Способ получения высокопрочной проволоки из сплава на основе титана конструкционного назначения

Изобретение относится к области металлургии, в частности к обработке металлов давлением, и может быть использовано для получения высокопрочной проволоки из (α+β)-титановых сплавов, предназначенной для изготовления витых и плетеных конструкций. Предложен способ изготовления высокопрочной проволоки из (α+β)-титанового сплава мартенситного класса. Способ включает получение слитка, его горячую деформацию с получением заготовки для волочения, волочение при комнатной температуре на конечный размер и окончательную термическую обработку. После горячей деформации полученные заготовки отжигают на воздухе и механически обрабатывают, волочение проводят многократно с промежуточными отжигами в атмосфере воздуха, при этом после первого хода волочения проводят механическую обработку, а окончательную термическую обработку ведут в атмосфере воздуха в течение 60-180 минут при температуре (0,5÷0,7)Тп.п.°С с дальнейшим охлаждением до комнатной температуры. Технический результат - повышение предела прочности на разрыв при сохранении высокого уровня относительного удлинения за счет равномерности структуры по длине и сечению проволоки. 1 табл., 2 пр.

 

Предлагаемое изобретение относится к области обработки металлов давлением и может быть использовано для получения высокопрочной проволоки из титановых сплавов мартенситного класса.

Известен способ получения проволоки из (α+β)-титановых сплавов, включающий нагрев, деформацию и отжиг (Волочение легких сплавов. Ерманок М.З., Ватрушин Л.С. М.: ВИЛС, 1999, с.95-108).

Недостатком этого способа являются применение многопереходной операции деформации, осуществляемой с нагревом, и применение энергоемких операций травления и вакуумного отжига, следствием которого является низкий уровень значений характеристик предела прочности на разрыв.

Известен также способ изготовления высокопрочной проволоки из титана и титановых сплавов, включающий получение слитка, его горячую деформацию с получением заготовки для волочения, волочение при комнатной температуре на конечный размер и окончательную термическую обработку (US 6077369 A, C22F 1/18, 20.06.2000) (прототип). Недостатком этого способа является окисление и трещинообразование поверхности, формирование структурной неоднородности по длине проволоки и как следствие разброс и нестабильность механических свойств проволоки.

Предлагается способ изготовления высокопрочной проволоки из (α+β)-титанового сплава мартенситного класса, включающий получение слитка, его горячую деформацию с получением заготовки для волочения, волочение при комнатной температуре на конечный размер и окончательную термическую обработку.

Предлагаемый способ получения проволоки из титановых сплавов отличается от прототипа тем, что после горячей деформации полученные заготовки отжигают на воздухе и механически обрабатывают.

Предлагаемый способ получения проволоки из титановых сплавов отличается также тем, что волочение проводят многократно с промежуточными отжигами в атмосфере воздуха, при этом после первого хода волочения проводят механическую обработку, а окончательную термическую обработку ведут в атмосфере воздуха в течение 60-180 минут при температуре (0,5÷0,7)Тп.п.°С с дальнейшим охлаждением до комнатной температуры.

Тп.п. - температура полиморфного превращения титанового сплава.

Техническим результатом является повышение качества заготовки, повышение равномерности структуры по длине и сечению проволоки, повышение значений предела прочности на разрыв при сохранении высокого уровня значений относительного удлинения, снижение потребления электроэнергии технологического процесса.

Предлагаемый способ позволяет повысить качество заготовки для волочения за счет удаления дефектов поверхности при обточке, получать проволочную заготовку и проволоку титановых сплавов (α+β) мартенситного класса малого диаметра от 0,6 до 2,0 мм, повысить уровень значений предела прочности за счет формирования (α+β)-структуры, состоящей из β-фазы и частиц α-фазы размером 0,2-1,0 мкм, имеющей низкую плотность дислокации, что достигается за счет фазовых превращений при проведении окончательной термической обработки проволоки.

Пример 1: методом вакуумного дугового переплава получали слиток из титанового сплава ВТ 16 диаметром 360 мм; нагревали до температуры 1180°С в газовой печи и ковали на диаметр 140 мм. Для удаления альфированного слоя полученную из слитка заготовку обтачивали, нагревали до температуры 950°С и проводили горячую прокатку на стане «250» в бухту на диаметр 8,0 мм. Далее проводили отжиг на воздухе при температуре 710°С, 1 час с охлаждением на воздухе и механическую обработку (калибровку) со съемом 0,3-0,5 мм на диаметр заготовки и многократное волочение заготовки после калибровки без нагрева из бухты в бухту до получения проволоки диаметром 0,6-2,0 мм с выполнением промежуточных отжигов на воздухе в течение 15 минут при температуре 630°С. Далее проводили термическую обработку по режиму: нагрев до температуры 450°С, выдержка в течение 90 минут, охлаждение на воздухе до комнатной температуры.

Механические свойства прутков, определенные по статическим испытаниям, представлены в таблице (эксперимент 1).

Пример 2: методом вакуумного дугового переплава получали слиток из титанового сплава ВТ16 диаметром 360 мм; нагревали до температуры 1180°С в газовой печи и ковали на диаметр 140 мм. Для удаления альфированного слоя полученную из слитка заготовку обтачивали, нагревали до температуры 950°С и проводили горячую прокатку на стане «250» в бухту на диаметр 8,0 мм. Далее проводили отжиг на воздухе при температуре 710°С, 1 час с охлаждением на воздухе и механическую обработку (калибровку) со съемом 0,3-0,5 мм на диаметр заготовки и многократное волочение заготовки после калибровки производили без нагрева из бухты в бухту до получения проволоки диаметром 0,6-2,0 мм с выполнением промежуточных отжигов на воздухе в течение 15 минут при температуре 630°С. Далее проводили термическую обработку проволоки по режиму: нагрев до температуры 350°С, выдержка в течение 120 минут, охлаждение на воздухе до комнатной температуры.

Механические свойства прутков, определенные по статическим испытаниям, представлены в таблице (эксперимент 2).

Получили проволоку диаметром от 0,6 до 2,0 мм (Пример 1, Пример 2), предназначенную для применения в авиационной и судостроительной областях промышленности, с регламентированным комплексом механических свойств.

Таким образом, предлагаемый способ получения проволоки из титановых сплавов позволяет произвести полуфабрикат (проволоку), обладающий стабильным высоким уровнем прочностных и пластических характеристик, что, в свою очередь, позволяет снизить весовые характеристики изделий, оказывает влияние на увеличение срока службы (долговечности) изделий, изготовленных с использованием проволоки.

Таблица
Механические свойства проволоки при температуре 20°С
№ эксперимента Способ изготовления σВ, МПа σ0,2, МПа δ,%
Прототип 840-950 880 14
1. Эксперимент 1 1200-1250 1100 ≥5
2. Эксперимент 2 1300-1550 1100-1250 ≥3

Способ изготовления высокопрочной проволоки из (α+β)-титанового сплава мартенситного класса, включающий получение слитка, его горячую деформацию с получением заготовки для волочения, волочение при комнатной температуре на конечный размер и окончательную термическую обработку, отличающийся тем, что после горячей деформации полученные заготовки отжигают на воздухе и механически обрабатывают, волочение проводят многократно с промежуточными отжигами в атмосфере воздуха, при этом после первого хода волочения проводят механическую обработку, а окончательную термическую обработку ведут в атмосфере воздуха в течение 60-180 мин при температуре (0,5÷0,7)Тпп°С с дальнейшим охлаждением до комнатной температуры.



 

Похожие патенты:
Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий (полуфабрикатов, деталей, узлов и др.) из титановых сплавов Способ термомеханической обработки изделий из титановых сплавов включает термомеханическую обработку, которую проводят в двенадцать стадий, при этом на первой стадии осуществляют нагрев до температуры (Тпп +200÷Тпп+270)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп+70÷Тпп -100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе; на второй стадии - нагрев до температуры (Т пп+120÷Тпп+170)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-50÷Т пп-110)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе; на третьей стадии - нагрев до температуры (Т пп+20÷Тпп+70)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-70÷Т пп-140)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе; на четвертой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью 15-60% при охлаждении до температуры (Тпп -100÷Тпп-140)°C; на пятой стадии - нагрев до температуры (Тпп+70÷Тпп+90)°C, деформацию со степенью 30-60% при охлаждении до температуры (Т пп-40÷Тпп-90)°C; на шестой стадии - нагрев до температуры (Тпп-20÷Тпп -40)°C, деформацию со степенью 20-40% в процессе охлаждения до температуры (Тпп-60÷Тпп-100)°C; на седьмой стадии - нагрев до температуры (Тпп+20÷Т пп+50)°C, деформацию со степенью 30-60% в процессе охлаждения до температуры (Тпп-40÷Тпп -70)°C; на восьмой стадии - нагрев до температуры (Т пп-20÷Тпп-40)°C, деформацию со степенью 20-60% в процессе охлаждения до температуры (Тпп-60÷Т пп-100)°C; на девятой стадии - нагрев до температуры (Тпп+30÷Тпп+70)°C, деформацию при прокатке со степенью 40-70% в процессе охлаждения до температуры (Тпп-70÷Тпп-170)°C; на десятой стадии - нагрев до температуры (Тпп-20÷Т пп-40)°C, деформацию при прокатке со степенью 30-50% в процессе охлаждения до температуры (Тпп-100÷Т пп-200)°C; на одиннадцатой стадии проводят нагрев до температуры (Тпп-70÷Тпп-170)°C с выдержкой 15-60 мин, охлаждение на воздухе или в воде; на двенадцатой стадии проводят нагрев до температуры (Тпп-270÷Т пп-470)°C с выдержкой 5-15 часов, где Тпп - температура полиморфного превращения; при этом с четвертой по восьмую стадию направление деформации на 90° изменяют от двух до четырех раз.

Изобретение относится к деформационной обработке металлов и сплавов и может быть использовано в машиностроении, авиа-двигателестроении, автомобильной промышленности.

Изобретение относится к области металлургии, в частности к получению дистанционирующей решетки для позиционирования топливных стержней в сборке тепловыделяющих элементов ядерных установок.

Изобретение относится к металлургии, в частности к изделиям из сплавов никелида титана с эффектом памяти формы, и может быть использовано в энергетическом машиностроении и приборостроении, в медицине.

Изобретение относится к области металлургии и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия. .
Изобретение относится к металлургии, в частности к обработке псевдо- -титановых сплавов, и может быть использовано для изготовления конструкционных деталей и узлов авиакосмической техники.

Изобретение относится к области металлургии, в частности к материаловедению в машиностроении, и может быть использовано при изготовлении проволоки из титановых сплавов и изделий из нее, например пружин.

Изобретение относится к области металлургии, в частности к способам обработки крупногабаритных заготовок из титановых сплавов с улучшенными физико-механическими свойствами для изготовления изделий, эксплуатируемых в различных областях промышленности, в том числе машиностроении, авиадвигателестроении и медицине.
Изобретение относится к области металлургии, а именно к способу получения жаропрочных титановых сплавов с использованием горячего изостатического прессования (ГИП), для изготовления лопаток и дисков компрессора высокого и низкого давления, дисков ГТД, силовых и энергетических установок.

Изобретение относится к области металлургии, а именно к способам изготовления изделий из сплавов с эффектом памяти формы на основе никелида титана со способным к изменению цвета покрытием в его деформированной части, и может быть использовано при поизводстве датчиков, которые самопроизвольно информируют об изменении температуры и деформации путем изменения цвета их поверхности.

Изобретение относится к прокатной установке, в частности тандемной прокатной установке для холоднокатаной ленты, с несколькими прокатными клетями, расположенными в одном прокатном стане, причем в производственном направлении (Р) металлической ленты первая прокатная клеть выполнена в качестве ведущей прокатной клети и служит в качестве входа для участка непрерывного прокатного стана, в котором осуществляется существенное уменьшение толщины металлической ленты, и за счет соответствующего управления ведущей прокатной клетью может достигаться увеличение механического натяжения на входе металлической ленты.

Изобретение относится к прокатному устройству по меньшей мере с одним верхним и одним нижним валками, установленными в общей прокатной клети, удерживаемыми для установки различной высоты зазора между ними в вертикально перемещаемых относительно друг друга опорах и поддерживаемыми соответствующими опорными валками, по меньшей мере с одним устройством аксиального перемещения одного из валков и по меньшей мере с одним устройством для изгиба верхнего валка, содержащим гибочный цилиндр.

Изобретение относится к способу для поддержки, по меньшей мере, частично ручного управления прокатным станом металлообработки, в котором обрабатывается металл в форме полосы, или сляба, или чернового профиля, а также к прокатному стану металлообработки.

Изобретение относится к прокатному устройству с регулировочным устройством, в частности, для регулировки горизонтального смещения валка прокатного устройства, в частности, согласно ограничительной части пункта 1 формулы изобретения.

Изобретение относится к области прокатного оборудования, конкретно к уплотнительным устройствам подшипников рабочих валков, и может быть использовано в уплотнительных устройствах подшипниковых опор машин и механизмов.

Изобретение относится к области прокатного оборудования, конкретно к уплотнительным устройствам подшипников рабочих валков, и может быть использовано в уплотнительных устройствах подшипниковых опор машин и механизмов.

Изобретение относится к области прокатного оборудования, а именно к уплотнительным устройствам подшипников рабочих валков, и может быть использовано в уплотнительных устройствах подшипниковых опор машин и механизмов.

Изобретение относится к области прокатного оборудования, конкретно к уплотнительным устройствам подшипников рабочих валков, и может быть использовано в уплотнительных устройствах подшипниковых опор машин и механизмов.

Изобретение относится к области прокатного производства. .

Изобретение относится к производству сварных труб, а точнее к устройству для укладки профильных труб в трубосварочных агрегатах и линиях отделки. .
Наверх