Катализатор и способ синтеза олефинов из диметилового эфира в его присутствии



 


Владельцы патента RU 2518091:

Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) (RU)

Предлагаемое изобретение относится к области получения катализаторов синтеза низших олефинов, а именно этилена и пропилена, из сырья, не являющегося нефтяным. Катализатор синтеза низших олефинов из диметилового эфира на основе цеолита типа пентасила с мольным отношением SiO2/Al2O3=37, содержащего не более 0,04 мас.% оксида натрия, содержит также оксид циркония и/или оксид лантана, связующее - оксид алюминия, и дополнительно оксид магния при следующем соотношении компонентов, мас.%: оксид алюминия - 32,0-34,0, оксид циркония и/или оксид лантана - 0,1-0,5, оксид магния - 0,1-2,0, цеолит - остальное. Синтез низших олефинов из сырьевой смеси, содержащей диметиловый эфир и инертный газ и/или водяной пар, осуществляют при температуре 320-450°C, атмосферном давлении и массовой скорости подачи сырья 500-45000 ч-1 в присутствии указанного катализатора, необработанного или предварительно обработанного водяным паром при температуре 500-750°C. Технический результат - повышение стабильности катализатора в условиях воздействия водяного пара, сохранение высокой степени конверсии и высокой селективности по олефинам C2-C5 в течение длительного времени. 2 н. и 1 з.п. ф-лы, 3 табл., 12 пр.

 

Предлагаемое изобретение относится к области получения катализаторов синтеза низших олефинов, а именно этилена и пропилена, из сырья, не являющегося нефтяным.

Возможность получения низших олефинов из природного газа, в частности из синтез-газа через метанол и диметиловый эфир (ДМЭ), привлекает большое внимание отечественных и зарубежных исследователей.

Однако главным фактором промышленного внедрения этого процесса является не только активность и селективность катализатора, но и его стабильность.

Известен катализатор синтеза низших олефинов из диметилового эфира, описанный в патенте РФ №2445158, на основе цеолита типа пентасил с мольным отношением Si2O/Al2O3=37, содержащего не более 0,04 масс.% оксида натрия, и связующего - оксида алюминия, который дополнительно содержит магний (0,1-2,0 масс.%). В патенте также описан способ получения низших олефинов из смеси, содержащей 10-20 об.% диметилового эфира и 80-90 об.% инертного газа (N2) при повышенной температуре и атмосферном давлении (с конверсией ДМЭ до 97 масс.% и селективностью по C2-C5 олефинам до 82% масс, в том числе по C2-C3 до - 80 мас.%).

Наиболее близким к заявленному изобретению является катализатор синтеза низших олефинов из диметилового эфира, описанный в патенте РФ №2323777, на основе цеолитов типа пентасила с SiO2/Al2O3=25-30, содержащего не более 0,11% масс. оксида натрия, содержащий или оксид цинка, или оксид циркония, или оксид лантана, или их двухкомпонентные смеси и связующее - оксид алюминия. Он обладает высокой активностью. Конверсия ДМЭ в его присутствии составляет 98% масс., а содержание олефинов C2-C5 в углеводородной части достигает 80,4% масс. (из них на долю этилена приходится 26, а на долю пропилена-44,4% масс.). В этом патенте также описан способ получения низших олефинов из диметилового эфира в смеси с инертным газом при температуре 340-400°C, повышенном давлении не выше 10 атм и скорости подачи сырья 2000-3000 ч-1 в присутствии этого катализатора. Этот способ является наиболее близким к заявленному способу.

К недостаткам описанных катализаторов следует отнести невысокую стабильность. Так, катализатор, описанный в патенте РФ №2445158, теряет стабильность и активность после высокотемпературной обработки водяным паром или в присутствии водяного пара, а катализатор, описанный в патенте РФ №2323777, теряет свою активность через 10 часов работы на 40% даже без использования водяного пара.

В условиях промышленного применения данного процесса цеолитсодержащие каталитические системы должны быть устойчивы к воздействию водяных паров при высокой температуре. Кроме того, для повышения стабильной работы цеолитного катализатора его предварительно обрабатывают водяным паром в жестких условиях.

Задача настоящего изобретения заключается в получении катализатора, стабильно работающего в течение долгого времени, устойчивого к водяному пару и предварительным высокотемпературным обработкам водяным паром, при сохранении его высокой активности и селективности в процессе получения C2-C3 олефинов из смесей, содержащих до 20% об. ДМЭ.

Поставленная задача решается тем, что предложен катализатор синтеза низших олефинов из диметилового эфира на основе цеолита типа пентасила, содержащий оксид циркония и/или оксид лантана и связующее - оксид алюминия, причем используют цеолит с мольным отношением SiO2/Al2O3=37, содержащего не более 0,04 мас.% оксида натрия, а катализатор дополнительно содержит оксид магния при следующем соотношении компонентов, мас.%:

оксид алюминия 32,0-34,0
оксид циркония и/или оксид лантана 0,1-0,5
оксид магния 0,1-2,0
цеолит остальное

Поставленная задача решается также тем, что предложен способ синтеза низших олефинов из сырьевой смеси, содержащей диметиловый эфир, при повышенной температуре в присутствии катализатора на основе цеолита типа пентасила, содержащего оксид циркония и/или оксид лантана и связующее - оксид алюминия и дополнительно содержит оксид магния, причем сырьевая смесь дополнительно содержит водяной пар или смесь водяного пара и инертного газа, а синтез олефинов проводят при температуре 320-450°C, атмосферном давлении и массовой скорости подачи сырья 500-45000 час-1 в присутствии указанного катализатора. В частном случае катализатор может быть предварительно обработан водяным паром при температуре 500-750°C.

Предлагаемое изобретение позволяет создать каталитические системы на базе цеолитов, выпускаемых отечественной промышленностью, как с предварительной обработкой водяным паром при температуре 500-750°C, так и без обработки, для процесса получения низших олефинов из смеси диметилового эфира с инертным газом или водяным паром или смесью инертного газа и водяного пара, сохраняющие высокую активность, селективность и стабильность работы.

Технический результат - повышение стабильности катализатора в условиях воздействия водяного пара, сохранение высокой степени конверсии и высокой селективности по олефинам C2-C5 в течение длительного времени.

Нижеследующие примеры иллюстрируют предлагаемое изобретение, но никоим образом не ограничивают область его применения.

Пример 1. Приготовление катализаторов

Для получения катализатора используют цеолит типа пентасил с мольным отношением SiO2/Al2O3=37, содержащий не более 0,04 мас.% оксида натрия. Оксид La и/или Zr вводят в цеолит методом безостаточной пропитки водными растворами соли La до заданного содержания его оксида. Затем цеолит смешивают со связующим - суспензией, содержащей 23% мас. оксида алюминия. Формуют экструдаты с заданным содержанием связующего и пропитывают их раствором соли Mg. Нагревают экструдаты на водяной бане, сушат при 100-110°C в течение не менее 6 часов и прокаливают при 500°C в течение 6 часов.

Пример 2

Катализатор готовят аналогично примеру 1, с той разницей, что в качестве оксида металла используют оксид циркония (Zr) в количестве 0,4% масс. Состав полученного катализатора приведен в таблице 1.

Пример 3

Катализатор готовят аналогично примеру 1, с той разницей, что вводят два оксида металла - оксид лантана (La) и оксид циркония (Zr) в количестве 0,1 и 0,4% масс. соответственно. Состав полученного катализатора приведен в таблице 1.

Состав катализаторов приведен в табл.1.

Таблица 1
Состав используемых катализаторов
Примеры Содержание цеолита в составе катализатора, % масс. Al2O3, % масс. Активный элемент Содержание оксида активного элемента в катализаторе, % масс.
1 66,0 32,9 La 0,1
Mg 1,0
2 66,0 32,6 Zr 0,4
Mg 1,0
3 66,0 32,5 La 0,1
Zr 0,4
Mg 1,0

Способ получения олефинов

Низшие олефины получают из сырья, содержащего от 10 до 20% об. ДМЭ, от 5 до 90% об. инертного газа (N2) и от 25 до 80% об. водяного пара в присутствии описанных выше катализаторов.

Получение низших олефинов из диметилового эфира в смеси с инертным газом осуществляют при атмосферном давлении и температуре 320-450°С, причем более предпочтительными условиями являются проведение процесса при температуре 320-340°С.

Процесс ведут в проточном реакторе с неподвижным слоем катализатора, который возможно многократно регенерировать при температуре 450°С в токе азотовоздушной смеси в течение 6 часов.

Примеры 4-6

Реакцию проводят на катализаторах, полученных по примерам 1-3 при атмосферном давлении и концентрации ДМЭ в исходной смеси 10 об.%, температуре 320°С и массовой скорости ДМЭ 0,9 ч-1 или температуре 380°С и массовой скорости ДМЭ 3,7 ч-1. Катализаторы предварительно обрабатывают водяным паром при Т=500°С в течение не менее 6 часов. Результаты приведены для Т=320°С, весовой скорости ДМЭ (Wдмэ=0,9 ч-1) и Т=380°С (Wдмэ=3,7 ч-1). После паровой обработки каталитические свойства образцов улучшились при Т=320°С, а на La (0,1%)-Zr (0,4%)-Mg (1%)-HZSM-5/Al2O3 и при 380°C сохранилась высокая селективность по олефинам и активность каталитической системы. Для сравнения испытывают образец по прототипу - полученный аналогично примеру 3, но не содержащий магния. Результаты приведены в табл.2.

Таблица 2
Каталитические свойства цеолитсодержащих катализаторов, обработанных водяным паром при 500°C
№ примера Катализатор по примеру Т, °C Конверсия ДМЭ, % Состав продуктов реакции, мас.% Σ олефинов С2- C 5 =
CH4 C 2 = C 3 = Σ парафинов С2+
4 1 320 83,9 0,4 23,1 26,6 26,5 73,1
380 88,0 0,5 10,9 32,2 30,7 65,9
5 2 320 53,9 0,4 20,4 35,4 20,6 79,0
380 74,5 0,5 10,3 35,9 27,7 68,1
6 3 320 76,6 0,4 22,5 27,7 26,5 73,0
380 68,6 0,5 11,3 36,9 27,4 72,2
7 прототип 320 36,8 0,6 24,8 32,7 21,2 78,2
380 99,8 0,5 12,0 23,2 34,2 65,3

Примеры 8-12

Образцы катализатора по примеру 3, обработанного водяным паром, как описано в примере 6, отличающийся тем, что содержание магния в катализаторе 2 мас.%, испытывают в синтезе получения олефинов с различной массовой скоростью подачи при температуре 380°C. Смесь содержит 20% об. ДМЭ и 80% об. водяного пара. Результаты представлены в табл.3.

Таблица 3
Влияние скорости подачи сырья
№ примера Объемная скорость исходной смеси, ч-1 КонверсияДМЭ, % Состав продуктов реакции, мас.% Σ олефинов С2- C 5 =
CH4 C 2 = C 3 = Σ парафинов С2+
8 1800 77,3 1,1 33,4 28,4 27,5 71,3
9 3700 65,9 0,9 31,7 33,0 19,2 76,6
10 5600 55,3 5,0 26,8 31,5 21,0 74,6
11 15000 22,9 4,7 26,0 32,0 21,3 75,3
12 22400 13,4 3,1 24,5 30,7 23,9 73,7

Как видно из таблицы, при повышении скорости подачи сырья начиная с 15000 ч-1 степень конверсии падает, но высокая селективность по низшим олефинам сохраняется. Катализатор при объемной скорости подачи смеси 1800 ч-1 был испытан в течение 100 часов, практически не терял активность при сохранении высокой селективности по олефинам даже после пяти циклов окислительной регенерации.

Таким образом, предложенный катализатор на базе отечественного аналога цеолита типа ZSM-5 цеолит высокомодульный (ЦВМ), модифицированный лантаном и/или цирконием и магнием, обработанный водяным паром при 500°C, позволяет проводить процесс синтеза низших олефинов из смеси, содержащей до 20% об. диметилового эфира и до 80% водяного пара (Н2O) при относительно невысокой температуре и атмосферном давлении с высокой конверсией ДМЭ и селективностью по C2-C5 олефинам, сохраняя высокую активность в течение длительного промежутка времени. Предложенный катализатор возможно многократно регенерировать в токе азотовоздушной смеси практически без потери его активности и селективности по C2-C3 олефинам.

1. Катализатор синтеза низших олефинов из диметилового эфира на основе цеолита типа пентасила, содержащий оксид циркония и/или оксид лантана и связующее - оксид алюминия, отличающийся тем, что используют цеолит с мольным отношением SiO2/Al2O3=37, содержащего не более 0,04 мас.% оксида натрия, а катализатор дополнительно содержит оксид магния при следующем соотношении компонентов, мас.%:

оксид алюминия 32,0-34,0
оксид циркония и/или оксид лантана 0,1-0,5
оксид магния 0,1-2,0
цеолит остальное

2. Способ синтеза низших олефинов из сырьевой смеси, содержащей диметиловый эфир, при повышенной температуре в присутствии катализатора на основе цеолита типа пентасила, содержащего оксид циркония и/или оксид лантана и связующее - оксид алюминия, отличающийся тем, что сырьевая смесь дополнительно содержит водяной пар или смесь водяного пара и инертного газа, а синтез олефинов проводят при температуре 320-450°C, атмосферном давлении и массовой скорости подачи сырья 500-45000 ч-1 в присутствии катализатора по п.1.

3. Способ по п.2 отличающийся тем, что используют катализатор по п.1, предварительно обработанный водяным паром при температуре 500-750°C.



 

Похожие патенты:
Изобретение относится к способам получения катализаторов для процесса получения бутадиена. Описан катализатор для получения бутадиена превращением этанола, содержащий соединения цинка, кремния, магния и алюминия.

Изобретение относится к способу получения реактивного топлива из биоэтанола. Способ осуществляют путем конверсии биоэтанола на первой стадии на цеолитном катализаторе, содержащем железо, при температуре 300-350°С и объемной скорости 2 ч-1 по жидкому исходному этанолу, затем на второй стадии гидрированием полученного продукта конверсии этанола на промышленном 3% или 5% платиносодержащем катализаторе при температуре 250-300°С в течение 1,5-3 часов в автоклаве с периодической подачей водорода, с последующей разгонкой полученного после гидрирования продукта и выделением целевой фракции, выкипающей после 135°С, плотностью при 20°С не менее 790 кг/м3 и содержащей нафтеновые продукты.
Изобретение относится к способу одновременного получения ароматических углеводородов и дивинила путем каталитической конверсии биоэтанола, протекающей на цеолитсодержащем катализаторе HZSM-5 при температуре 390-420°С, объемной скорости по жидкому углеводороду 2-4 ч-1.

Изобретение относится к получению синтетических видов топлива. Изобретение касается способа, в котором на первой стадии способа содержащую водяной пар и оксигенаты, такие как метанол и/или диметиловый эфир, исходную смесь на катализаторе превращают в олефипы, эту олефиновую смесь в разделительном устройстве разделяют на богатый C1-C4-углеводородами поток и богатый C5+-углероводородами поток.

Изобретение относится к способу получения 1-алкиниладамантанов из производных адамантана и ацетиленовых соединений при катализе кислотой Льюиса, взятых в эквимольных количествах.

Изобретение относится к области катализа. Описан способ извлечения катализатора в процессе конверсии оксигенатов в олефины, при этом способ включает: перепускание потока продуктов процесса превращения оксигенатов в олефины в башню гашения реакции; удаление нижнего потока башни гашения реакции, содержащего катализатор, из башни гашения реакции; разделение нижнего потока башни гашения реакции для получения по существу осветленной жидкости и потока, содержащего катализатор; перепускание потока, содержащего катализатор, в сушильную камеру; и высушивание потока, содержащего катализатор, в сушильной камере для получения по существу высушенного катализатора путем смешивания катализатора с сухим нагретым газом, где газ имеет температуру в диапазоне от 150°С до 250°С; перепускание по существу высушенного катализатора в регенератор катализатора и регенерацию по существу высушенного катализатора.

Изобретение относится к области органического синтеза полиядерных углеводородов. Предлагается способ синтеза трифенилена путем взаимодействия на первой стадии циклогексанона последовательно с NaOH, полифосфосфорной кислотой с получением додекагидротрифенилена, который на второй стадии обрабатывают катализатором в атмосфере аргона.

Изобретение относится к нефтеперерабатывающей промышленности и, более конкретно к катализатору и к способу синтеза олефинов С2-С4. Способ получения катализатора включает модифицирование катализатора на основе силикоалюмофосфатов методом пропитки по влагоемкости из раствора источника кремния или пропитки из раствора источника кремния - триметилсилоксисилсесквиоксана.
Изобретение относится к двум вариантам способа получения бутадиена превращением этанола в присутствии гетерогенного катализатора, содержащего соединения алюминия, цинка, магния и кремния, включающего стадии синтеза бутадиена и регенерации катализатора.
Изобретение относится к способу получения н-гептадекана гидродеоксигенированием стеариновой кислоты. Способ включает проведение процесса в 4-6% растворе стеариновой кислоты в додекане в присутствии палладиевого катализатора в количестве 11-13% от массы стеариновой кислоты, который нанесен на сверхсшитый полистирол марки MN270, при этом процесс осуществляют в атмосфере водорода при давлении 0.5-0.7 МПа и при температуре 250-260°С.

Изобретение относится к нефтеперерабатывающей промышленности и, более конкретно к катализатору и к способу синтеза олефинов С2-С4. Способ получения катализатора включает модифицирование катализатора на основе силикоалюмофосфатов методом пропитки по влагоемкости из раствора источника кремния или пропитки из раствора источника кремния - триметилсилоксисилсесквиоксана.

Изобретение относится к двум вариантам способа использования продуктов синтеза диметилового эфира (DME) для конверсии оксигенатов в олефины. Один из вариантов включает стадии: извлечения из реактора DME исходящего из реактора DME потока, который включает DME, воду и метанол; отделения в сепараторе жидкость-газ углекислого газа от исходящего из реактора DME потока для получения дегазированного исходящего потока; подачи дегазированного исходящего потока в колонну DME для получения сырьевого материала DME и потока растворителя, который включает метанол и воду; подачи сырьевого материала DME в реактор конверсии оксигенатов в олефины для получения содержащего олефины исходящего потока, который, кроме того, включает оксигенаты; разделения содержащего олефины исходящего потока для получения фракции, содержащей легкие олефины, и фракции, содержащей тяжелые олефины, причем содержащая легкие олефины фракция включает этилен, а фракция, содержащая тяжелые олефины, включает С4+; приведения в контакт фракции, содержащей легкие олефины, с первой частью потока растворителя в первой зоне взаимодействия с растворителем для получения первого содержащего олефины очищенного потока и первого содержащего оксигенат экстракта; приведения в контакт фракции, содержащей тяжелые олефины, со второй частью потока растворителя во второй зоне взаимодействия с растворителем для получения второго содержащего олефины очищенного потока и второго содержащего оксигенат экстракта.

Изобретение относится к способу получения олефиновых мономеров для производства полимера. Способ характеризуется тем, что включает следующие стадии: введение в каталитический слой (7) биологического масла, содержащего более 50% жирных кислот таллового масла и до 25% смоляных кислот таллового масла, а также газообразного водорода; каталитическое дезоксигенирование масла водородом в слое (7); охлаждение потока, выходящего из слоя (7), и его разделение на жидкую фазу (10), содержащую углеводороды, и газообразную фазу; и паровой крекинг (4) жидкости (13), содержащей углеводороды, с образованием продукта, содержащего полимеризующиеся олефины.

Изобретение относится к способу управления активностью катализатора процесса дегидрирования высших н-парафинов. .

Изобретение относится к области нефтехимического синтеза. .
Изобретение относится к способу дегидрирования алканов, по которому смесь, содержащую углеводороды, в частности алканы, которая может содержать водяной пар, подают непрерывно через слой катализатора при обычных условиях дегидрирования.
Изобретение относится к двум вариантам способа получения олефинов. .
Изобретение относится к способу получения алкан-ароматической фракции. .

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, а именно к приготовлению каталитической добавки для повышения октанового числа бензина каталитического крекинга.
Наверх