Патенты автора Бомштейн Александр Давидович (RU)

Изобретение относится к антенной технике, в частности к мобильным антенным установкам с фазированными антенными решетками (ФАР), и может быть использовано в мобильных радиолокационных станциях (РЛС) дальнего обнаружения и точного сопровождения воздушных целей. Мобильная антенная установка (МАУ), содержащая транспортное средство с платформой, на которой расположены выносные опоры с домкратами, гидравлическая система развертывания и свертывания, опорно-поворотное устройство (ОПУ) с приводом вращения, мачта с приводом ее подъема и опускания, установленная на ОПУ, и закрепленная на мачте ФАР дальномера метрового диапазона, дополнительно введена ФАР высотомера дециметрового или сантиметрового диапазона с приводом перевода ее в рабочее или транспортное положения, шарнирно соединенная с мачтой и развернутая в рабочем положении в азимутальной плоскости на 180° относительно ФАР дальномера. При этом количество столбцов ФАР дальномера увеличено до 20. В транспортном положении обе антенны свернуты и расположены на платформе горизонтально в одну линию одна за другой с фиксацией на трех опорах, закрепленных на платформе, обеспечивая возможность передвижения МАУ железнодорожным и автомобильным транспортом. Технический результат заключается в создании мобильной антенной установки большой дальности обнаружения воздушных целей, обеспечивающей высокую точность измерения их угловых координат, размещаемой на одном транспортном средстве и при этом вписывающейся в транспортном положении в железнодорожный и автомобильный габариты. 3 ил.
Изобретение относится к радиолокации и может быть использовано в радиолокационных комплексах (РЛК) для контроля воздушного пространства и управления воздушным движением. Техническим результатом изобретения является повышение защищенности РЛК от пассивных помех. Указанный результат достигается за счет того, что с помощью длинноволновой РЛС обнаруживают воздушные объекты, измеряют параметры пакета отраженных сигналов и сопровождают эти объекты по центру пакета. С помощью коротковолновой РЛС производят разрешение воздушных объектов, уточнение их координат и привязку этих координат к координатам центра пакета. С помощью коротковолновой РЛС определяют области, в которых имеются пассивные помехи. Если количество сигналов в составе пакета в такой области превышает допустимое число, разрешение воздушных объектов и уточнение их координат не производят.

Изобретение относится к радиолокации и может быть использовано для определения модуля скорости неманеврирующей аэродинамической цели (АЦ) преимущественно в РЛС с грубыми измерениями азимута. Достигаемый технический результат - повышение точности определения модуля скорости. Указанный результат достигается за счет того, что по выборке квадратов дальности оценивают модуль скорости, вычисляют среднеквадратическую ошибку (СКО) модуля скорости, определяют радиальную скорость АЦ, вычисляют разность между оценкой модуля скорости и абсолютным значением радиальной скорости, сравнивают эту разность с СКО, если разность больше СКО, то потребителям выдают значение оценки модуля скорости, если разность меньше СКО, то потребителям выдают значение радиальной скорости аэродинамической цели. 3 ил., табл. 1.

Изобретение относится к радиолокации и может быть использовано в коротковолновых радиолокационных станциях (РЛС) для улучшения характеристик обнаружения целей на фоне помеховых сигналов "ангелов". Технический результат - увеличение производительности коротковолновых РЛС и улучшение точности измерения угловых координат целей на фоне помеховых отражений от "ангелов". Изобретение основано на комплексировании РЛС длинноволнового и коротковолнового диапазонов. Обнаружение целей осуществляется длинноволновой (например, метровой) РЛС, при этом в РЛС коротковолнового (дециметрового или сантиметрового) диапазона, используя РЛИ о координатах и параметрах движения всех целей в одном азимутальном элементе разрешения, осуществляется выбор высокой частоты повторения импульсов (ЧПИ) таким образом, чтобы максимизировать количество обнаруживаемых целей с нулевым затенением по дальности, с отсутствием маскировки их помеховыми сигналами "ангелов" и без наложения эхо-сигналов целей по дальности. Устройство, реализующее способ, содержит первую РЛС и вторую РЛС, включающую устройство приема и обработки радиолокационной информации и формирователь частот повторения импульсов, а также оперативное запоминающее устройство, устройство анализа, устройство отбора по максимуму и устройство расчета оптимальной ЧПИ с соответствующими связями. 2 н.п. ф-лы, 2 ил.

Изобретение относится к радиолокации и может быть использовано для распознавания классов воздушно-космических объектов (ВКО) в двухдиапазонных радиолокационных комплексах с двумерным электронным сканированием. Достигаемый технический результат изобретения - улучшение тактико-технических характеристик - заключается в уменьшении времени распознавания, увеличении рубежей выдачи информации о распознанном классе цели, увеличении алфавита распознаваемых классов ВКО при достаточно высоком уровне вероятности и достоверности правильного распознавания класса цели. Указанный результат достигается за счет того, что в устройство, содержащее блок обработки радиолокационной информации, вычислитель вертикальной составляющей скорости, вычислитель трассовой скорости, классификатор первого уровня, классификатор второго уровня, вычислитель частотного признака распознавания, блок усреднения частотного признака, вычислитель эффективной площади рассеяния, блок усреднения эффективной площади рассеяния, а также параметрический классификатор, дополнительно введены устройство выбора воздушных объектов, устройство выбора рабочих частот и вычислитель продольного размера, определенным образом соединенные между собой. Кроме того, блок обработки выполнен с дополнительной возможностью обобщенной (от двух модулей) вторичной обработки радиолокационной информации и расчета приоритета трассы на основе данных о результатах государственного опознавания воздушного объекта, его дальности и скорости полета. 1 ил., 1 табл.

Изобретение относится к радиолокации и может быть использовано в импульсных радиолокационных станциях (РЛС) сопровождения, работающих по целеуказанию. Достигаемый технический результат - увеличение производительности РЛС сопровождения за счет снижения временных потерь, вызванных задержкой в обработке информации. Указанный технический результат достигается за счет того, что при первичной обработке после превышения накопленным сигналом порога обнаружения оценивают время, необходимое для превышения им порога измерения, требуемого для измерения координат цели с заданной точностью, дополнительно излучают в течение этого времени сигнал, после чего принудительно прекращают облучение заданной цели и переходят к облучению следующей цели, не дожидаясь результата на выходе подсистемы первичной обработки информации. Способ реализуется устройством, состоящим из антенного устройства, приемопередающего устройства, схемы управления, устройства первичной обработки, а также устройства вторичной обработки, где в устройство первичной обработки дополнительно введены вычислитель времени накопления сигнала и выходной ключ. Перечисленные средства соответствующим образом соединены между собой 2 н.п. ф-лы, 3 ил.

Изобретение относится к радиолокации и может быть использовано преимущественно в наземных радиолокационных станциях (РЛС) кругового и секторного обзора. Достигаемый технический результат - повышение точности определения модуля скорости баллистического объекта (БО) в РЛС с грубыми измерениями угловых координат при уменьшении объема используемых вычислительных ресурсов. Указанный технический результат достигается тем, что через равные интервалы времени Т0 в РЛС измеряют дальность и высоту БО, определяют оценку высоты БО в середине интервала наблюдения с помощью α, β фильтра и оценку второго приращения квадрата дальности в конце интервала наблюдения с помощью α, β, γ фильтра, вычисляют геоцентрический угол между РЛС и БО и ускорение силы тяжести в середине интервала наблюдения, после чего определяют значение модуля скорости БО в середине интервала наблюдения на невозмущенном пассивном участке траектории, при этом оценку высоты определяют с помощью α, β фильтра, причем сглаживание измерений высоты производят сначала в прямом по времени направлении до конца интервала наблюдения, а затем в обратном направлении до середины интервала наблюдения, а оценку второго приращения квадрата дальности определяют с помощью α, β, γ фильтра в конце интервала наблюдения путем последовательной фильтрации значений квадратов дальности. Устройство для реализации способа состоит из блоков преобразования входных сигналов, оценивания второго приращения квадрата дальности (α, β, γ фильтра), оценивания высоты (α, β фильтра), а также вычислителей геоцентрического угла, ускорения силы тяжести и модуля скорости, соединенных определенным образом. 2 н.п. ф-лы, 4 табл., 3 ил.

Изобретение относится к области радиолокации. Достигаемым техническим результатом изобретения является упрощение способа и устройства обнаружения маневра баллистического объекта (БО) при сохранении высокой вероятности обнаружения маневра. Указанный результат достигается за счет того, что абсолютную разность между оценкой первого приращения произведения дальности на радиальную скорость, полученной по выборке большего объема, и оценкой первого приращения произведения дальности на радиальную скорость, полученной по выборке меньшего объема, определяют только по выборке большего объема. Для этого в блоке оценивания первого приращения произведения дальности на радиальную скорость фиксированную выборку произведений дальности на радиальную скорости большего объема умножают на заранее рассчитанные весовые коэффициенты определения абсолютной разности между оценками, полученными по выборкам большего и меньшего объема, что позволяет упростить способ обнаружения маневра баллистического объекта и устройство, его реализующее. 2 н.п. ф-лы, 2 ил.

Изобретение относится к радиолокации и может использоваться в приемных устройствах. Технический результат состоит в повышении помехозащищенности РЛС путем использования высокоскоростных оптических линий связи для передачи с модуля информации и подачи на модуль комплексного сигнала хронизации и управления и сигнала тактовой частоты. Для этого введены многоразрядное цифровое устройство упаковки информации, оптическое приемопередающее устройство, синтезаторы сигналов имитатора и сигналов гетеродина и система синхронизации, при этом каждый приемный канал содержит последовательно соединенные защитное устройство, первый и второй входы которого являются соответственно первым и вторым входами каждого приемного канала, малошумящий усилитель (МШУ), n-разрядный ступенчатый аттенюатор, смеситель, второй вход которого является третьим входом каждого приемного канала, тракт промежуточной частоты (ПЧ), аналого-цифровой преобразователь, второй вход которого является четвертым входом каждого приемного канала, цифровой фазовый детектор и цифровой фильтр, выход которого является выходом каждого приемного канала. 2 ил.

Изобретение относится к области радиолокации. Достигаемым техническим результатом является устранение неоднозначности распознавания неманеврирующей баллистической цели (БЦ). Указанный результат достигается за счет совместного использования обнаружителя маневра на пассивном участке баллистической траектории (ПУТ) и обнаружителя маневра на линейной траектории по выборкам квадратов дальности. Решение об отнесении сопровождаемой цели к классу неманеврирующих БЦ принимают, если обнаружитель маневра на ПУТ выдал сообщение об отсутствии маневра, а обнаружитель маневра на линейной траектории - о наличии маневра. Устройство распознавания содержит цифровой нерекурсивный фильтр, состоящий из запоминающего устройства, двух блоков умножителей квадратов дальности на весовые коэффициенты и двух сумматоров, а также содержит два пороговых устройства, три схемы совпадения и вычислитель среднеквадратической ошибки, определенным образом соединенные между собой. 2 ил., 3 табл.

Изобретение относится к области радиолокации. Техническим результатом изобретения является повышение точности определения курса неманеврирующей аэродинамической цели. Указанный результат достигается за счет использования фиксированной выборки квадратов дальности и уменьшения влияния ошибок измерения азимута. Указанный результат достигается за счет того, что определяют путевую скорость путем взвешенного суммирования выборки квадратов дальности, радиальную скорость путем взвешенного суммирования измерений дальности и вычисляют курсовой угол в середине интервала наблюдения Курс вычисляют по формуле , где - азимут, устраняют неоднозначность определения курса, вычисляют ошибки определения курса, потребителям выдают значение курса с меньшей ошибкой. 2 н.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях (РЛС) для обнаружения маневра баллистических объектов (БО). Достигаемый технический результат - повышение вероятности обнаружения маневра БО как на активном, так и на пассивном участках траектории их полета. Для достижения указанного результата измеряют дальность БО в цифровом виде и через интервалы времени Т0 определяют квадраты дальности, при автосопровождении БО в «скользящем окне», содержащем выборку из N квадратов дальности длительностью (N-1)Т0, определяют оценку второго приращения квадрата дальности путем оптимального взвешенного суммирования N квадратов дальности и вычисляют среднеквадратичное отклонение (СКО) этой оценки, сигнал об обнаружении маневра выдают, если отношение инвертированной оценки второго приращения квадрата дальности к СКО оценки становится больше порога, соответствующего заданной вероятности обнаружения маневра. Далее путем оптимального взвешенного суммирования N квадратов дальности в «скользящем окне» определяют абсолютную разность между оценкой второго приращения по выборке длительностью (N-1)T0 и оценкой второго приращения по выборке длительностью (N-2m-1)Т0, где mT0 - удаление по времени начала и конца этой выборки от начала и конца «скользящего окна», вычисляют СКО оценки второго приращения квадрата дальности по этой выборке и отношение абсолютной разности к СКО оценки. Сигнал об обнаружении маневра выдают, если отношение абсолютной разности между оценками к СКО оценки становится больше порога, а решение об обнаружении маневра принимают, если одно из пороговых устройств или оба пороговые устройства выдали сигнал об обнаружении маневра.Устройство для реализации способа состоит из умножителя входных сигналов дальности, цифрового нерекурсивного фильтра в составе запоминающего устройства, первого и второго блоков умножителей, первого и второго сумматоров, а также из первого и второго делителей, первого и второго пороговых устройств, вычислителя СКО, инвертора и сумматора сигналов пороговых устройств, соединенных определенным образом. 2 н.п. ф-лы, 6 ил.

Изобретение относится к области радиолокации. Достигаемый технический результат изобретения - повышение вероятности обнаружения маневра баллистической ракеты. Указанный результат достигается за счет того, что решение об обнаружении маневра принимают, если отношение разности между оценками второго приращения квадрата дальности, вычисляемыми в «скользящем окне» по двум выборкам квадратов дальности, при этом выборка меньшего объема входит в состав выборки большего объема, а ее начало и конец удалены от начала и конца выборки большего объема на равное число обзоров, к среднеквадратической ошибке (СКО) определения этой разности становится больше порога. Обнаружитель маневра содержит последовательно соединенные умножитель входных измеренных сигналов дальности, цифровой нерекурсивный фильтр из запоминающего устройства, блока умножителей и сумматора, делитель и пороговое устройство, а также вычислитель СКО, подключенный к второму входу делителя. 3 ил., 3 табл.
Изобретение относится к области радиолокационной техники и может быть использовано при построении или модернизации вращающихся многофункциональных радиолокационных систем с активными фазированными антенными решетками (АФАР) с электронным сканированием для обзора воздушного пространства. Достигаемый технический результат - непрерывный обзор пространства и обнаружение целей при одновременном их сопровождении с уменьшением времени завязки трассы и повышением точности сопровождения высокоскоростных и маневренных целей при отсутствии ограничений на диапазон, в котором реализуется АФАР. Указанный технический результат достигается за счет того, что зону обзора пространства по азимуту разбивают на сектора и в каждом из них реализуют как режим поиска целей широкоугольной диаграммой направленности по углу места, так и режим сопровождения - узким лучом по результатам обнаружения целей в режиме поиска, причем поиск целей в каждом секторе осуществляют за счет электронного сканирования диаграммой направленности в азимутальной плоскости, при котором луч антенны движется по азимуту быстрее, чем нормаль антенной решетки, и за счет большей скорости достигает конца данного азимутального сектора раньше нормали, время до момента, когда нормаль к антенной решетки достигает азимута, соответствующего концу текущего сектора, используют для быстрой завязки трассы новых целей, обнаруженных при просмотре данного сектора в режиме поиска, а также для более точного сопровождения обнаруженных ранее и уже находящихся на сопровождении высокоскоростных и маневренных целей, за счет электронного откидывания луча в обратном вращению антенны направлении, при этом время, выделяемое на поиск и сопровождение целей в каждом секторе, выбирают индивидуально, учитывая количество находящихся на сопровождении в каждом секторе целей, завязку трассы производят путем повторного направления луча в точку с координатами, где при просмотре текущего сектора в режиме поиска произошло обнаружение новой цели, и в случае подтверждения обнаружения направляют луч на ту же цель в третий раз, осуществляя тем самым завязку трассы по новой цели в течение короткого времени. В процессе сопровождения целей обеспечивают экстраполяцию их положения на момент обращения и направляют луч в экстраполированное положение, осуществляя неоднократное обращение к цели в течение времени нахождения ее в данном секторе и обеспечивая тем самым более точное измерение их координат и вектора скорости движения.

Изобретение относится к радиолокационной технике и может быть использовано при построении вращающихся многофункциональных радиолокационных станций (РЛС) дальнего обнаружения целей с электронным сканированием луча для обзора воздушного пространства и одновременного точного сопровождения целей. Достигаемый технический результат - улучшение технико-эксплуатационных характеристик РЛС. Указанный результат достигается за счет того, что мобильная трехкоординатная РЛС содержит радиолокационный канал дальномера метрового диапазона в составе антенны, приемно-передающего устройства и устройства первичной обработки, а также антенну наземного радиозапросчика (НРЗ), антенну устройства ориентирования и топопривязки, устройство отображения, управления и контроля и устройство связи с потребителем, в которой дальномер вместе с антеннами НРЗ и устройства ориентирования и топопривязки входит в антенно-аппаратный комплекс, размещенный на первом транспортном средстве и включающий антенно-мачтовое устройство (АМУ), расположенное на вращающейся части опорно-поворотного устройства (ОПУ) транспортного средства, гидравлическую систему свертывания-развертывания АМУ и аппаратный контейнер (АК), радиолокационный канал высотомера дециметрового диапазона в составе антенны, приемно-передающего устройства и устройства первичной обработки, устройство управления, контроля и передачи радиолокационной информации, устройство вторичной обработки и кабина управления, размещенная на втором транспортном средстве, при этом АК расположен, как и АМУ, на вращающейся части ОПУ первого транспортного средства. 1 ил.

Изобретение относится к радиолокации и может быть использовано в импульсных радиолокационных станциях (РЛС) сопровождения с активной фазированной антенной решеткой. Достигаемый технический результат - уменьшение временных затрат на обнаружение целей и, как следствие, увеличение производительности РЛС сопровождения, при сохранении однозначности измерения дальности. Указанный технический результат достигается за счет использования многочастотного способа работы, при котором частота зондирующего сигнала изменяется от такта к такту, а прием отраженного эхо-сигнала осуществляется на этих же частотах в периодах повторения, соответствующих дальности до цели. При этом РЛС работает по целеуказанию от внешних средств обнаружения или от устройства вторичной обработки информации, реализующей завязку трассы при работе указанной РЛС в режиме поиска целей. Способ реализуется устройством, состоящим из основной и компенсационной антенны, формирователя зондирующих импульсов, передающего устройства, приемников основного и компенсационного каналов, устройства первичной обработки, устройства вторичной обработки и схемы управления, с соответствующими связями. 2 н.п. ф-лы, 2 ил.

Изобретение относится к радиолокации и может быть использовано для распознавания классов воздушно-космических объектов (ВКО) в радиолокационных станциях. Достигаемый технический результат изобретения - увеличение количества распознаваемых классов ВКО при достаточно высоком уровне вероятности правильного распознавания. Указанный результат достигается за счет того, что устройство радиолокационного распознавания ВКО содержит блок обработки радиолокационной информации, вычислитель вертикальной составляющей скорости, вычислитель трассовой скорости, классификаторы первого и второго уровней, параметрический классификатор, вычислитель частотного признака распознавания, вычислитель эффективной площади рассеяния, блок усреднения частотного признака распознавания и блок усреднения эффективной поверхности рассеяния - с соответствующими связями. 1 ил.

Изобретение относится к радиолокации и может быть использовано в импульсных радиолокационных станциях (РЛС). Достигаемый технический результат - улучшение эффективности работы РЛС при флуктуациях эффективной площади рассеяния (ЭПР) обнаруживаемых объектов, а также в условиях прицельных по частоте активных шумовых помех (АШП) в дальней зоне работы при сохранении качества подавления помеховых сигналов, отраженных от местных предметов в ближней зоне работы РЛС. Указанный технический результат достигается за счет использования для обзора дальней и ближней рабочих зон РЛС двух последовательностей импульсов, которые формируют на промежуточной частоте и после смешивания их с синусоидальными сигналами высокой частоты и фильтрации преобразуют в зондирующие импульсы, при этом обзор дальней зоны производят, перестраивая поимпульсно рабочую частоту зондирующих импульсов путем изменения высокой частоты синусоидальных сигналов от такта к такту, а обзор ближней зоны - на постоянной рабочей частоте, затем принятый отраженный сигнал смешивают с высокочастотным синусоидальным сигналом своей зоны, преобразуя его на промежуточную частоту, фильтруют и, после аналого-цифрового преобразования, подвергают обработке. Устройство, реализующее способ, состоит из основной и компенсационной антенн, двух формирователей сигналов, двух смесителей, двух генераторов синусоидального сигнала, твердотельного передающего устройства, приемников основного и компенсационного каналов, коммутатора синусоидальных сигналов, устройств первичной обработки, отображения, вторичной обработки и сопряжения, с соответствующими связями. 2 н.п. ф-лы, 1 ил.

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях (РЛС) с грубыми измерениями азимута и угла места. Достигаемый технический результат - повышение точности определения модуля скорости аэродинамической цели (АЦ). Указанный результат достигается за счет того, что формируют фиксированную выборку значений квадратов дальности, оценивают второе приращение квадрата дальности за обзор путем оптимального взвешенного суммирования значений квадратов дальности, делят эту оценку на период обзора РЛС во второй степени и получают значение квадрата модуля скорости АЦ, летящей по линейной траектории. Повышение точности определения модуля скорости достигается за счет устранения влияния ошибок измерения азимута и угла места. 4 ил.

Способ определения модуля скорости баллистической цели в наземной радиолокационной станции относится к радиолокации. Достигаемый технический результат изобретения - повышение точности определения модуля скорости баллистической цели (БЦ) в наземных радиолокационных станциях (РЛС) с грубыми измерениями угла места и азимута. Указанный результат достигается тем, что через интервалы времени, равные периоду обзора Т0 РЛС, измеряют дальность и высоту БЦ. Определяют оценку высоты БЦ в середине интервала наблюдения путем взвешенного суммирования N оцифрованных измерений высоты. Определяют оценку второго приращения квадрата дальности за обзор путем взвешенного суммирования N оцифрованных сигналов квадратов дальности. Определяют геоцентрический угол между РЛС и БЦ в середине интервала наблюдения по формуле , где rcp - дальность до БЦ в середине интервала наблюдения, Rз - радиус Земли. Определяют ускорение силы тяжести в середине интервала наблюдения по формуле , где g0 - ускорение силы тяжести на поверхности Земли. Определяют значение модуля скорости БЦ в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле . 4 ил., 2 табл.

Изобретение относится к устройствам траекторной обработки радиолокационной информации. Достигаемый технический результат изобретения - повышение чувствительности устройств определения времени окончания активного участка (АУТ) баллистической траектории за счет исключения измерений угла места из обрабатываемых выборок. Для этого на вход устройства определения времени окончания АУТ подают данные измерений дальности ракеты через одинаковые интервалы времени, равные периоду обзора РЛС, вычисляют квадраты значений дальности, формируют фиксированную выборку значений квадратов дальности типа «скользящего окна», находят оценку второго приращения квадрата дальности путем оптимального взвешенного суммирования выборки значений квадратов дальности, делят эту оценку на период обзора радиолокационной станции во второй степени и получают значение оценки ускорения по квадрату дальности, вычисляют среднеквадратическую ошибку оценки, в каждом новом положении «скользящего окна» сравнивают оценку ускорения по квадрату дальности со среднеквадратической ошибкой оценки. Решение об окончании активного участка принимают в момент времени, когда значение оценки ускорения по квадрату дальности становится больше величины среднеквадратической ошибки оценки. 3 ил., 4 табл.

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях для улучшения обнаружения радиолокационных сигналов на фоне пассивных помех. Достигаемый технический результат изобретения - устранение формирования ложного сигнала картографирования по двум (или более) близкорасположенным целям при сохранении качества картографирования пассивных помех. Указанный результат достигается тем, что в устройство-прототип, содержащее обнаружитель сигналов, два логических элемента "И", два устройства расширения строба по дальности, счетчик целей, пороговое устройство, вводятся оперативное запоминающее устройство, линия задержки, третий логический элемент "И", устройство ранжирования, умножитель и второе пороговое устройство с соответствующими связями. 4 ил.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных системах управления воздушным движением и контроля воздушно-космического пространства

Изобретение относится к радиолокации и может быть использовано в импульсных радиолокационных станциях (РЛС)

Изобретение относится к радиолокации и служит для определения угловых координат постановщиков шумовых активных помех (ПШАП) и оценки частотного распределения мощности шумовых активных помех (ШАП) в диапазоне рабочих частот пеленгатора, на основе которой производится выбор оптимальной частоты пеленгации

 


Наверх