6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-c]1,2,4-триазин-7(4н)-он



6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-c]1,2,4-триазин-7(4н)-он
6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-c]1,2,4-триазин-7(4н)-он
6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-c]1,2,4-триазин-7(4н)-он
6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-c]1,2,4-триазин-7(4н)-он
6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-c]1,2,4-триазин-7(4н)-он
6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-c]1,2,4-триазин-7(4н)-он
6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-c]1,2,4-триазин-7(4н)-он
6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-c]1,2,4-триазин-7(4н)-он
6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-c]1,2,4-триазин-7(4н)-он

 


Владельцы патента RU 2455304:

Учреждение Российской академии наук Институт органического синтеза им. И.Я. Постовского Уральского отделения РАН (RU)
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)

Описывается новое соединение - 6-(2'-Амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-с]1,2,4-триазин-7(4Н)-он формулы (2)

обладающее противовирусным действием и низкой токсичностью. Данное соединение может найти применение в медицине. 1 пр., 3 ил.

 

1. Область техники, к которой относится изобретение

Изобретение относится к области биологически активных соединений и касается 6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-с]1,2,4-триазин-7(4Н)-она, обладающего противовирусным действием, предназначенного для лечения и профилактики вирусных инфекционных заболеваний животных и человека. Изобретение может быть использовано в лечебных учреждениях, научно-исследовательских лабораториях, а также в животноводстве и птицеводстве.

2. Уровень техники

Имеются данные о противогерпетическом действии 6-фенил-4-гидроксибутил-1,2,4-триазоло[5,1-с]-1,2,4-триазин-7(4Н)-она (В.Л. Русинов, О.Н.Чупахин, Е.Н.Уломский и др., патент РФ №2345080 от 27.01.2009), а также 4-((Z)-4'-Гидроксибутен-2'-ил)-2-R-6-фенил-1,2,4-триазоло[5,1-с][1,2,4]триазин-7-онов (О.Н.Чупахин, В.Л.Русинов, Е.Н.Уломский и др., патент РФ №2376307 от 20.12.2009 г.). Противовирусным действием в отношении вирусов гриппа типов А и В обладают 2-R-6-нитро-4-аллилоксиметил-1,2,4-триазоло[5,1-с]-1,2,4-триазин-7(4Н)-оны, R=Н, CH3, SCH3 (В.Л.Русинов, Е.Н.Уломский, С.Л.Деев. И др., патент РФ №2340614 от 10.12.2008; В.Л.Русинов, О.Н.Чупахин, С.Л.Деев, Т.С.Шестакова, Е.Н.Уломский, Л.И.Русинова, О.И.Киселев, Э.Г.Деева. Синтез и противовирусная активность аналогов нуклеозидов на основе 1,2,4-триазоло[3,2-с][1,2,4]триазин-7(4Н)-онов. Известия АН, Серия химическая, 2010, №1, с.135-142). Наиболее близкое по структуре к заявляемому соединению из этой серии 2-метильтио-6-нитро-4-аллилоксиметил-1,2,4-триазоло[5,1-с]-1,2,4-триазин-7(4Н)-он (1) можно рассматривать в качестве прототипа. При использовании соединения (1) в концентрации 40 мкг/мл в опытах in vitro инфекционный титр вируса гриппа A/H3N2 А/Гонконг/1/68 и вируса гриппа A/H5N1 A/Duck/Singapore R/F119-3/97 снижается на 0,5-3,0 lg. Однако данное соединение при повышении концентрации проявляло цитотоксичность. Концентрация, при которой гибнут 50% клеток (CC50), составляет 80 мкг/мл.

3. Сущность изобретения

Сущность изобретения составляет 6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-с]1,2,4-триазин-7(4Н)-он формулы (2)

обладающий противовирусным действием.

4. Сведения, подтверждающие возможность осуществления изобретения.

4.1. Синтез 6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-с]1,2,4-триазин-7(4Н)-она

Пример 1. К 2-метилтио-6-нитро-4-пивалоилоксиметил-1,2,4-триазоло[5,1-с]1,2,4-триазин-7(4Н)-ону, полученному из 0,05 моль натриевой соли 2-метилтио-6-нитро-1,2,4-триазоло[5,1-с]1,2,4-триазин-7-она, дигидрата действием 0,05 моль хлорметилпивалата с использованием диметилформамида в качестве растворителя, прибавляют раствор 1 эквивалента цистеина в этаноле. По окончании реакции растворитель удаляют в вакууме, а полученный осадок очищают с помощью хроматографической колонки (элюент - ацетонитрил: вода = 8:1).

Выход соединения (2) составляет 51%.

Химическая схема синтеза заявляемого соединения 6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-с]1,2,4-триазин-7(4Н)-он (2) имеет следующие физико-химические характеристики: Тпл=204°C; 1H ЯМР спектр в D2O δ, м.д.: 5,18 (д., 1H, CH2), 5,13 (д, 1H, СН2), 4,19 (м., 1H, CH), 3,91 (м., 1H, SCH2), 3,39 (м, 1Н, SCH2), 2,69 (с., 3H, CH3), 1,18 (д., 9H, C(CH3)3). Найдено: С - 40,56, H - 4,77, N - 20,32. Брутто-формула - C14H20N6O5S2. Вычислено: C - 40,38, H - 4,84, N - 20,18%.

Заявляемое соединение представляет собой светло-желтое кристаллическое вещество, растворимое в воде, метаноле, диметилсульфоксиде, нерастворимое в бензоле, эфире и большинстве других растворителей.

4.2. Противовирусные свойства 6(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-4,7-дигидро-1,2,4-триазоло[5,1-с]1,2,4-триазин-7-она (2)

Пример 2. Определение токсичности и противовирусной активности соединений в отношении вируса гриппа

Клетки. Использовали односуточную монослойную эпителиальную культуру клеток MDCK (почка собаки).

Вирусы. Для оценки противовирусной активности использовали эталонный вирус A/Puerto Rico/8/34, а также пандемический вирус гриппа H1N1v А/Санкт-Петербург/2/09 (подобный так называемому вирусу «свиного гриппа» A/California/7/09).

Максимальные переносимые концентрации соединений определяли с помощью МТТ-теста в культуре клеток MDCK.

Проверка токсичности осуществлялась по следующей схеме: навеска весом 5 мг отвешивалась в стерильную пробирку объемом 5 мл и разводилась ростовой средой для клеток MDCK (α-МЕМ, Биолот, Санкт-Петербург) до концентрации 1 мг/мл, получая таким образом базовый раствор. Далее этой же средой делали 8 последовательных двоичных разведении (500; 250; 125; 62,5; 31,25; 15,13; 7,56 и 3,78 мкг/мл соответственно), которые и использовали для проверки токсичности. Опыт ставили в 4 параллелях для каждой концентрации. Односуточную культуру клеток MDCK, выращенных на 96-луночных планшетах (Costar), проверяли визуально в инвертированном микроскопе на целостность монослоя. Планшеты дважды отмывали средой, не содержащей сыворотки, после чего вносили испытуемое соединение в соответствующей концентрации в объеме 100 мкл в каждую лунку. Планшеты инкубировали 72 часа при 37°C в присутствии 5% CO2, после чего регистрировали результаты опыта визуально, оценивая целостность монослоя по сравнению с контролем клеток, и методом МТТ (количественно оценивающем жизнеспособность клеток) с использованием планшетного ридера Hydex Chameleon. Статистическую обработку результатов проводили с использованием программы Statistica 6.0.

Оценку противовирусной активности проводили для 2 концентраций: максимальной концентрации (из двоичных разведении), при которой выживало 100% клеток монослоя, и концентрации, равной половине предыдущей. Для оценки противовирусной активности использовали эталонный вирус A/Puerto Rico/8/34. Односуточную культуру клеток MDCK, выращенных на 96-луночных планшетах (Costar), проверяли визуально в инвертированном микроскопе на целостность монослоя. Далее готовили десятикратные вирусные разведения на поддерживающей ростовой среде с добавлением трипсина (с -1 по -6). Планшеты с монослоем клеток дважды отмывали средой, не содержащей сыворотки, после чего вносили вирусные разведения в соответствующие лунки планшета в объеме 50 мкл. Контрольные лунки заполняли ростовой средой в равном объеме. Планшеты инкубировали 60 мин при 37°C в присутствии 5% CO2, после чего отмывали средой для того, чтобы удалить не связывающиеся с клетками вирусные частицы. Далее вносили препарат в лунки с вирусными разведениями по 100 мкл в соответствующей концентрации. Каждая концентрация исследуемого соединения была поставлена в четырех параллелях для каждого вирусного разведения. Контрольные лунки заполняли ростовой средой в том же объеме. Также оставляли лунки для повторной проверки токсичности используемых концентраций. Планшеты инкубировали 72 часа при 37°C, после чего регистрировали результаты опыта визуально, оценивая целостность монослоя по сравнению с контролем клеток и степень цитопатического действия вируса на культуру клеток, ставили реакцию гемагглютинации и использовали метод МТТ для количественной оценки жизнеспособности клеток с использованием планшетного ридера Hydex Chameleon.

Статистическую обработку результатов проводили с использованием программы Statistica 6.0 [Боровиков В.П., Боровиков И.П. Statistica. Статистический анализ и обработка данных в среде Windows. - М., 1997. - С.33-34], применяя регрессионный анализ [Рокицкий П.Ф. Биологическая статистика. - Минск, 1967. - С.155]. Результаты представлены с помощью графиков, полученных на основе уравнения линейной регрессии, имеющего общий вид y=k+b*x, в котором переменная у выражена через константу k и угловой коэффициент b, умноженный на переменную х. При этом на графике указывается коэффициент детерминации, обозначенный как r2 и выражающий разброс значений около линии регрессии по отношению к общему разбросу значений. Чем ближе значение r2 к 1, тем лучше данная модель объясняет изменчивость соответствующих переменных. Доверительный интервал для всех регрессионных уравнений был равен 95%.

Оценка токсичности заявляемого соединения

Оценка токсичности, как и оценка противовирусного действия препаратов, производилась тремя методами:

1) Наблюдение и оценка целостности монослоя клеток под инвертированным микроскопом. Подразумевает сравнение морфологии клеток контрольных лунок с опытными и регистрацию изменений под воздействием агента (препарата, вируса и т.д.). Изменение морфологии может включать нарушение целостности монослоя, изменения формы клеток, проявление цитопатического действия при вирусной инфекции.

2) Регистрация присутствия вируса в реакции гемагглютинации со взвесью куриных эритроцитов (0,75%). Реакция гемагглютинации (РГА) позволяет оценить качественное присутствие вируса в пробе.

3) Метод МТТ. Метод, используемый при оценке лекарственной чувствительности, основанный на способности дегидрогеназ живых клеток восстанавливать неокрашенные формы 3-4,5-диметилтиазол-2-ил-2,5-дифенилтераразола (МТТ-реагента) до голубого кристаллического фармазана, растворимого в диметилсульфоксиде или 96% спирте. Насыщенность окраски свидетельствует об интенсивности метаболических процессов в клетках, т.е. о нормальном уровне жизнеспособности. Интенсивность окраски фиксируется с помощью спектрофотометра, и получаемые значения оптической плотности могут быть использованы для статистической обработки данных.

Установлено, что концентрация препарата при которой гибнет 50% клеток монослоя в условиях тестирования на клетках MDCK, составила 177 мкг/мл. Концентрация препарата, при которой выживают все клетки монослоя, составила 62,5 мкг/мл, которая и была использована для проверки антивирусной активности препарата.

В условиях данного тестирования жизнеспособность клеток в контроле составила 0,571±0,044. Таким образом, значение оптической плотности, при которой выживает 50% клеточного монослоя, составляет 0,286. Если отложить данное значение на оси ординат графика, представленного на рис.1, провести через него прямую, параллельную оси абсцисс, а затем из точки пересечения этой прямой с графиком жизнеспособности провести перпендикуляр на ось абсцисс, то мы получим значение, соответствующее концентрации заявляемого соединения, при котором гибнет 50% клеток монослоя (см. рис.2).

Оценка противовирусной активности

Заявляемое соединение по всем трем методам оценки (концентрация = 62,5 мкг/мл) обладало выраженной противовирусной активностью, снижая вирусные титры на 3 lg относительно контроля инфекционной активности вируса.

При построении графика, соответствующего действию заявляемого соединения, коэффициент детерминации r2 был равен 0,86, что говорит о том, что данная модель хорошо объясняет изменчивость тестируемых переменных, а именно эффект тестируемого соединения на клетки, инфицированные вирусом гриппа. При построении перпендикуляров через точки, соответствующие оптической плотности, при которой выживают 50% клеток монослоя, на оси ординат и через точку пересечения данного перпендикуляра с прямой, соответствующей жизнеспособности клеток в условиях применения препарата, имеем следующий график, представленный на рис.3.

Из рисунка 3 следует, что точка пересечения перпендикуляра с осью абсцисс соответствует значению lg вирусного разведения, равного -3,5. С учетом того, что вирус в отсутствии препарата инфицирует клеточный монослой до значения, равного

10-6,5 (инфекционная активность вируса, выясненная в отдельном тестировании при проверке биологических свойств вируса A/PR/8/34), можно говорить о том, что применение данного препарата в условиях in vitro снижает инфекционную активность вируса на 3lg.

Из данных, приведенных выше, видно, что соединение-прототип (1) более токсично, чем заявляемое соединение (для соединения (1) СС50=80 мкг/мл, а для заявляемого соединения CC50=177 мкг/мл). Соединение (1) практически не активно в отношении пандемического вируса гриппа A/H1N1v, штамм - А/Санкт-Петербург/2/09 (A/California/7/09-подобный). В то же время заявляемое соединение (2) в значительно меньших концентрациях, в сравнении с токсическими, обладает выраженной противовирусной активностью, снижая титры вирусов A/Puerto Rico/8/34 и вируса пандемического гриппа H1N1v А/Санкт-Петербург/2/09 (A/California/7/09-подобный) на 3,0 lg в концентрациях 62,5 и 125 мкг/мл соответственно, то есть является более активным противовирусным соединением по сравнению с соединением-прототипом.

6-(2'-Амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-с]1,2,4-триазин-7(4H)-он формулы (2)



 

Похожие патенты:

Изобретение относится к области органической химии и касается синтеза гетероциклических соединений - производных 5,6-дигидро-7Н-пирроло[1,2-d][1,4]бензодиазепин-6-она формулы 1 а-д кипячением 2-амино-N-(2-фуран-2-ил-фенил)-ацетамидов в смеси ледяной уксусной кислоты и концентрированной соляной кислоты с последующей обработкой гидрокарбонатом натрия при кипячении.

Изобретение относится к области антивирусной терапии и, в частности, к ненуклеозидным соединениям, которые ингибируют ВИЧ обратную транскриптазу и применяются для лечения болезней, опосредуемых вирусом иммунодефицита человека (ВИЧ).

Изобретение относится к аморфной форме N-{2-фтор-5-[3-(тиофен-2-карбонил)-пиразоло[1,5-а]-пиримидин-7-ил]-фенил}-N-метил-ацетамида, способам ее получения, фармацевтическим композициям для ингибирования GABA-рецепторов, включающим указанную форму, а также к ее применению в качестве лекарственного средства для лечения и/или предупреждения тревоги, эпилепсии, нарушений сна и бессонницы, для индукции седативно-гипнотического эффекта, для анестезии и расслабления мускулатуры и для модулирования времени, необходимого для индукции сна и его продолжительности.

Изобретение относится к замещенным пиразолопиримидиновым производным формулы (I), где Y1, Y2, Y 3, Y4 представляют собой N или С-, где, по меньшей мере, две группы из Y1-Y4 представляют собой атом углерода, R1 представляет собой хлор или бром, R2-R7 представляют собой, например, водород, метил или этил; и R10 и R11 независимо представляют собой, например, водород или С1-С 6алкил, их оптическим изомерам и фармацевтически приемлемым солям.

Изобретение относится к новым кислотно-аддитивным солям производного пирролопиримидинона, представленного формулой (1), которые выбирают из гентизатной, малеатной, нитратной, фумаратной и полутартратной солей, которые обладают улучшенными свойствами при их использовании, в частности повышенной стабильностью.

Изобретение относится к соединениям формулы (I) и их фармацевтически приемлемым солям. .

Изобретение относится к полиморфу 2-[4-(3-хинолин-6-илметил-3Н-[1,2,3]триазоло[4,5-b]пиразин-5-ил)пиразол-1-ил]этанола, в частности к новой кристаллической фосфатной соли 2-[4-(3-хинолин-6-илметил-3Н-[1,2,3]триазоло[4,5-b]пиразин-5-ил)пиразол-1-ил]этанола.

Изобретение относится к соединению формулы I в которой: Х8 представляет собой N, а X 5 и X6 представляют собой СН; R7 представляет собой фенил или C5-6-гетероарильную группу, необязательно замещенную одной или несколькими группами, выбранными из галогена, гидроксигруппы, нитрогруппы, цианогруппы, карбоксигруппы и тиола, или фенила, или метоксигруппы, -С(=O)СН3, -С(=O)ОСН3, -С(=O)ОСН2СН3, -С(=O)ОС(СН 3)3, -C(=O)NH2, -С(=O)NHCH3 , -C(=O)N(CH3)2, -С(=O)NHCH2 CH3, -С(=O)N(СН2СН3)2 , -NH2, -NHCH3, -N(СН3) 2, -NHCH(СН3)2, -N(СН2 СН3)2 или C1-4-алкила, необязательно замещенного гидроксигруппой; RN3 и RN4, вместе с атомом азота, к которому они присоединены, образуют гетероциклическое кольцо, выбранное из морфолинового, тиоморфолинового, пиперидинильного, пиперазинильного, гомопиперазинильного и пирролидинильного кольца, необязательно замещенного на атоме углерода одной или двумя C1-4-алкильными группами; R2 представляет собой NRN5RN6, где RN5 и R N6, вместе с атомом азота, к которому они присоединены, образуют гетероциклическое кольцо, выбранное из морфолинового, тиоморфолинового, пиперидинильного, пиперазинильного, гомопиперазинильного и пирролидинильного кольца, необязательно замещенного на атоме углерода одной или двумя C1-4-алкильными группами; или его фармацевтически приемлемая соль, и где "С5-6 -гетероарил" означает гетероарильную группу, выбранную из фурана, тиофена, пиррола, имидазола, пиразола, триазола, оксазола, изоксазола, тиазола, изотиазола, оксадиазола, тетразола, оксатриазола, изоксазина, пиридина, пиридазина, пиримидина, пиразина и триазина; и где "С3-5-гетероциклил", как здесь используется, относится к одновалентной структуре, получаемой путем удаления атома водорода из кольцевого атома гетероциклического соединения, где эта структура содержит 5 или 6 кольцевых атомов, из которых от 1 до 4 являются кольцевыми гетероатомами, выбранными из кислорода, азота и серы; и при условии, что когда R2 представляет собой незамещенную морфолиновую группу, RN3 и R N4 вместе с атомом азота, к которому они присоединены, образуют незамещенную морфолиновую группу, R7 не представляет собой незамещенный фенил, и когда R2 представляет собой незамещенный пиперидинил, RN3 и RN4 вместе с атомом азота, к которому они присоединены, образуют незамещенный пиперидинил, R7 не представляет собой незамещенный фенил.

Изобретение относится к медицине, а именно средству с активностью против семейства герпес-вирусов, представляющему собой соль (2,6-дихлорфенил)амида карбопентоксисульфаниловой кислоты общей формулы: где X - Na, К, NH4.
Изобретение относится к фармакологии, а именно к средству для профилактики или лечения herpes labialis или herpes genitalis. .
Изобретение относится к медицине, а именно к вирусологии, фармации, и предназначено для лечения герпетических инфекций. .

Изобретение относится к соединению формулы (I), где R1 выбран из Н, F, Сl, Вr, СF3, C 1-С6 алкокси и ОН; R2 выбран из Н и C1-С6 алкил; n является 1-5; m является 0 или 1; и Y выбран из CH2, NR3, (NR 3R4)+X-, О и S; R 3 и R4 независимо выбраны из Н и C1 -C4 алкил; и X- выбран из фармацевтически приемлемых анионов.
Изобретение относится к медицине и предназначено для лечения затяжных вариантов течения желтухи у новорожденных. .
Изобретение относится к медицине, а именно к инфекционным болезням, и может быть использовано при лечении герпетической инфекции. .

Изобретение относится к новым гидратированным N-фуллерен-аминокислотам общей формулыC60(Н)3{NH(СН 2)nCOOH}3·xH2O, где С60 представляет фуллерен, n=5-7, x=8-10, которые обладают активностью против вируса герпеса, вирусов гриппа различной природы, ВИЧ, а также противоопухолевой и противопсориатической активностью
Наверх