба на подкат осуществляют поэтапно. На первом этапе - при температуре нагрева в (α+β)-области ТПП-(20÷60)°С и суммарной степенью деформации 25-30%, на втором - при температуре нагрева в β-области ТПП+(80÷120)°С и суммарной степени деформации 80-95%, окончательную - не менее чем однократную прокатку при температуре нагрева в (α+β)-области ТПП-(20÷65)°С с суммарной степенью деформации 20-60%, пакетную поперечную прокатку осуществляют в два этапа в (α+β)-области при температуре нагрева ТПП-(30÷60)°С с суммарной степенью деформации пакета 50-85% и с промежуточным и окончательным отжигами, причем соотношение суммарных степеней деформаций окончательной продольной прокатки подката и поперечной прокатки пакета в (α+β)-области составляет не более 10%. Полученные листы толщинами до 0,4 мм характеризуются низкой анизотропией механических свойств и однородной структурой, удовлетворительным качеством поверхности. 2 ил., 3 табл.

Изобретение относится к обработке металлов и сплавов давлением, а именно к способам изготовления тонколистового проката на основе алюминидов титана. Способ изготовления тонколистового проката из сплава Ti - 10,0-15,0 Al - 17,0-25,0 Nb - 2,0-4,0 V - 1,0-3,0 Mo - 0,1-1,0 Fe – 1,0-2,0 Zr – 0,3-0,6 Si включает ковку слитка в сляб, механическую обработку сляба, многоэтапную горячую продольную прокатку сляба на подкат, резку подката на листовые заготовки, их адъюстажную обработку, сборку в пакет, прокатку пакета и окончательную адъюстажную обработку листов. Деформацию слитка ковкой в сляб производят в β-области при температуре Тпп+(120÷200)°С. На первом этапе прокатку сляба в подкат осуществляют в β-области, на предпоследнем этапе в (α+β)-области, окончательную прокатку в подкат проводят в (α+β)-области. Осуществляют сборку листовых заготовок в пакет таким образом, что направление их прокатки составляет угол 90° относительно направления прокатки подката, пакетную прокатку осуществляют в (α+β)-области с последующей закалкой в воде. Затем осуществляют разборку пакета и холодную прокатку каждой заготовки с промежуточными вакуумными отжигами. Тонколистовой прокат обладает высокими конструкционными и технологическими свойствами, гарантирующими уровень временного сопротивления σВ>1000 МПа и относительного удлинения δ≥3,5%. 2 ил., 2 табл.

Изобретение относится к области обработки металлов давлением, а именно к способам изготовления листов методом холодной прокатки из псевдо-альфа титановых сплавов. Способ получения листов из псевдо-альфа титановых сплавов включает деформацию слитка в сляб, механическую обработку сляба, многопроходную прокатку сляба на подкат, резку подката на листовые заготовки, многопроходную горячую прокатку заготовок, холодную прокатку, отжиг и адъюстажную обработку листов. Многопроходную прокатку сляба на подкат проводят в β-области, с суммарной степенью деформации не менее 50%, горячую прокатку листовых заготовок проводят в два этапа, причем на первом этапе проводят продольную прокатку в (α+β)-области в интервале температур ниже температуры полиморфного превращения (ТПП) на 70-200°С. На втором этапе проводят поперечную горячую прокатку с изменением направления прокатки на 90° в (α+β)-области в интервале температур ниже ТПП на 70-200°С с последующей холодной прокаткой с получением листов, при этом суммарная степень деформации при горячей и холодной прокатках на втором этапе составляет 60-90% при соотношении степеней деформации горячей к холодной прокатке от 0,8 до 1,2, отжиг листов производят при температуре 700-820°С в течение 0,5-1 часа, а затем осуществляют теплую прогладку при температуре 600±50°С. Получают тонкие листы большого формата из труднодеформируемых титановых сплавов с низкой анизотропией механических свойств и большой величиной угла загиба при комнатной температуре. 2 ил., 1 табл.

Изобретение относится к обработке металлов давлением, а именно к способам изготовления особо тонких листов из высокопрочного псевдо-альфа титанового сплава Ti-6,5Al-2,5Sn-4Zr-1Nb-0,7Mo-0,15Si. Способ получения особо тонких листов из титанового сплава Ti-6,5Al-2,5Sn-4Zr-1Nb-0,7Mo-0,15Si включает предварительную обработку слитка ковкой или штамповкой слитка в β-области с получением сляба, горячую прокатку сляба в подкат ведут в 4 этапа, причем на первом этапе - при температуре (ТПП+120÷ТПП+150)°C с суммарной степенью деформации 50-70%, на втором этапе - при температуре (ТПП-30÷ТПП-60)°C с суммарной степенью деформации 40-65%, на третьем этапе - при температуре (ТПП+80÷ТПП+120)°C с суммарной степенью деформации 40-60%, а на четвертом этапе - при температуре (ТПП-30÷ТПП-70)°C с суммарной степенью деформации 40-80%. Далее осуществляют резку подката на листовые заготовки, их сборку в пакет и пакетную прокатку в листовую заготовку при температуре (ТПП-60÷ТПП-100)°C с суммарной деформацией пакета 60-80%, холодную прокатку в листы с промежуточными и окончательным отжигами и адьюстажными обработками на этапах. Повышается технологичность и качество изготавливаемых особо тонких листов. 1 ил., 1 табл.

Изобретение относится к области металлургии, в частности к изготовлению плоского проката из высоколегированного титанового сплава. Способ изготовления плит из высоколегированного титанового сплава Ti-5Al-5Mo-5V-3Cr включает деформацию слитка в сляб путем ковки при температурах в β- и (α+β)-областях, при окончательном деформировании в (α+β)-области, последовательные прокатки сляба в β- и (α+β)-областях. Первую горячую прокатку проводят со степенью деформации 50÷90% после нагрева сляба до температуры на 80÷120°C выше Тпп и с охлаждением полученного раската до комнатной температуры, а вторую горячую прокатку выполняют со степенью деформации 40÷80% после нагрева до температуры на 30÷50°C ниже Тпп. Затем плиты отжигают при температуре равной 510÷590°C и длительности 6-10 часов. Проводят ультразвуковой контроль и осуществляют финишную термообработку при температуре 700-750°C и времени выдержки 0,5-1,5 часа и охлаждение на воздухе. На этапе ультразвукового контроля минимизируется уровень акустических структурных шумов, что обеспечивает получение однородной структуры в плите, а также стабильность и равномерность механических свойств. 2 ил., 2 табл., 1 пр.

Изобретение относится к области обработки металлов давлением, а именно к способам изготовления тонких листов из высокопрочного псевдо-альфа-титанового сплава Ti - 6,5Al-2,5Sn-4Zr-1Nb-0,7Mo-0,15Si. Способ получения тонких листов из титанового сплава Ti - 6,5Al-2,5Sn-4Zr-1Nb-0,7Mo-0,15Si включает предварительную обработку слитка ковкой или штамповкой слитка в β-области с получением сляба, горячую прокатку сляба в рулонный подкат ведут в два этапа. На первом - при температуре Тпп+(100-150)°C с суммарной деформацией 60-80%, на втором - при температуре Тпп±30°C с суммарной деформацией 50-90% с деформацией в проходе, равной 10-15%, до толщины рулонного подката, равного 2-4 мм, с последующим отжигом и травлением. Далее проводят холодную прокатку за два или более этапов со степенью деформации 10-20% с промежуточными и окончательным отжигами и адьюстажными обработками. После горячей прокатки и каждого этапа холодной прокатки производят отжиг при температуре 900±10°C в течение 10-20 минут. Повышается технологичность изготовления и качество тонких листов из труднодефомируемого титанового сплава на стандартном оборудовании при снижении трудоемкости и стоимости процесса. 1 ил., 1 табл.

Изобретение относится к области металлургии, в частности к способу изготовления тонких листов из двухфазного титанового сплава с микрокристаллической структурой, которая, в частности, пригодна для сверхпластической деформации при нагреве. Способ включает подготовку шихты, выплавку слитка, деформацию слитка в сляб в три стадии, механическую обработку сляба, прокатку сляба на подкат, резку подката на заготовки, прокатку заготовок на листы, термическую обработку и формовку. Выплавляют слиток титанового сплава, содержащий, мас.%: 3,5-6,5 Al, 4,0-5,5 V, 0,05-1,0 Mo, 0,5-1,5 Fe, 0,10-0,2 O, 0,01-0,03 C, 0,005-0,07 Cr, 0,01-0,5 Zr, 0,001-0,02 N, остальное - титан, с величинами прочностных алюминиевого [ A l ] э к в п р = 6 , 0 − 1 1 , 5 5 и молибденового [ M o ] э к в п р = 3 , 5 − 5 , 6 эквивалентов. Получают высокопрочный листовой прокат толщиной <3 мм с высокими пластическими свойствами при комнатной температуре и пригодный для СПД при нагреве. 2 н. и 3 з.п. ф-лы, 4 ил., 3 табл.

Изобретение относится к сельскому хозяйству, в частности к установкам для доения коров. Доильная установка содержит доильные аппараты, вакуумную и молочную магистрали, молокомеры, молокоприемник и источник вакуума. Молочная магистраль на участке доения разделена по всей длине на каскадно-петлевую систему в виде независимых наклонных участков. Каждый из участков имеет геометрический угол наклона, соответствующий ламинарному движению потока молока и максимальному расходу трубопровода. Независимые наклонные участки соединены петлями. Петля имеет радиус изгиба, обеспечивающий минимальную степень перекрытия потоком молока поперечного сечения трубы. Доильная установка может быть практически использована на молочных фермах и комплексах. Доильная установка за счет устранения падения разрежения на участке доения молочной магистрали до 2 кПа позволяет стабилизировать режим работы доильного аппарата и, как следствие, повысить продуктивность коров до 15% в год, снизить заболеваемость коров субклинической формой мастита молочной железы животных до 25%. 1 ил.

Изобретение относится к области измерения электрических величин, в частности для измерения асимметрии в трехфазных трехпроводных сетях. Устройство содержит первый и второй дифференцирующие индукционные преобразователи тока (ДИПТ) и фильтр напряжения обратной последовательности, в состав которого входят три элемента: конденсатор, резистор и выключатель. К входным зажимам фильтра подключены катушки первого и второго ДИПТ. Взаимная индуктивность катушки второго ДИПТ со вторым токопроводом трехфазной цепи в два раза меньше, чем взаимная индуктивность катушки первого ДИПТ с первым токопроводом трехфазной цепи. Между началом и концом первого ДИПТ последовательно включены конденсатор и резистор. Первый выходной зажим устройства подключен к точке соединения конденсатора и резистора. К концу катушки первого ДИПТ подключено начало катушки второго ДИПТ, конец которой через выключатель подключен ко второму выходному зажиму устройства. При номинальном значении частоты трехфазной цепи напряжение на резисторе на угол π/3 опережает ЭДС первого ДИПТ, а модуль этого напряжения составляет половину модуля указанной ЭДС. Технический результат заключается в повышении чувствительности к наличию составляющей обратной последовательности в фазных токах защищаемой трехфазной цепи, в частности к отключению одной фазы этой цепи от трехфазного источника напряжения (к обрыву одной фазы). 5 ил.
Изобретение относится к обработке металлов давлением и предназначено для правки листового проката в процессе отжига под постоянной нагрузкой, преимущественно крупногабаритных листов и плит из титановых сплавов. Способ крип-отжига титанового листового проката включает установку садки, состоящую из одного или нескольких листовых изделий, на стальную подогреваемую плиту установки вакуумной правки, создание разряжения в рабочем пространстве установки при одновременном равномерном нагружении внешней наружной поверхности садки, нагрев до температуры отжига, выдержку и охлаждение. Охлаждение проводят с промежуточной ступенью при температуре на ступени 220±20°С с выдержкой от 1 до 5 часов. Обеспечивается стабильность форм поверхности листового проката из титановых сплавов. 1 з.п. ф-лы.

Изобретение относится к обработке металлов давлением, а именно к способам изготовления тонких листов из псевдо-альфа титановых сплавов. Способ изготовления тонких листов из псевдо-альфа титановых сплавов включает деформацию слитка в сляб, механическую обработку сляба, многопроходную прокатку сляба на подкат, резку подката на листовые заготовки, их сборку в пакет и его прокатку и адъюстажные операции. Многопроходную прокатку сляба осуществляют в несколько этапов. После разрезки подката на листовые заготовки проводят их адъюстажные операции. Сборку листовых заготовок в пакет осуществляют с укладкой таким образом, чтобы направление листов предыдущей прокатки было перпендикулярно направлению листов последующей прокатки. Прокатку пакета ведут на готовый размер, а затем из него извлекают полученные листы и проводят адъюстажные операции. При осуществлении способа обеспечивается получение микроструктуры листов, обеспечивающей высокий и равномерный уровень прочностных и пластических свойств. 1 ил., 2 табл.

Изобретение относится к способу определения жесткости сосковой резины доильного аппарата и устройству для его осуществления. Устройство содержит искусственный сосок и нитевой датчик. Корпус искусственного соска выполнен из недеформируемого материала и соответствует натуральным размерам сосков вымени животных. Под искусственным соском по оси в вертикальной плоскости доильного стакана установлен ряд изолированных друг от друга электрических датчиков. Датчики расположены на равном расстоянии друг от друга по всей длине деформируемой части сосковой резины. Крайние датчики имеют коническую форму и разнонаправлены внутрь сосковой резины. Каждый датчик связан непосредственно через внутренний центральный стержень с измерительным прибором, в качестве которого использован электронный аналитический блок. Искусственный сосок устанавливают в доильный стакан и с помощью датчиков измеряют жесткость сосковой резины в динамике, определяя продолжительность смыкания той части сосковой резины, которая находится под искусственным соском. Полученные характеристики жесткости сосковой резины сравнивают с требуемыми условиями пригодности к эксплуатации в доильных аппаратах. Изобретение повышает точность и достоверность оценки жесткости сосковой резины доильного стакана в истинной зоне ее деформации при работе доильного аппарата в динамике. 2 н.п. ф-лы, 1 ил.

Изобретение относится к обработке металлов давлением, в частности к термомеханической обработке двухфазных титановых сплавов в процессе получения толстых листов и плит

Изобретение относится к области металлургии, в частности к способам изготовления тонких листов из жаропрочного псевдо-альфа-титанового сплава

Изобретение относится к области обработки металлов давлением, а именно к способам изготовления тонких листов методом холодной прокатки из высокопрочных псевдо- -титановых сплавов, которые могут быть использованы в аэрокосмической, химической отраслях промышленности, машиностроении, медицине и других областях народного хозяйства

Изобретение относится к области металлургии, в частности, к пластической деформации металлов, в частности к способам изготовления тонких листов из ( - )-, псевдо- , -титановых сплавов

Изобретение относится к области обработки металлов давлением, более конкретно, к способам изготовления полой лопатки вентилятора газотурбинного двигателя (ГТД), состоящей из выполненных из титанового сплава обшивок и заполнителя
Изобретение относится к области металлургии, в частности к обработке металлов давлением, и может быть использовано для получения высокопрочной проволоки из ( + )-титановых сплавов, предназначенной для изготовления витых и плетеных конструкций
Изобретение относится к технологии производства рыбных консервов
Изобретение относится к технологии производства рыбных консервов
Изобретение относится к технологии производства рыбных консервов

Изобретение относится к области измерения электрических величин

Изобретение относится к области измерения электрических величин

Изобретение относится к способу изготовления особо тонких листов из высокопрочных титановых сплавов методом пакетной прокатки

Изобретение относится к области обработки металлов давлением, а именно к способу изготовления тонких листов из высокопрочного титанового сплава Ti-6Al-4V методом рулонной прокатки

Изобретение относится к обработке металлов давлением, в частности к термомеханической обработке двухфазных титановых сплавов

Изобретение относится к обработке металлов давлением и предназначено для правки листового проката крип-отжигом, преимущественно крупногабаритных листов и плит из титановых сплавов

Изобретение относится к обработке металлов давлением, а именно к изготовлению методом пакетной прокатки клиновидных заготовок лопаток турбин, а также других типов роторных лопаток или лопастей статора для турбомашин или пропеллеров

Изобретение относится к области электротехники, в частности к регулятору напряжения автомобильного генератора многофункциональному, который предназначен для автоматического регулирования напряжения на выходе генераторных установок и может быть использован для контроля степени нагруженности генератора и отключения некоторых нагрузок при перегрузке генератора
Изобретение относится к области цветной металлургии, в частности к изготовлению плит повышенной точности по толщине и неплоскостности из штампованных или кованых слябов ( + )-титановых сплавов методом горячей прокатки

Изобретение относится к области цветной металлургии и может быть использовано при изготовлении тонких плит из штампованных или кованых слябов методом горячей прокатки

Изобретение относится к цветной металлургии, в частности к термомеханической обработке двухфазных титановых сплавов с повышенной вязкостью разрушения, и может найти применение в авиационной промышленности, а также машиностроении
Изобретение относится к цветной металлургии, в частности к термомеханической обработке труднодеформируемых, высокопрочных -титановых сплавов, и может быть использовано при изготовлении тонких листов методом прокатки
Изобретение относится к обработке поверхности листов из титана и его сплавов и может быть использовано для повышения их защитно-декоративных свойств

Изобретение относится к магнитоизмерительной технике, в частности к устройствам для определения магнитных свойств (индукции насыщения, остаточной намагниченности, петель гистерезиса, магнитного момента, магнитной восприимчивости) веществ и материалов и может найти применение в лабораторных и экспедиционных устройствах для решения исследовательских и промышленных задач
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх