Способ стимулирования регенерации спинного мозга с помощью генетически модифицированных клеток крови пуповины человека


 


Владельцы патента RU 2521225:

Ризванов Альберт Анатольевич (RU)
Шаймарданова Гульнара Фердинантовна (RU)
Федеральное государственное бюджетное учреждение науки "Казанский институт биохимии и биофизики Казанского научного центра Российской академии наук" (КИББ КазНЦ РАН) (RU)
Челышев Юрий Александрович (RU)
Исламов Рустем Робертович (RU)
Черенкова Екатерина Евгеньевна (RU)
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) Федеральный университет" (ФГАОУВПО "Казанский (Приволжский) Федеральный университет") (RU)
Соловьева Валерия Владимировна (RU)
Мухамедшина Яна Олеговна (RU)
Государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ГБОУ ВПО Казанский ГМУ Министерства здравоохранения Российской Федерации) (RU)
Федотова Валерия Юрьевна (RU)

Изобретение относится к области медицины. Предложен способ стимулирования посттравматической регенерации спинного мозга, заключающийся в однократной трансплантации в область повреждения мононуклеарных клеток крови пуповины человека, предварительно трансдуцированных рекомбинантным аденовирусом с клонированным геном глиального нейротрофического фактора (gdnf). Использование изобретения позволяет улучшить результаты посттравматической регенерации спинного мозга, сократить сроки пребывания больных с травмой спинного мозга в стационаре и повысить качество жизни таких больных. 1 пр.

 

Изобретение относится к медицине, в частности к методам лечения травмы спинного мозга при помощи введения в область повреждения генетически модифицированных мононуклеарных клеток крови пуповины человека, и может быть использовано в нейрохирургии и травматологии.

Способы лечения последствий нейротравмы остаются малоэффективными из-за низкого регенераторного потенциала в мозге. Повышение результативности лечения при данной патологии связывают с генно-клеточной терапией. Трансплантация клеток при экспериментальной травме спинного мозга незначительно стимулирует регенерацию и обеспечивает частичное восстановление утраченных функций. Усиление терапевтического эффекта трансплантации клеток достигают путем их генетической модификации с применением невирусных и вирусных векторов. Трансплантация таких клеток обеспечивает длительную гиперэкспрессию ключевых молекул, которые поддерживают выживание и дифференцировку нейральных клеток. При экспериментальной травме спинного мозга показано, что трансплантация генетически модифицированных клеток при помощи вирусных и плазмидных векторов с клонированными генами нейротрофических факторов, противоапоптозных молекул, молекул адгезии и других стимуляторов нейрорегенерации, оказывается более эффективной, чем трансплантация тех же нативных клеток.

Для доставки в область травматического повреждения спинного мозга терапевтических генов применяют дифференцированные, стволовые, индуцированные плюрипотентные стволовые и прогениторные клетки. Достаточно перспективными представляются клетки крови пуповины, что связано с их низкой иммуногенностью, доступностью, простотой и безопасностью получения, способностью выдерживать длительное хранение. Эти клетки интенсивно исследуют для трансплантаций при травмах мозга (Cao, F. J., S. Q. Feng. ″Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury.″ Chin Med J (Engl) 122(2). - 2009. - P.225-231; Schira, J., M. Gasis, et al. ″Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood.″ Brain 135(Pt 2). - 2012. - P.431-446). Доставка генов при помощи вирусных векторов на различных экспериментальных моделях нейродегенеративных заболеваний показало улучшение функции, что позволяет рассматривать данный метод как наиболее перспективный для направленной терапии при патологии ЦНС.

Член семейства трансформирующего фактора роста бета (TGFβ) глиальный нейротрофический фактор (англ. glial cell line-derived neurotrophic factor, GDNF) является мощным фактором поддержания жизнеспособности нейронов многих популяций, включая мотонейроны. Именно поэтому с данным нейротрофическим фактором связывают перспективы лечения неврологических расстройств.

При экспериментальной травме спинного мозга введение в область повреждения GDNF оказывает нейропротекторное действие, поддерживает экспрессию белков нейрофиламентов, пептида, связанного с кальцитониновым геном (CGRP) и связанного с ростом аксонов белка 43 (GAP-43) (Cheng, Н., J. P. Wu, et al. ″Neuroprotection of glial cell line-derived neurotrophic factor in damaged spinal cords following contusive injury.″ J Neurosci Res 69(3). - 2002. - P.397-405). В комбинации с трансплантацией шванновских клеток GDNF сдерживает выработку астроцитами молекул-ингибиторов роста аксонов, что приводит к уменьшению тормозящего влияния глиального рубца на регенерацию нервных волокон (Deng, L.-X., J. Нu, et al. ″GDNF modifies reactive astrogliosis allowing robust axonal regeneration through Schwann cell-seeded guidance channels after spinal cord injury.″ Experimental neurology 229(2). - 2011. - P.238-250). Многие молекулы, вырабатываемые GFAP-иммунопозитивными астроцитами, оказывают нейротрофическое влияние, а сами астроциты формируют потенциальное пространство для роста аксонов. Приведенные результаты легли в основу концепции о поддерживающем рост аксонов фенотипе GFAP-иммунопозитивных астроцитов (growth-supportive phenotype) (White, R. E., M. Rao, et al. (2011). ″Transforming growth factor alpha transforms astrocytes to a growth-supportive phenotype after spinal cord injury.″ J Neurosci 31(42): 15173-15187). GDNF оказывает прямое стимулирующее влияние на рост аксонов при травме спинного мозга, стимулирует их миелинизацию, уменьшает апоптоз и дегенерацию ткани (Iannotti, С., Н. Li, et al. ″Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury.″ Exp Neurol 183(2). 2003. - P.379-393). При экспериментальной травме спинного мозга не только локальное, но также и системное применение GDNF сдерживает развитие патологических проявлений (Као, С.-Н., S.-H. Chen, et al. ″Exogenous administration of glial cell line-derived neurotrophic factor improves recovery after spinal cord injury.″ Resuscitation 77(3). - 2008. - P.395-400). При этом GDNF способствует увеличению количества и калибра регенерирующих аксонов, а также стимулирует рост аксонов в культуре нейронов спинального ганглия (Zhang, L., Z. Ma, et al. ″GDNF-enhanced axonal regeneration and myelination following spinal cord injury is mediated by primary effects on neurons.″ Glia 57(11). - 2009. - P.1178-1191).

Известен способ стимулирования посттравматической регенерации спинного мозга путем доставки в область повреждения не самого нейротрофичского фактора, а его гена. В эксперименте с травмой спинного мозга было показано улучшение функциональных и структурных показателей при локальной доставке гена gdnf в составе плазмидного вектора при помощи катионных липосом (Lu, К. W., Z. Y. Chen, et al. ″Protective effect of liposome-mediated glial cell line-derived neurotrophic factor gene transfer in vivo on motoneurons following spinal cord injury in rats.″ Chin J Traumatol 7(5). - 2004. - P.275-279), наночастиц биорастворимого полимера (Wang, Y.-C., Y.-T. Wu, et al. ″Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury.″ Biomaterials 29(34). - 2008. - P.4546-4553) или в комплексе с антителами против рецепторов нейротрофических факторов (Barati, S., P. R. Hurtado, et al. ″GDNF gene delivery via the p75(NTR) receptor rescues injured motor neurons.″ Exp Neurol 202(1). - 2006. - P.179-188). По сравнению с невирусными векторами вирусные векторы обладают большей трансфекционной активностью. Инъекция в область травматического повреждения спинного мозга генетической конструкции на основе вируса простого герпеса с геном gdnf улучшает восстановление функции (Natsume, A., D. Wolfe, et al. ″Enhanced functional recovery after proximal nerve root injury by vector-mediated gene transfer.″ Exp Neurol 184(2). - 2003. - P.878-886). Локальная доставка в область травмы спинного мозга того же гена при помощи аденовирусного вектора предотвращает ретроградную атрофию кортикоспинальных мотонейронов и стимулирует восстановление двигательной функции (Tang, X.-Q., Y. Wang, et al. ″Adenovirus-mediated delivery of GDNF ameliorates corticospinal neuronal atrophy and motor function deficits in rats with spinal cord injury.″ Neuroreport 15(3). - 2004. - P.425-429). Инъекция трансгена позволяет трансфицировать клетки, локализация которых ограничена достаточно узкой областью введения. Между тем при травме спинного мозга в патологический процесс вовлекается обширная область, прилегающая к эпицентру травмы. Поэтому для наиболее полного проявления терапевтического действия вводимого гена необходимо обеспечить его присутствие не только в эпицентре травматического повреждения, но и в прилегающих областях, как правило, достаточно удаленных от этой зоны. Для решения этой задачи наиболее перспективным подходом представляется доставка терапевтических генов на клеточных носителях. Многочисленными экспериментальными исследованиями установлено, что трансплантация трансфицированных клеток, несущих трансген, оказывает стимулирующее влияние на посттравматическую регенерацию спинного мозга. Доставку гена gdnf при помощи трансдуцированных ретровирусом фибробластов в область полной перерезки или дорсальной гемисекции спинного мозга крысы осуществили крысам (Blesch, А., М. Н. Tuszynski. ″Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelination.″ J Comp Neurol 467(3). - 2003. - P.403-417), у которых удалось выявить признаки регенерации нервных волокон и их ремиелинизацию. Однако при этом волокна не прорастали через область повреждения и не восстанавливали связи с клетками-мишенями, что не приводило к улучшению двигательной или чувствительной функции. Клеточно-опосредованная доставка гена gdnf осуществлена в область полной перерезки спинного мозга крысы в грудном отделе путем трансплантации трансфицированных глиальных клеток обонятельных структур (Yan, Н. В., Z. М. Zhang, et al. ″The repair of acute spinal cord injury in rats by olfactory ensheathing cells graft modified by glia cell line-derived neurotrophic factor gene in combination with the injection of monoclonal antibody IN-1.″ Zhonghua Wai Ke Za Zhi 47(23). - 2009. - P.1817-1820). При сравнении групп животных с трансплантацией трансфицированных и нативных клеток авторам удалось показать устойчивое прорастание регенерирующих волокон через область разрыва только в первом случае, что сопровождалось улучшением восстановления двигательной функции.

Трансплантация клеток крови пуповины человека при травме спинного мозга сдерживает воспалительную реакцию, оказывает нейротрофическое действие, стимулирует неоваскуляризацию (Chen, С. Т., N. Н. Foo, et al. ″Infusion of human umbilical cord blood cells ameliorates hind limb dysfunction in experimental spinal cord injury through anti-inflammatory, vasculogenic and neurotrophic mechanisms.″ Pediatr Neonatol 49(3). - 2008. - P.77-83), снижает экспрессию проапоптозных генов и поддерживает выживание нейронов (Dasari, V. R., К. К. Veeravalli, et al. ″Neuronal apoptosis is inhibited by cord blood stem cells after spinal cord injury ″ J. Neurotrauma 26(11). - 2009. - P.2057-2069). На ряде экспериментальных моделей установлено, что клетки крови пуповины, вырабатывая колониестимулирующий фактор 1, тромбопоэтин и интерлейкин-11, обладают иммуномодулирующим действием (Suen, Y., S. М. Lee, et al. ″Decreased macrophage colony-stimulating factor mRNA expression from activated cord versus adult mononuclear cells: altered posttranscriptional stability.″ Blood 84(12). - 1994. - P.4269-4277; Taguchi, A., T. Soma, et al. ″Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model.″ J Clin Invest 114(3). - 2004. - P.330-338; Vendrame, M., J. Cassady, et al. ″Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume.″ Stroke 35(10). - 2004. - P.2390-2395). Согласно нашим данным трансплантация этих клеток, трансфицированных плазмидой с генами нейротрофических факторов, в область травмы спинного мозга крысы оказывает выраженное стимулирующее влияние на нейрорегенерацию (Шаймарданова Г.Ф., Мухамедшина Я.О. и др. ″Эффект трансплантации в область травматического повреждения спинного мозга крысы мононуклеарных клеток крови пуповины человека, рекомбинантные гены VEGF и FGF2.″ Ж. Морфология 142(4). - 2012. - Р.31-36).

Близким к заявленному изобретению является способ стимулирования посттравматической регенерации спинного мозга, примененный в исследовании (Yan, Н. В., Z. М. Zhang, et al. ″The repair of acute spinal cord injury in rats by olfactory ensheathing cells graft modified by glia cell line-derived neurotrophic factor gene in combination with the injection of monoclonal antibody IN-1.″ Zhonghua Wai Ke Za Zhi 47(23). - 2009. - P.1817- 1820), согласно которому выделенные из организма глиальные клетки обонятельных структур трансфицировали in vitro лентивирусным вектором с геном gdnf. Эти клетки трансплантировали крысам в область повреждения сразу после полной перерезки спинного мозга в грудном отделе. При помощи поведенческого теста «ВВВ» показано более выраженное восстановление двигательной функции, чем у животных с той же травмой, но без введения клеток, а также у животных с той же травмой, но с введением нетрансфицированных тех же клеток. Примененный в исследовании способ клеточно-опосредованной доставки гена gdnf имеет следующие недостатки:

• способ доставки гена gdnf при помощи лентивирусного вектора, по сравнению с применением других наиболее исследованных вирусных векторов, таких как вирус простого герпеса, аденовирус, адено-ассоциированный вирус, является наименее безопасным с точки зрения неконтролируемой дифференцировки трансплантированных клеток и онкогенности;

• примененные в качестве носителей трансгена глиальные клетки обонятельных структур, как и шванновские клетки, характеризуются низким миграционным потенциалом, что ограничивает доставку терапевтического гена в ткань-мишень, расположенную на удалении от эпицентра травматического повреждения;

• глиальные клетки обонятельных структур, как и шванновские клетки, по сравнению со стволовыми клетками и ранними клетками-предшественницами характеризуются слабым выживанием, что снижает длительность терапевтического действия доставляемых с ними генов.

Задачей заявляемого способа является стимулирование посттравматической регенерации спинного мозга путем трансплантации в область повреждения мононуклеарных клеток крови пуповины человека, трансдуцированных рекомбинантным репликационно-дефектным аденовирусом, несущим ген глиального нейротрофического фактора (gdnf), что позволит преодолеть вышеупомянутые недостатки ближайшего аналога изобретения и обеспечить достижение нового технического результата, а именно:

• обеспечить более полное восстановление структур спинного мозга, ответственных за выполнение двигательной и чувствительной функции;

• сократить сроки пребывания больных с травмой спинного мозга в стационаре и повысить качество жизни больных данного контингента.

Поставленная задача решается способом стимулирования посттравматической регенерации спинного мозга путем однократной трансплантации тотчас после повреждения мононуклеарных клеток крови пуповины человека, трансдуцированных рекомбинантным аденовирусом с клонированным геном глиального нейротрофического фактора (gdnf).

Исследования эффективности генно-клеточной терапии при травме спинного мозга в условиях трансплантации в область повреждения трансдуцированных рекомбинантным аденовирусом мононуклеарных клеток крови пуповины в качестве носителей клонированного терапевтического гена глиального нейротрофического фактора (gdnf) в доступных заявителю источниках информации не выявлены.

Сущность заявленного технического решения заключается в стимулировании посттравматической регенерации спинного мозга путем однократной трансплантации в область повреждения мононуклеарных клеток крови пуповины человека, предварительно трансдуцированных рекомбинантным аденовирусом с клонированным геном глиального нейротрофического фактора (gdnf).

Заявляемый способ выполняют по известной последовательности этапов. Для создания рекомбинантного аденовируса использован экспрессионный плазмидный вектор pAd/CMV/V5-DEST (Invitrogen, Catalog #V493-20, США), в который клонирован ген gdnf по технологии Gateway® (Invitrogen, США) с помощью реакции LR-рекомбинации (реакция основана на сайт-специфической рекомбинационной системе фага λ). Полученная таким образом рекомбинантная плазмида, кодирующая аденовирусный геном со вставкой гена gdnf (pAd-GDNF), позволяет получить рекомбинантный аденовирус, содержащий необходимый трансген. С помощью рестрикции ферментом Pad была получена линейная плазмида pAd-GDNF, которой трансфицировали клетки НЕК-293А (Invitrogen, Catalog #R705-07, США) для сборки и репликации аденовируса. Расщепление вектора способствует взаимодействию левого и правого инвертированных концевых повторов и удалению бактериальных последовательностей (а именно участка начала репликации pUC и гена устойчивости к ампициллину). Сборка и репликация рекомбинантного аденовируса происходит в клетках линии НЕК-293А - иммортализированная линия первичных эмбриональных клеток почки человека, трансформированных фрагментами ДНК аденовируса серотипа 5. Клеточная линия содержит стабильно интегрированную в геном копию гена e1, который экспрессирует белки E1 (Е1а и E1b), необходимые для получения рекомбинантного аденовируса. После получения неочищенного вирусного лизата для повышения вирусного титра проводили амплификацию аденовируса Ad5-GDNF в клетках НЕК-293А. Через 2 дня после заражения в культуре клеток наблюдался цитопатический эффект, что указывает на то, что клетки продуцируют вирусные частицы. Пуповинную кровь забирали после получения информированного согласия беременной и дородового скрининга на наличие противопоказаний к донорству крови. Мононуклеарные клетки крови пуповины человека получали методом седиментации в градиенте плотности фиколла (Hawley, Hawley et al. 2004). После выделения мононуклеарные клетки пуповины крови человека высевали в количестве 2×107 клеток в 10 см культуральные чашки для суспензионных клеток (″Jet Biofil″) в среде Игла, модифицированной Дульбекко (DMEM) и содержащей 10% сыворотки крови плодов коровы (FBS).

Клетки трансдуцировали добавлением 100 мкл рекомбинантного аденовируса Ad5-GDNF (8×108 БОЕ/мл) на 10 см культуральную чашку. После трансдукции клетки инкубировали в течение суток при 37°С во влажной атмосфере, содержащей 5% СO2. Клетки концентрировали ценрифугированием и очищали от культуральной среды промывкой в растворе Dulbecco (DPBS) без ионов Са2+ и Mg2+. Отмытые клетки ресуспензировали в DPBS и в камере Горяева оценивали их количество и жизнеспособность после окраски трипановым синим. Далее генетически модифицированные клетки использовали для трансплантации в область повреждения крысам с моделью контузионной травмы спинного мозга.

Заявленный способ стимулирования регенерации спинного мозга путем трансплантации трансдуцированных рекомбинантным аденовирусом с геном gdnf мононуклеарных клеток крови пуповины человека был изучен на лабораторных крысах и детально описан в следующих примерах.

Эксперименты проведены на белых крысах-самцах весом 150-200 г в соответствии с требованиями локального этического комитета при ГОУ ВПО «Казанский государственный медицинский университет». Животных содержали в пластмассовых клетках при температуре 18-20°С со свободным доступом к воде и пище. Хирургические манипуляции на крысах проводили после их наркотизирования путем внутрибрюшинной инъекции хлоралгидрата (Sigma) (80 мг/мл, 0,4 мл на 100 г).

На модели дозированной контузионной травмы спинного мозга крысы изучено влияние на нейрорегенерацию трансплантации в область повреждения мононуклеарных клеток крови пуповины человека, трансдуцированных рекомбинантным аденовирусом с геном глиального нейротрофического фактора (gdnf). Крысам под наркозом на уровне восьмого сегмента спинного мозга после ламинэктомии наносили дозированную контузионную травму вертикально падающим металлическим стержнем весом 10 г с высоты 25 мм. Тотчас после ненесения травмы в две точки на расстоянии 1 мм ростральнее и каудальнее от эпицентра травмы и на 0,5 мм латеральнее срединной линии при помощи гамильтоновского шприца инъецировали предварительно трансдуцированные рекомбинантным аденовирусом с геном gdnf мононуклеарные клетки крови пуповины человека по 1 млн клеток в 5 мкл DPBS (фосфатно-солевой буфер Dulbecco, стерильный, без ионов Са2+ и Mg2+, БиолоТ, Россия) в каждую точку. Животным контрольной группы в аналогичных условиях эксперимента вводили те же клетки, трансфицированные аденовирусным вектором с геном зеленого флуоресцентного белка (egfp).

Для оценки эффективности восстановления двигательной функции использовали поведенческий тест в открытом поле «ВВВ» (Basso, D. М., М. S. Beattie, J. С. Bresnahan. ″A sensitive and reliable locomotor rating scale for open field testing in rats.″ Journal of Neurotrauma 12. - 1995. - P.1-21).

Ha 30 сутки после нанесения контузионной травмы выделяли спинной мозг. На криостатных поперечных срезах спинного мозга на расстоянии 1,5 см от эпицентра травмы проводили иммунофлуоресцентную реакцию. Для идентификации антигена срезы инкубировали с первичными антителами против глиального фибриллярного кислого белка (GFAP, Santa Cruz, 1:200) в течение суток при 4°С, промывали в фосфатно-солевом буфере и затем инкубировали со вторичными антителами, конъюгированными с флуоресцентным красителем anti-mouse Alexa 647 (Invitrogen, 1:200) в течение 2 часов при комнатной температуре. Для визуализации ядер клеток срезы дополнительно окрашивали в течение 10 минут при комнатной температуре 4′,6-диамидино-2-фенилиндолом (DAPI, 10 мкг/мл в фосфатном буфере, Sigma). Окрашенные срезы заключали в среду, поддерживающую флуоресценцию, и изучали при помощи конфокального сканирующего микроскопа LSM 510-Meta (Carl Zeiss).

1. Тестирование двигательной функции при помощи поведенческого теста «ВВВ»

Показатель восстановления двигательной функции (ВВВ) при трансплантации в область повреждения спинного мозга мононуклеарных клеток крови пуповины человека, трансдуцированных рекомбинантным аденовирусом с терапевтическим геном gdnf возрастает на 58% (Р<0,05) при сравнении с соответствующим показателем у животных контрольной группы с введением тех же клеток, трансфицированных геном зеленого флуоресцентного белка (egfp). На сроке 9, 11 и 13 суток показатель ВВВ в опытной группе по сравнению с контрольной соответственно возрастает на 62,7%, 59,5% и 53,5%.

2. Иммуногистохимическое исследование спинного мозга

К 30 суткам после контузионной травмы спинного мозга крысы и введения в область повреждения мононуклеарных клеток крови пуповины человека, трансдуцированных рекомбинантным аденовирусом с генами gdnf (опытная группа) и egfp (контрольная группа), в белом и сером веществе обнаружены GFAP+-клетки. В опытной группе в белом веществе (вентро-медиальная часть переднего канатика и латеральная часть бокового канатика) на расстоянии 0,5 см от эпицентра травмы в каудальном направлении популяция GFAP+-клеток в 2 раза превышает аналогичную в контрольной группе.

Таким образом, результаты исследования свидетельствуют о том, что заявляемый способ локальной доставки терапевтического гена глиального нейротрофического фактора (gdnf) в область травмы спинного мозга позволяет эффективно стимулировать посттравматическую регенерацию спинного мозга, что проявляется в виде улучшения показателей восстановления функции и увеличения количества реактивных астроцитов, существенно необходимых для протекания процесса нейрорегенерации. Выявленное нами в результате проведения генно-клеточной терапии увеличение количества GFAP+-астроцитов следует рассматривать как позитивный фактор стимулирования нейрорегенерации. Этот вывод основан на известном представлении о роли реактивных астроцитов, которые оказывают антиоксидантное и цитопротекторное действие на нейроны и мелинобразующие олигодендроциты, в том числе путем увеличения экспрессии мембранного транспортера глутамата и снижения содержания этого возбуждающего нейромедиатора во внеклеточном пространстве (Lepore, А. С, J. O′Donnell, et al. ″Reduction in expression of the astrocyte glutamate transporter, GLT1, worsens functional and histological outcomes following traumatic spinal cord injury.″ Glia. -2011).

Заявителем впервые:

- применен способ локальной доставки в область травматического повреждения спинного мозга терапевтического гена глиального нейротрофического фактора (gdnf) при помощи мононуклеарных клеток крови пуповины человека, трансдуцировванных рекомбинантным аденовирусом с упомянутым клонированным геном;

- показано стимулирующее влияние генно-клеточной терапии, сочетающей доставку в область повреждения мононуклеарных клеток крови пуповины человека, обладающих собственным терапевтическим действием, и клонированного гена gdnf на посттравматическое восстановление структуры и функции спинного мозга.

Использование заявляемого способа стимулирования посттравматической регенерации спинного мозга методом трансплантации мононуклеарных клеток крови пуповины человека, трансдуцированных рекомбинантным аденовирусом с клонированным геном глиального нейротрофического фактора (gdnf), позволяет:

- улучшить результаты посттравматической регенерации спинного мозга в виде более полного восстановления структуры и функции органа;

- сократить сроки пребывания больных с травмой спинного мозга в стационаре и повысить качество жизни больных данного контингента.

Способ стимулирования посттравматической регенерации спинного мозга, заключающийся в однократной трансплантации в область повреждения мононуклеарных клеток крови пуповины человека, предварительно трансдуцированных рекомбинантным аденовирусом с клонированным геном глиального нейротрофического фактора (gdnf).



 

Похожие патенты:

Изобретение относится к фармацевтической промышленности, в частности к фармацевтической композиции, предназначенной для обезвоживания, атрофии и удаления патологических тканей, и к ее применению.

Группа изобретений относится к медицине и может быть использована для модификации пищевого поведения у субъекта. Для этого осуществляют периферическое введение субъекту PYY в количестве, эффективном для достижения физиологических уровней PYY3-36 в крови, плазме или сыворотке, определяемых после приема пищи.

Изобретение относится к химико-фармацевтической промышленности и представляет собой средство для вовлечения мезенхимальной стволовой клетки костного мозга в периферическую кровь из костного мозга, которое вводят в кровеносный сосуд или мышцу и которое содержит любой из компонентов: (a) белок HMGB1; (b) клетка, которая секретирует белок HMGB1; (c) вектор, в который встроена ДНК, кодирующая белок HMGB1; (d) белок HMGB2; (e) клетка, которая секретирует белок HMGB2; (f) вектор, в который встроена ДНК, кодирующая белок HMGB2; (g) белок HMGB3; (h) клетка, которая секретирует белок HMGB3; и (i) вектор, в который встроена ДНК, кодирующая белок HMGB3.

Изобретение относится к медицине, а именно к иммунологии, и может быть использовано для снижения числа эозинофилов в организме человека. Для этого субъекту парентерально вводят от приблизительно 0,01 мг/кг до приблизительно 0,25 мг/кг моноклонального, гибридного, гуманизированного антитела или антитела человека, которое связывается с ИЛ-5Р и включает Fc-фрагмент иммуноглобулина и не содержит фукозы, при этом введение антитела снижает количество периферических эозинофилов крови, циркулирующих в организме человека, ниже порога обнаружения и уровень подсчета циркулирующих эозинофилов остается ниже порога обнаружения в течение по меньшей мере приблизительно 28 дней после дозирования антитела.

Изобретение относится к области фармацевтики и медицины и касается применения галогенидов 1,3-дизамещенных 2-аминобензимидазолия, общей формулы I в качестве ингибиторов Na+/H+-обмена, а также новых галогенидов 1,3-дизамещенных 2-аминобензимидазолия.

Изобретение относится к области биотехнологии и касается изолированного полипептида, фармацевтической композиции, включающей такой полипептид, а также способа лечения рака.

Настоящее изобретение относится к новым соединениям формулы (1) или его фармацевтически приемлемой соли, обладающие ингибирующими SNS свойствами. Соединения могут быть использованы для приготовления лекарственного средства для лечения или профилактики таких заболеваний, как невропатическая боль, ноцицептивная боль, расстройство мочеиспускания, рассеянный склероз и др.

Изобретение относится к соединению формулы: где Z означает фенил, замещенный 1-5 атомами галогена, выбираемыми из фтора и хлора; R4 означает С1-С4-алкил с линейной цепью или С3-С4-алкил с разветвленной цепью; или к его фармацевтически приемлемой соли.
Изобретение относится к медицине, а именно к акушерству, и предназначено для выбора тактики ведения беременных с плацентарной недостаточностью (ПН) и синдромом задержки роста плода (СЗРП).
Изобретение относится к фармацевтической промышленности, а именно к средству для профилактики синдрома хронической усталости у мужчин. Средство для профилактики синдрома хронической усталости у мужчин выполнено в виде суппозиториев, содержащих плазму крови самца марала, сухой экстракт красного корня, L-аргинин и вспомогательные вещества при определенном соотношении компонентов.

Изобретение относится к медицине, онкологии и может быть использовано для фотодинамической терапии опухолей. Способ включает использование фотосенсибилизатора (ФС), предварительную оценку его наличия в опухоли по его флуоресценции с последующим облучением опухоли оптическим излучением с длиной волны в спектральном диапазоне максимального поглощения ФС.

Изобретение относится к химико-фармацевтической промышленности и представляет собой средство для вовлечения мезенхимальной стволовой клетки костного мозга в периферическую кровь из костного мозга, которое вводят в кровеносный сосуд или мышцу и которое содержит любой из компонентов: (a) белок HMGB1; (b) клетка, которая секретирует белок HMGB1; (c) вектор, в который встроена ДНК, кодирующая белок HMGB1; (d) белок HMGB2; (e) клетка, которая секретирует белок HMGB2; (f) вектор, в который встроена ДНК, кодирующая белок HMGB2; (g) белок HMGB3; (h) клетка, которая секретирует белок HMGB3; и (i) вектор, в который встроена ДНК, кодирующая белок HMGB3.

Предложенная группа изобретений относится к области медицины и ветеринарии. Предложен биокомпозит для обеспечения восстановительных процессов после повреждения у млекопитающего, содержащий носитель, по меньшей мере одну нуклеиновую кислоту, содержащую гены, кодирующие VEGF и/или SDF-1, и клетки, обеспечивающие репаративную регенерацию.

Изобретение относится к биотехнологии, конкретно к использованию микроРНК (miRNA) для лечения патологической гипертрофии сердца, инфаркта миокарда или сердечной недостаточности.

Изобретение относится к области биотехнологии, вирусологии и медицины. Предложен поксвирус осповакцины, который содержит дефектный F2L ген и суицидальный ген.

Изобретение относится к области биотехнологии и может быть использовано в медицине. Пептид структуры DGSVVVNKVSELPAGHGLNVNTLSYGDLAAD используют для подавления аллергического воспаления дыхательных путей, в профилактике и лечении артрита, а также для ослабления боли.

Изобретение относится к области биотехнологии и вирусологии. Предложен поксвирус осповакцины, который обладает онколитической активностью.

Изобретение относится к медицине и может быть использовано для профилактики и лечения заболеваний, при которых целесообразна стимуляция эндогенной продукции цитокинов и гемопоэтических факторов.

Изобретение относится к области генной инженерии, молекулярной и клеточной биологии и биотехнологии. Получена генетическая конструкция pAd-SM, построенная путем гомологичной рекомбинации вектора pAdEasy-1, содержащего основную часть генома аденовируса и плазмиды pAdTrack-CMV, в которую помещены фрагменты кДНК генов SOX2 и C-MYC человека, соединенные нуклеотидной последовательностью, кодирующей Р2А-пептид.

Изобретение относится к области генной инженерии, молекулярной и клеточной биологии, биотехнологии. Получена плазмидная генетическая конструкция pOK-DsRed2, построенная на основе плазмидного вектора pIRES (Clontech), в который помещены фрагменты кДНК генов ОСТ4 и KLF4 человека, соединенные нуклеотидной последовательностью, кодирующей F2А-пептид и кДНК гена, кодирующего флуоресцентный белок DsRed2.
Изобретение относится к области биотехнологии, конкретно к способам генерации антиген-специфических клеток с цитотоксической активностью против клеток рака молочной железы, и может быть использовано в медицине. Способ включает выделение мононуклеарных клеток (МНК) из периферической крови пациента, разделение клеток на прилипающую и неприлипающую фракции, добавление к прилипающей фракции МНК ростовых факторов, нагрузку дендритных клеток антигенами опухолевого лизата in vitro, стимуляцию созревания дендритных клеток в течение последующих суток. При этом к полученным незрелым ДК добавляют лизат аутологичных опухолевых клеток в дозе 100 мкг/мл, а еще через 48 часов в течение последующих 24 часов вносят рчФНО-альфа в дозе 25 нг/мл. Затем проводят совместное культивирование зрелых активированных лизатом дендритных клеток и неприлипающей фракции МНК в соотношении 1:10 в присутствии рекомбинантного человеческого интерлейкина-12 в дозе 10 нг/мл и рекомбинантного человеческого интерлейкина-18 в дозе 100 нг/мл. Изобретение позволяет повысить уровень цитотоксической и интерферон-продуцирующей активности антиген-активированных дендритных клеток при сокращении сроков их культивирования. 4 табл.
Наверх