Способ разбраковки кмоп микросхем, изготовленных на кнд структурах, по радиационной стойкости



Способ разбраковки кмоп микросхем, изготовленных на кнд структурах, по радиационной стойкости
Способ разбраковки кмоп микросхем, изготовленных на кнд структурах, по радиационной стойкости

 


Владельцы патента RU 2444742:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (RU)
Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Научно-исследовательский институт измерительных систем им. Ю.Е. Седакова" (RU)

Изобретение относится к области электронной техники, в частности предназначено для разбраковки КМОП микросхем, изготовленных на КНД ("кремний на диэлектрике") структурах, по радиационной стойкости. Технический результат: не требуется облучение каждой микросхемы источниками радиационного излучения снижение времени и трудозатрат. Сущность: производят облучение статистически значимой выборки микросхем выбранного типа до требуемой дозы с периодическим измерением статического тока потребления. Для каждой микросхемы из выборки предварительно на пластинах измеряют сопротивление тестового резистора "р-карман", расположенного на дорожке реза кристалла. Определяют норму на сопротивление тестового резистора "р-карман" путем сопоставления максимальных значений статического тока потребления при наборе дозы и значений сопротивления тестового резистора "р-карман" с учетом требуемой нормы на статический ток потребления для выбранного типа микросхем. Разбраковку последующих партий микросхем проводят по критерию сопротивления тестового резистора "р-карман", измеренного для каждой микросхемы на пластинах. 2 ил.

 

Изобретение относится к области электронной техники, в частности предназначено для разбраковки КМОП микросхем, изготовленных на КНД ("кремний на диэлектрике") структурах, по радиационной стойкости.

КМОП микросхемы, изготовленные на КНД структурах, обладают высокой стойкостью к импульсному радиационному воздействию и применяются в приборах с наиболее высокими требованиями по радиационной стойкости. Однако при воздействии накопленной дозы зачастую наблюдаются параметрические отказы КМОП микросхем, а именно, превышение нормы статического тока потребления. При этом остальные параметры КМОП микросхем, как правило, соответствуют техническим условиям, но применение таких микросхем для отдельных групп приборов становится невозможным.

Функциональных отказов КМОП микросхем при этом не происходит до доз, превышающих 1 Мрад. Степень дозовой деградации статического тока потребления КМОП микросхем сильно варьируется как от партии к партии, так и в каждой отдельной партии изготавливаемых микросхем. Разброс величины статического тока потребления при радиационном воздействии даже на одной пластине может составлять два порядка.

Известен способ отбора радиационно стойких изделий электронной техники [1], включающий облучение партии изделий сравнительно небольшой дозой гамма-квантов или электронов с последующим отбором и исключением из партии приборов с наибольшими изменениями параметров. Возможно также облучение полной дозой, эквивалентной ожидаемой поглощенной дозе радиации в реальных условиях эксплуатации, и восстановление начальных параметров после облучения с помощью отжига при повышенной температуре.

Недостатком этого способа в части разделения изделий по изменению параметров при облучении малой дозой является необходимость облучения каждой микросхемы, что снижает их рабочий ресурс; невозможность определения дозы отказа, а в части облучения изделий до отказа - необходимость длительного воздействия на микросхему повышенной температурой; а также невозможность полного восстановления параметров при проведении длительного низкотемпературного отжига до первоначальных значений параметров изделий из-за накопления радиационных дефектов при облучении большой дозой, при которой возник отказ.

Существует также способ разделения КМОП микросхем по радиационной стойкости и надежности [2], включающий облучение партии микросхем малой дозой, измерение их электрических параметров и последующий отжиг до стабилизации параметров. Облучение проводят поэтапно с количеством этапов не менее двух, помимо стандартных параметров измеряют минимальное напряжение питания каждой микросхемы, при котором сохраняется ее функционирование, строят дозовые зависимости, описывающие изменение стандартных параметров и минимального напряжения функционирования под действием облучения, и с их помощью прогнозируют для каждой микросхемы дозу отказа, при которой хотя бы один стандартный параметр достигнет своего предельного значения или минимальное напряжение питания достигнет номинального значения напряжения питания микросхемы, а надежность микросхемы определяют после отжига по отклонению значения одного или нескольких стандартных параметров или минимального напряжения питания от их исходных значений до облучения.

Недостатками этого способа является необходимость радиационного воздействия на каждую микросхему, длительное температурное воздействие (отжиг) с целью стабилизации параметров, значительная трудоемкость в определении изменения стандартных параметров и минимального напряжения функционирования под действием облучения.

Наиболее близким (прототипом) к заявляемому изобретению является способ разбраковки КМОП микросхем, изготовленных на КНД структурах, по стойкости к радиационному воздействию [3], при котором разбраковка происходит путем поэтапного облучения микросхем малой дозой, в качестве критериального параметра, определяющего радиационную стойкость микросхем, выбирают статический ток потребления, а для восстановления исходных параметров микросхем проводят их дополнительное облучение при заземленных выводах.

Недостатком этого способа является необходимость радиационного воздействия на КМОП микросхему, что снижает ее рабочий ресурс, а сама операция радиационного воздействия требует повышенного внимания к технике безопасности и проводится индивидуально для каждого изделия, что приводит к значительным трудозатратам и, соответственно, повышению стоимости микросхем.

Технический результат заключается в том, что предложенный способ не требует облучения каждой микросхемы источниками радиационного излучения при разбраковке, а также позволяет существенно снизить время и трудозатраты на производство микросхем.

Технический результат достигается тем, что в способе разбраковки КМОП микросхем, изготовленных на КНД структурах, по радиационной стойкости производят облучение статистически значимой выборки микросхем выбранного типа до требуемой дозы с периодическим измерением статического тока потребления, для каждой микросхемы из выборки предварительно на пластинах измеряют сопротивление тестового резистора "р-карман", расположенного на дорожке реза кристалла, определяют норму на сопротивление тестового резистора "р-карман" путем сопоставления максимальных значений статического тока потребления при наборе дозы и значений сопротивления тестового резистора "р-карман" с учетом требуемой нормы на статический ток потребления для выбранного типа микросхем, разбраковку последующих партий микросхем проводят по критерию сопротивления тестового резистора "р-карман", измеренного для каждой микросхемы на пластинах.

Способ реализуется следующим образом.

На Фиг.1 приведено распределение стойких (сплошная) и нестойких (пунктир) микросхем магистрального приемопередатчика по сопротивлению тестового резистора "р-карман".

На Фиг.2 приведена иллюстрация сдвига профиля распределения бора по толщине области "р-карман" n-канального транзистора (до разгонки примеси бора).

Для выбранного типа КМОП микросхем формируется статистически значимая выборка функционально годных микросхем на пластинах (не менее 30 шт.). Для выбранных микросхем с помощью зондовой установки измеряется сопротивление тестового резистора "р-карман" Rp, расположенного на дорожке реза кристалла микросхемы. После сборки корпуса микросхемы облучаются в активном режиме до требуемой дозы на рентгеновском имитаторе или моделирующей установке с периодическим измерением статического тока потребления. Затем максимальное значение статического тока потребления при радиационном воздействии сопоставляется со значением сопротивления тестового резистора "р-карман". С учетом известной нормы на статический ток потребления для выбранного типа микросхем определяется Rm-норма на сопротивление тестового резистора "р-карман" (фиг.1).

Для последующих партий микросхем данного типа с помощью зондовой установки измеряется сопротивление тестового резистора "р-карман" Rp всех функционально годных микросхем на пластине. Бракуются микросхемы с сопротивлением Rp≥Rm, где Rm - определенная выше норма на сопротивление тестового резистора "р-карман".

Пример реализации способа.

Предварительно были сформированы две выборки из 80 функционально-годных экспериментальных образцов (на пластинах) микросхемы магистрального приемопередатчика и 195 функционально-годных экспериментальных образцов микросхемы масочного ПЗУ. У каждой микросхемы из выборок до сборки измерялось сопротивление тестового резистора "р-карман" с размерами 50×50 мкм из состава тестовой линейки кристалла микросхемы. После сборки микросхемы облучались на рентгеновском имитаторе в активном режиме до дозы 1000 крад с периодическим (через каждые 20 крад) измерением статического тока потребления. Затем максимальное значение статического тока потребления при воздействии сопоставлялось со значением сопротивления тестового резистора "р-карман". В результате статистического анализа данных было установлено наличие сильной корреляционной связи между статическим током потребления микросхем при дозовом воздействии и сопротивлением тестового резистора "р-карман".

В рамках степенной регрессионной модели коэффициент корреляции для разных партий микросхем составил от 0,6 до 0,9. Причем, используемая степенная модель является статистически значимой с доверительной вероятностью более 95% (при расчетах использовался критерий значимости Фишера).

В соответствии с заявляемым способом была определена Rm-норма на сопротивление тестового резистора "р-карман", соответствующая норме на статический ток потребления при радиационном воздействии. Норма Rm была определена как минимальное значение сопротивления тестового резистора "р-карман" нестойких микросхем из выборки. Для экспериментальных образцов микросхемы магистрального приемопередатчика норма Rm составила 70 кОм, для масочного ПЗУ норма Rm составила 100 кОм.

Для трех последующих партий микросхем данных типов в процессе функционального контроля на пластинах измерялось сопротивление тестового резистора "р-карман", и микросхемы со значением Rp≥Rm браковались. Микросхемы, прошедшие разбраковку, испытывались на стойкость к дозовому воздействию как на моделирующих, так и на имитирующих испытательных установках. Результаты испытаний микросхем, прошедших разбраковку, оказались положительными.

Теоретическое обоснование заявляемого способа можно получить в рамках модели образования повышенного статического тока потребления КМОП микросхем, изготовленных на КНД структурах, при воздействии накопленной дозы, которая опирается на современные представления о механизмах дозовой деградации КМОП микросхем [4, 5]. Модель заключается в следующем.

На границе раздела "кремний-диэлектрик" имеются структурные дефекты, обусловленные различием кристаллических решеток кремния и диэлектрической подложки, разностью температурных коэффициентов расширения этих материалов, а также примесные дефекты, связанные с взаимной диффузией атомов. При проведении операции ионного легирования области "р-кармана" бором, существенная часть атомов бора локализуется в подложке, образуя со структурными дефектами незаряженные в нормальном состоянии комплексы. При радиационном воздействии эти комплексы заряжаются положительно, отдавая электроны, которые под воздействием поля стока уходят из приграничной области, образуя глубокие уровни в запрещенной зоне, которые могут длительное время удерживать образующийся заряд. Число центров образования положительного заряда пропорционально концентрации легирующей примеси, попадающей в диэлектрик. Под воздействием области радиационно-индуцированного заряда, играющего роль затвора, образуется «паразитный» канал на границе раздела, который, в свою очередь, обуславливает значительный ток утечки n-канальных транзисторов и статический ток потребления КМОП микросхем в целом при дозовом воздействии.

Таким образом, на статический ток потребления КМОП микросхем большое влияние оказывает распределение акцепторной примеси (бора) в области "р-карман" n-канальных транзисторов.

Вследствие технологического разброса параметров ионной имплантации бора, толщины гетероэпитаксиального слоя кремния, концентрации дефектов в нарушенном слое максимум распределения бора в области "р-карман" может смещаться в направлении границы раздела "кремний-диэлектрик" (фиг.2).

При увеличении доли атомов бора, локализованных в диэлектрике, растет число структурных дефектов в приграничной области, которые при воздействии накопленной дозы вносят вклад в накопление положительного заряда вблизи границы раздела "кремний-диэлектрик", что приводит к росту тока утечки n-канального транзистора и статического тока потребления КМОП микросхемы в целом. Сопротивление тестового резистора "р-карман" также в большой степени определяется примесно-дефектным составом слоя. При сдвиге максимума распределения бора в направлении границы раздела "кремний-диэлектрик" концентрация акцепторной примеси в слое кремния падает, что приводит к росту сопротивления тестового резистора "р-карман".

Таким образом, наличие сильной корреляции между статическим током потребления КМОП микросхем при радиационном воздействии и сопротивлением тестового резистора "р-карман", на которой основан предложенный способ разбраковки, объясняется тем, что эти параметры одинаковым образом зависят от характера распределения бора в области «р-карман» КМОП микросхемы.

Список литературы

1. Чернышев А.А., Ведерников В.В., Галеев А.И., Горюнов Н.Н. Радиационная разбраковка полупроводниковых приборов и интегральных схем. - Зарубежная электронная техника. 1979. Вып.5. С.3-25.

2. Патент №2254587 РФ, МПК G01R 31/26, 31/28. Способ разделения интегральных микросхем по радиационной стойкости и надежности. // Опубликован 20.06.2005.

3. Патент №2364880 РФ, МПК G01R 31/26, 31/28. Способ разбраковки КМОП микросхем, изготовленных на КНД структурах, по стойкости к радиационному воздействию. // Опубликован 20.08.2009. - Бюл. №23 (прототип).

4. Buchaman et al. SOS devices radiation effects // IEEE Trans. on ED. vol.25. No.8. 1978. pp.960-970.

5. Narai E., Megreivy D. Radiation Induced Leakage Currents in n-Channel Silicon-on-Sapphire MOST's. IEEE Trans. on NS. Vol.24. No.11. 1977. pp.1277-1284.

Способ разбраковки КМОП микросхем, изготовленных на КНД структурах, по радиационной стойкости, путем облучения статистически значимой выборки микросхем выбранного типа до требуемой дозы с периодическим измерением статического тока потребления, отличающийся тем, что для каждой микросхемы из выборки предварительно на пластинах измеряют сопротивление тестового резистора "р-карман", расположенного на дорожке реза кристалла, определяют норму на сопротивление тестового резистора "р-карман" путем сопоставления максимальных значений статического тока потребления при наборе дозы и значений сопротивления тестового резистора "р-карман" с учетом требуемой нормы на статический ток потребления для выбранного типа микросхем, разбраковку последующих партий микросхем проводят по критерию сопротивления тестового резистора "р-карман", измеренного для каждой микросхемы на пластинах.



 

Похожие патенты:

Изобретение относится к испытательной технике и может быть использовано для диагностики функционирования микросхем оперативной памяти во всех отраслях микроэлектроники и радиотехники.

Изобретение относится к контрольно-измерительной технике. .

Изобретение относится к области электротехники и может использоваться в источниках питания для исключения в них коротких замыканий при «пробое» тиристоров и сохранения выходного напряжения.

Изобретение относится к области электронной техники, в частности предназначено для отбраковки КМОП микросхем, изготовленных на КНД (кремний на диэлектрике) структурах, по радиационной стойкости.

Изобретение относится к области вычислительной и контрольно-измерительной техники и может быть использовано для контроля программируемых логических интегральных схем, в частности, иностранного производства.

Изобретение относится к солнечной энергетике, в частности к имитаторам солнечного излучения на основе импульсных газоразрядных ламп для измерения световых вольтамперных характеристик и других фотоэлектрических параметров солнечных фотоэлементов и фотоэлектрических модулей с концентраторами излучения.

Изобретение относится к области электроизмерительной техники и может быть использовано при разработке оперативных методов и средств определения или неразрушающего контроля значений теплоэлектрофизических параметров и электрофизической диагностики проводящих или резистивных структур интегральных схем (ИС).

Изобретение относится к области электронной техники, в частности предназначено для разбраковки микросхем оперативного запоминающего устройства (ОЗУ) по уровню бессбойной работы (УБР).

Изобретение относится к области приборостроения и может быть использовано в контрольно-поверочной аппаратуре, для измерения технических параметров аварийных радиомаяков и радиобуев

Изобретение относится к технике измерения параметров интегральных микросхем и может быть использовано для контроля качества цифровых интегральных микросхем на основе КМОП логических элементов (ЛЭ)
Изобретение относится к полупроводниковой микроэлектронике и может быть использовано при создании и многократном регулировании сопротивления металлических перемычек, соединяющих электроды твердотельных приборов, работа которых основана на полярнозависимом электромассопереносе в кремнии (ПЭМП)

Изобретение относится к способам испытаний полупроводниковых приборов на стойкость к воздействию тяжелых заряженных частиц различных энергий космического пространства. Техническим результатом является снижение стоимости и продолжительности испытаний на радиационную стойкость, а также повышение достоверности результатов испытаний. В способе испытаний полупроводниковых БИС технологии КМОП/КНД на стойкость к эффектам единичных сбоев от воздействия тяжелых заряженных частиц (ТЗЧ) космического пространства путем облучения ограниченной выборки БИС импульсным ионизирующим излучением облучение производят гамма-нейтронным излучением импульсного ядерного реактора (ИЯР) со средней энергией 1,0-3,0 МэВ или импульсным рентгеновским излучением электрофизических установок (ЭФУ) с эквивалентной дозой, вызывающей равную с ТЗЧ генерацию радиационно-индуцированного заряда в чувствительном объеме БИС, и для определения стойкости к воздействию ТЗЧ с величиной порогового значения линейных потерь энергии LETTH в диапазоне от единиц до сотни МэВ·см2/мг используют значение коэффициента относительной эффективности RDEF (Relative Dose Enhancement Factor) воздействия полной поглощенной дозы рентгеновского или гамма-излучения по отношению к величине LETTH с использованием представленного соотношения. 6 з.п. ф-лы, 6 ил., 8 табл.

Изобретение предназначено для использования на выходном и входном контроле качества цифровых КМОП интегральных микросхем и оценки их температурных запасов. Сущность: на входы одного или нескольких логических элементов контролируемой микросхемы подают последовательность высокочастотных переключающих греющих импульсов частотой Fгр, модулированных последовательностью прямоугольных видеоимпульсов с постоянным периодом следования Тсл, длительность τр которых изменяется по гармоническому закону с частотой ΩМ. На частоте модуляции ΩМ выделяют и измеряют амплитуду первой гармоники тока, потребляемого контролируемой микросхемой, амплитуду первой гармоники температурочувствительного параметра - выходного напряжения логической единицы того логического элемента, состояние которого не изменяется, и сдвиг фазы φ(ΩМ) между первой гармоникой тока, потребляемого контролируемой микросхемой, и первой гармоникой температурочувствительного параметра. По измеренным величинам определяют модуль и фазу теплового импеданса контролируемой микросхемы на частоте ΩМ. Технический результат: повышение точности измерения. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может применяться для исследования измерительных характеристик и контроля точности работы измерительного устройства многоточечных измерительных систем с входной коммутацией датчиков. Предлагается способ контроля работоспособности многоточечной измерительной системы с входной коммутацией датчиков, заключающийся в том, что к входу коммутатора датчиков подключают формирователь ступеней имитатора сигналов датчиков, соответствующий типу подключаемых датчиков, и измеряют сигналы этого формирователя, по измеренным сигналам формирователя и их известным физическим значениям вычисляют функцию преобразования системы, затем к коммутатору датчиков подсоединяют соответствующий типу подключаемых датчиков второй формирователь ступеней имитатора сигналов датчиков, физические значения сигналов которого заранее известны, измеряют сигналы этого формирователя, по результатам этих измерений и вычисленной функции преобразования системы вычисляют значения сигналов второго формирователя ступеней имитатора и определяют разности с известными их значениями, по величине этих разностей оценивают степень работоспособности системы. Применение изобретения позволит упростить способ контроля, повысить надежность контроля работоспособности измерительного устройства для обеспечения измерения сигналов датчиков с заданной точностью и сократить время подготовки к проведению измерений многоточечной измерительной системы с входной коммутацией датчиков. 1 ил.

Способ предназначен для использования на выходном и входном контроле качества сверхбольших интегральных схем (СБИС) - микропроцессоров и микроконтроллеров - и оценки их температурных запасов. В контролируемую СБИС, установленную на теплоотводе и подключенную к источнику питания, загружают специальный «разогревающий» тест и программу управления и включают в режим периодического нагрева путем переключения контролируемой СБИС из режима выполнения специального теста в режим паузы с частотой Ω и скважностью 2. На частоте модуляции Ω выделяют и измеряют амплитуду I m 1 п о т ( Ω ) первой гармоники тока, потребляемого контролируемой СБИС, амплитуду U m 1 Т П ( Ω ) первой гармоники температурочувствительного параметра с известным отрицательным температурным коэффициентом KT, например, напряжения на встроенном в ядро СБИС р-n переходе или напряжения логической единицы на одном из нагруженных резистивной нагрузкой выводов СБИС, логическое состояние которого не изменяется при переключении СБИС из одного режима в другой, и сдвиг фазы φ(Ω) между первой гармоникой тока, потребляемого контролируемой СБИС, и первой гармоникой температурочувствительного параметра. Модуль теплового импеданса контролируемой СБИС на частоте Ω определяют по формуле: | Z T ( Ω ) | = U m 1 Т П ( Ω ) K T U п и т I m 1 п о т ( Ω ) , где Uпит - напряжение питания контролируемой БИС, а фазу φT(Ω) теплового импеданса контролируемой СБИС определяют как уменьшенную на 180° разность фаз между первой гармоникой температурочувствительного параметра и первой гармоникой тока, потребляемого контролируемой СБИС. 2 ил.

Изобретение относится к области приборостроения и может быть использовано для измерения температуры активной области светоизлучающих диодов. Заявлен cпособ измерения переходных тепловых характеристик светоизлучающих диодов (СИД), при котором инжекционный ток подают в виде последовательности импульсов нарастающей длительности с периодом между импульсами, достаточными для остывания активной области и не менее времени считывания сигнала с выхода фотоприемной линейки. Далее на СИД подают постоянный инжекционный ток и измеряют спектр излучения в заданные моменты времени в течение цикла измерения вплоть до полного разогрева СИД. В устройстве для реализации способа последовательно соединены генератор инжекционного тока, светоизлучающий диод, электрооптический затвор, монохроматор и приемно-преобразовательный блок, включающий в качестве фотоприемного устройства многоэлементную фотоприемную линейку, первый и второй генераторы импульсов, АЦП и микроконтроллер. Управляющие выходы микроконтроллера соединены с входом генератора инжекционного тока и с входом первого генератора импульсов, выход которого соединен с управляющими входами электрооптического затвора и второго генератора импульсов, выходы которого соединены с управляющими входами фотоприемного устройства и АЦП. Технический результат - повышение точности определения переходных тепловых характеристик светоизлучающих диодов. 2 н.п. ф-лы, 2 ил.

Изобретение относится к микроэлектронике, а именно к способам испытаний интегральных схем (ИС) на коррозионную стойкость. Сущность: перед испытанием ИС проводят проверку внешнего вида, электрических параметров и проверку герметичности, нагревают до температуры плюс 125°С со скоростью не более 100°С/мин, выдерживают при этой температуре 1 ч, резко охлаждают до минус 55°С со скоростью не более 100°С/мин, выдерживают при данной температуре 0,5 ч, плавно нагревают до плюс 2°С в течение 1 ч. и выдерживают в течение 0,5 ч. Проводят не менее 16 непрерывно следующих друг за другом циклов по 3 ч каждый. Технический результат: повышение объективности оценки наличия влаги внутри корпуса ИС. 1 ил.

Изобретение относится к технике испытаний и может быть использовано при наземной экспериментальной отработке радиоэлектронной аппаратуры космических аппаратов в диапазоне давлений окружающей среды от атмосферного до соответствующего глубокому вакууму. Технический результат - повышение достоверности испытаний элементов радиоэлектронной аппаратуры на стойкость к дугообразованию при выходе из строя электрорадиотехнического изделия внутри радиоэлектронной аппаратуры, приводящего к инициированию первичного дугового разряда и способного приводить к вторичным самоподдерживающимся дугам при недостаточной стойкости испытываемого элемента аппаратуры. Питание первичного дугового разряда, горящего в промежутке между электродами, осуществляется с использованием напряжения, равного напряжению бортовой кабельной сети космического аппарата, а инициирование разряда осуществляется путем электрического пробоя промежутка высоковольтным импульсом напряжения, длительность которого не превышает времени прохождения плазменным фронтом расстояния от места инициирования разряда до крайней точки электродов, обращенной в сторону испытываемого элемента. 2 ил.
Наверх