Коррозионно-стойкое покрытие для вибрационного расходомера и способ формирования этого покрытия



Коррозионно-стойкое покрытие для вибрационного расходомера и способ формирования этого покрытия
Коррозионно-стойкое покрытие для вибрационного расходомера и способ формирования этого покрытия
Коррозионно-стойкое покрытие для вибрационного расходомера и способ формирования этого покрытия
Коррозионно-стойкое покрытие для вибрационного расходомера и способ формирования этого покрытия

 


Владельцы патента RU 2522184:

МАЙКРО МОУШН, ИНК. (US)

Настоящее изобретение относится к вибрационному расходомеру и способу и, более конкретно, к коррозионно-стойкому вибрационному расходомеру и способу. Заявленная группа изобретений включает в себя коррозионно-стойкий вибрационный расходомер (5) и способы формирования коррозионно-стойкого вибрационного расходомера. Причем расходомер (5) содержит сборку (10) расходомера, включающую в себя одну или несколько расходомерных трубок (103), сконфигурированных с возможностью вибраций (колебаний), при этом также содержит диффузионное покрытие (202), нанесенное по всему пути движения потока в сборке (10) расходомера, при этом диффузионное покрытие (202) диффундирует в участок сборки и содержит часть сборки (10) расходомера, указанное диффузионное покрытие (202) нанесено на внутренние поверхности, внешние поверхности и фланцы (101, 101') сборки (10) расходомера. Способ формирования коррозионно-стойкого вибрационного расходомера включает монтаж сборки расходомера, включающего в себя одну или более расходомерных трубок, сконфигурированных с возможностью вибраций (колебаний), при этом наносят по всему пути движения потока сборки расходомера диффузионное покрытие, причем диффузионное покрытие диффундировано в участок сборки и содержит часть сборки расходомера, указанное диффузионное покрытие нанесено на внутренние поверхности, внешние поверхности и фланцы расходомерной сборки. А также способ формирования коррозионно-стойкого вибрационного расходомера, содержащий монтаж сборки расходомера, включающий в себя одну или более расходомерных трубок, сконфигурированных с возможностью совершения вибраций (колебаний), при этом прикрепляют, по меньшей мере, два технологических соединения к сборке расходомера; и наносят путем нанесения на весь путь движения потока сборки расходомера и, по меньшей мере, два технологических соединения, диффузионное покрытие, причем диффузионное покрытие диффундирует в участок сборки и содержит часть сборки расходомера. Технический результат, достигаемый от реализации заявленной группы изобретений, заключается в предотвращении эрозии, предоставлении твердой поверхности, в обеспечении малых коэффициентов трения для потока, в снижении влияния на вибрационные характеристики. 3 н. и 26 з.п. ф-лы, 4 ил.

 

Уровень техники

1. Область техники

Настоящее изобретение относится к вибрационному расходомеру и способу и более конкретно к коррозионно-стойкому вибрационному расходомеру и способу.

2. Постановка задачи

Вибрационные трубопроводные датчики, например, массовые расходомеры Кориолиса и вибрационные денситометры, обычно функционируют посредством регистрации перемещения колеблющейся трубки, которая содержит текущий материал. Свойства, связанные с материалом в трубке, например, массовый расход, плотность и т.п., могут быть определены посредством обработки измерительных сигналов, принятых от преобразователей перемещения, связанных с трубкой. Колебательные моды колеблющейся и заполненной материалом системы обычно определяются суммарной массой, жесткостью и параметрами демпфирования самой трубки и содержащегося в ней материала.

Типичный расходомер Кориолиса включает в себя один или несколько трубок, которые соединяются в линейную магистраль или другую транспортную систему, и транспортируют в системе материал, например, флюиды, шламы, эмульсии и т.п. Каждую трубку можно рассматривать как систему, имеющую набор собственных колебательных мод, включая, например, простые изгибные, крутильные, радиальные, и связанные моды. В типичном приложении метода Кориолиса для измерений массового расхода трубки возбуждается на одной или нескольких колебательных модах, когда материал течет через трубку, и смещение трубки регистрируется в точках, разнесенных вдоль трубки. Возбуждение обычно обеспечивается приводом, например, электромеханическим устройством, таким как индукционный привод, работающий на звуковых частотах, который периодически возмущает трубку. Массовый расход может быть определен по измерению временной задержки, или по разности фаз между смещениями в местоположениях датчиков-преобразователей. Два таких преобразователя (или измерительных преобразователя) обычно используются для измерения колебательного отклика трубки или трубок и обычно располагаются в положениях сверху и снизу по течению относительно привода. Два измерительных преобразователя обычно соединяются с электронным измерительным прибором. Измерительный прибор принимает сигналы от двух измерительных преобразователей и обрабатывает сигналы, чтобы получить, среди прочего, измерения массового расхода.

Вибрационные расходомеры, включая массовые расходомеры Кориолиса и денситометры, используют поэтому один или несколько расходомерных трубок, которые колеблются для измерения параметров флюида. Такие расходомерные трубки обычно выполняются из металла, чтобы получить хорошие колебательные характеристики и большую жесткость, например, для применений в случаях с текущим флюидом высокого давления.

Однако вибрационные расходомеры часто используются для работы с коррозионными и/или химически активными материалами. Металлические расходомерные трубки могут быть повреждены коррозионными или активными текущими флюидами. Кроме того, металлические расходомерные трубки могут выщелачивать материал из текущего флюида, и/или текущий флюид может выщелачивать материал из расходомерных трубок. Кроме того, покрытие или покрытия могут предотвратить эрозию, предоставляя очень твердую поверхность. Кроме того, покрытия могут быть скользкими или обеспечивать малые коэффициенты трения для потока.

На Фиг.1 показано сечение расходомерной трубки предшествующего уровня техники, которая включает в себя дополнительное покрытие, сформированное внутри трубки. Такое покрытие предшествующего уровня техники обычно содержит TEFLON, TEFZEL или другие пластмассы, например, и предоставляет стойкое к коррозии и химически инертное покрытие. В результате текущий флюид не входит в контакт с металлической расходомерной трубкой.

Однако техника предшествующего уровня имеет недостатки. Покрытие предшествующего уровня техники содержит отдельную компоненту, которая должна быть осаждена, связана или сцеплена с внутренней поверхностью расходомерной трубки предшествующего уровня техники. К сожалению, покрытие предшествующего уровня техники может отслаиваться от внутренней области расходомерной трубки. Отслаивание в технике предшествующего уровня может привести к утечке под покрытием, коррозии и препятствованию потоку. В критических случаях отслаивание может привести к повреждению покрытия, и лом покрытия может вовлечься в текущий флюид и воздействовать на фильтры снизу по течению, клапаны, насосы или другие механизмы. Кроме того, свободные частицы покрытия могут воздействовать на смеси снизу по течению, химические процессы, оборудование или измерения.

Покрытие предшествующего уровня техники обычно намного мягче металла расходомерной трубки предшествующего уровня техники. Поэтому покрытие предшествующего уровня техники должно иметь значительную толщину, чтобы предоставить адекватный барьер и предотвратить контакт текущего флюида с находящейся ниже расходомерной трубкой. Кроме того, покрытие предшествующего уровня техники должно иметь значительную толщину, чтобы не разрушиться или не изменять свою структуру под действием вибрации. К сожалению, толщина покрытия предшествующего уровня техники влияет на колебательные характеристики сборки расходомера предшествующего уровня техники. Может потребоваться большая приводная мощность. Чувствительность может уменьшиться. Резонансная частота расходомера может измениться.

Объекты изобретения

В одном объекте изобретения коррозионно-стойкий вибрационный расходомер содержит:

сборку расходомера, включающую в себя один или несколько расходомерных трубок, сконфигурированных для возбуждения колебаний; и

диффузионное покрытие, по меньшей мере, по участку сборки расходомера, с диффузионным покрытием, диффундированным в участок сборки и содержащим часть сборки расходомера.

Предпочтительно, диффузионное покрытие диффундирует, по меньшей мере, в участок сборки расходомера при температуре выше заданной высокой температуры.

Предпочтительно, диффузионное покрытие диффундирует, по меньшей мере, в участок сборки расходомера до прикрепления термочувствительных элементов к сборке расходомера.

Предпочтительно, диффузионное покрытие выполняется посредством технологии осаждения.

Предпочтительно, диффузионное покрытие выполняется посредством технологии осаждения из газовой фазы.

Предпочтительно, диффузионное покрытие выполняется посредством технологии химического осаждения из газовой фазы.

Предпочтительно, диффузионное покрытие выполняется для внутренних поверхностей сборки расходомера.

Предпочтительно, диффузионное покрытие выполняется для внешних поверхностей сборки расходомера.

Предпочтительно, сборка расходомера включает в себя, по меньшей мере, два технологических соединения, и причем диффузионное покрытие покрывает, по меньшей мере, два технологических соединения.

Предпочтительно, диффузионное покрытие выполняется по существу для всех поверхностей сборки расходомера.

В одном объекте изобретения способ формирования коррозионно-стойкого вибрационного расходомера содержит:

монтаж сборки расходомера, включающего в себя одну или несколько расходомерных трубок, сконфигурированных для возбуждения колебаний;

покрытие, по меньшей мере, участка сборки расходомера с диффузионным покрытием, диффундированным в участок сборки и содержащим часть сборки расходомера.

Предпочтительно, диффузионное покрытие диффундирует, по меньшей мере, в участок сборки расходомера при температуре, выше заданной высокой температуры.

Предпочтительно, диффузионное покрытие диффундирует, по меньшей мере, в участок сборки расходомера до прикрепления термочувствительных элементов к сборке расходомера.

Предпочтительно, диффузионное покрытие выполняется посредством технологии осаждения.

Предпочтительно, диффузионное покрытие выполняется посредством технологии осаждения из газовой фазы.

Предпочтительно, диффузионное покрытие выполняется посредством технологии химического осаждения из газовой фазы.

Предпочтительно, диффузионное покрытие выполняется для внутренних поверхностей сборки расходомера.

Предпочтительно, диффузионное покрытие выполняется для внешних поверхностей сборки расходомера.

Предпочтительно, сборка расходомера включает в себя, по меньшей мере, два технологических соединения, и причем диффузионное покрытие покрывает, по меньшей мере, два технологических соединения.

Предпочтительно, диффузионное покрытие выполняется по существу для всех поверхностей сборки расходомера.

В одном объекте изобретения способ формирования коррозионно-стойкого вибрационного расходомера содержит:

монтаж сборки расходомера, включающего в себя один или несколько расходомерных трубок, сконфигурированных для возбуждения колебаний;

прикрепление, по меньшей мере, двух технологических соединений к сборке расходомера; и

покрытие, по меньшей мере, участка сборки расходомера и, по меньшей мере, двух технологических соединений диффузионным покрытием, диффундированным в участок сборки и содержащим часть сборки расходомера.

Предпочтительно, диффузионное покрытие диффундирует, по меньшей мере, в участок сборки расходомера при температуре, выше заданной высокой температуры.

Предпочтительно, диффузионное покрытие диффундирует, по меньшей мере, в участок сборки расходомера до прикрепления термочувствительных элементов к сборке расходомера.

Предпочтительно, диффузионное покрытие выполняется посредством технологии осаждения.

Предпочтительно, диффузионное покрытие выполняется посредством технологии осаждения из газовой фазы.

Предпочтительно, диффузионное покрытие выполняется посредством технологии химического осаждения из газовой фазы.

Предпочтительно, диффузионное покрытие выполняется для внутренних поверхностей сборки расходомера.

Предпочтительно, диффузионное покрытие выполняется для внешних поверхностей сборки расходомера.

Предпочтительно, диффузионное покрытие выполняется по существу для всех поверхностей сборки расходомера.

Описание чертежей

Фиг.1 изображает сечение расходомерной трубки предшествующего уровня техники, которая включает в себя дополнительное покрытие, сформированное во внутренней области трубки.

Фиг.2 - вибрационный расходомер в соответствии с изобретением.

Фиг.3 - сечение расходомерной трубки, включающей в себя диффузионное покрытие в соответствии с изобретением.

Фиг.4 - вибрационный расходомер с единственной прямой трубкой, включающей в себя диффузионное покрытие в соответствии с изобретением.

Подробное описание изобретения

Чертежи на Фиг.2-4 и нижеследующее описание демонстрируют конкретные примеры для пояснения специалистам в данной области техники того, как реализовать и использовать наилучший вариант изобретения. С целью пояснения принципов изобретения некоторые обычные объекты были упрощены или опущены. Специалисты в данной области техники увидят возможные вариации этих примеров, которые находятся в пределах объема изобретения. Специалисты в данной области техники увидят, что описанные ниже признаки могут быть различным образом объединены, образуя множественные вариации изобретения. Таким образом, изобретение не ограничивается описанными ниже конкретными примерами, но только формулой и ее эквивалентами.

На Фиг.2 показан вибрационный расходомер 5 в соответствии с изобретением. Вибрационный расходомер содержит сборку 10 расходомера и измерительную электронику 20. Измерительная электроника 20 соединяется со сборкой 10 расходомера с помощью соединительных кабелей 100 и сконфигурирована для предоставления измерений одного или нескольких параметров - плотности, массового расхода, объемного расхода, суммарного массового расхода, температуры или для предоставления других измерений или информации по каналу связи 26. Специалистам в данной области техники должно быть очевидно, что вибрационный расходомер может содержать любого типа вибрационный расходомер независимо от числа приводов, измерительных преобразователей, расходомерных трубок или используемой колебательной моды. Кроме того, следует отметить, что вибрационный расходомер 5 может альтернативно содержать вибрационный денситометр.

Расходомерная сборка 10 включает в себя в себя пару фланцев 101 и 101', манифольды 102 и 102', привод 104, измерительные преобразователи 105 и 105' и расходомерные трубки 103A и 103B. Привод 104 и измерительные преобразователи 105 и 105' соединяются с расходомерными трубками 103A и 103B.

Фланцы 101 и 101' содержат технологические соединения, которые прикрепляются к манифольдам 102 и 102'. В некоторых вариантах реализации манифольды 102, 102' могут быть прикреплены к противоположным концам проставки 106. Проставка 106 поддерживает определенное расстояние между манифольдами 102 и 102', чтобы предотвратить силовое воздействие магистральной трубки на расходомерные трубки 103A и 103B. Когда расходомерная сборка 10 вставляется в трубопроводную магистраль (не показана), которая переносит измеряемый текучий флюид, флюид входит в расходомерную сборку 10 через фланец 101, проходит через впускной манифольд 102, где суммарное количество текущего флюида направляется в трубки 103A и 103B, протекает через трубки 103A и 103B и назад в выпускной манифольд 102', где он выходит из расходомерной сборки 10 через фланец 101'.

Текущий флюид может содержать жидкость. Текущий флюид может содержать газ. Текущий флюид может содержать многофазный флюид, например жидкость, включающую в себя вовлеченные газы и/или вовлеченные твердые частицы.

Трубки 103A и 103B выбираются и соответственно монтируются на впускном манифольде 102 и на выпускном манифольде 102' так, чтобы имелось по существу то же самое массовое распределение, моменты инерции и упругие модули относительно изгибных осей W-W и W'-W' соответственно. Трубки 103A и 103B вытянуты с внешней стороны манифольдов 102 и 102' по существу параллельным образом.

Трубки 103A и 103B могут быть выполнены из различных материалов. В некоторых вариантах реализации расходомерные трубки 103A и 103B сформированы из металла или стали. В других вариантах реализации расходомерные трубки 103A и 103B выполнены из коррозионно-стойких материалов, включая в себя такие материалы, как нержавеющая сталь, тантал, HASTELLOY, или титан, например. Однако тантал, HASTELLOY, и титан представляют собой очень дорогие материалы и, хотя обеспечивают очень хорошую коррозионную стойкость, значительно увеличивают стоимость расходомера. В рамках описания и формулы предполагаются и другие материалы, включающие в себя и неметаллические материалы.

Кроме того, измерительная сборка 10 может быть выполнена из различных металлов. Например, манифольды 102 и 102' могут быть выполнены из коррозионно-стойкого металла, например, HASTELLOY, тогда как расходомерная трубка или трубки могут быть выполнены из менее дорогостоящего и более простого в обработке металла или материала и могут затем быть покрыты, как описывается здесь. Другие комбинации покрытия и коррозионно-стойких металлов или материалов также предполагаются в рамках описания и формулы.

Расходомерные трубки 103A и 103B возбуждаются приводом 104 в противоположных направлениях относительно соответствующих изгибных осей W и W' и у которых локализуется первая несинфазная изгибная мода вибрационного расходомера 5. Привод 104 может содержать одно из многих хорошо известных устройств, например, магнит, установленный на расходомерной трубке 103A, и противостоящую индукционную катушку, установленную на расходомерной трубке 103B. Переменный ток проходит через противостоящую катушку, приводя к колебаниям обеих трубок. Соответствующий приводной сигнал подается электронным измерителем 20 на привод 104 через кабельное соединение 110. Другие устройства привода также предполагаются в рамках описания и формулы.

Измерительная электроника 20 принимает сигналы датчиков по кабельным соединениям 111 и 111' соответственно. Измерительная электроника 20 создает на кабеле 110 приводной сигнал, который заставляет привод 104 возбуждать колебания расходомерных трубок 103A и 103B. Другие устройства датчика также предполагаются в рамках описания и формулы.

Измерительная электроника 20 обрабатывает сигналы левой и правой скорости от измерительных преобразователей 105 и 105', чтобы рассчитать расход, среди прочего. Канал 26 связи предоставляет входное и выходное средства, которые позволяют измерительной электронике 20 взаимодействовать с оператором или с другими электронными системами. Описание Фиг.2 предоставляется исключительно как пример работы расходомера Кориолиса и не должно служить ограничением принципов настоящего изобретения.

Измерительная электроника 20 в одном варианте реализации сконфигурирована для возбуждения колебаний расходомерных трубок 103A и 103B. Колебания возбуждаются приводом 104. Измерительная электроника 20 дополнительно принимает возникающие колебательные сигналы от измерительных преобразователей 105 и 105'. Колебательные сигналы содержат колебательный отклик расходомерных трубок 103A и 103B. Измерительная электроника 20 обрабатывает колебательный отклик и определяет частоту отклика и/или разность фаз. Измерительная электроника 20 обрабатывает колебательный отклик и определяет один или несколько параметров потока, включая в себя массовый расход и/или плотность текущего флюида. Другие параметры колебательного отклика и/или измерения потока также предполагаются в рамках описания и формулы.

В одном варианте реализации расходомерные трубки 103A и 103B содержат по существу U-образные расходомерные трубки, как это показано. Альтернативно, в других вариантах реализации расходомерные трубки могут содержать по существу прямые расходомерные трубки (см. ниже Фиг.4 и сопровождающее обсуждение). Дополнительные формы и/или конфигурации расходомера также могут использоваться и также предполагаются в рамках описания и формулы.

На Фиг.3 показано поперечное сечение расходомерной трубки 103, включающее в себя диффузионное покрытие 202 в соответствии с изобретением. На чертеже показана расходомерная трубка 103 и дополнительно показано диффузионное покрытие 202, диффундированное в материал расходомерной трубки 103. Следовательно, материал покрытия становится частью трубки, то есть объединяется с расходомерной трубкой 103. Диффузионное покрытие 202 не просто представляет собой отдельный слой, добавленный к расходомерной трубке 103 и связанный или сцепленный с ним. Материал диффузионного покрытия 202 смешивается со структурой и становится частью структуры трубки благодаря высокой температуре, используемой в процессе диффузии.

Диффузионное покрытие 202 диффундирует, по меньшей мере, в участок сборки 10 расходомера, включающий в себя внутреннюю поверхность. Кроме того, диффузионное покрытие 202 может быть дополнительно применено к фланцам 101 и 101', манифольдам 102 и 102', проставке 106, если она включена в сборку 10 расходомера, стягивающим скобам, конструкциям весовой балансировки и/или креплениям для других компонентов. Этот список потенциально покрываемых компонентов не исчерпывающий, и другие участки сборки 10 расходомера также могут быть покрыты, как это описано здесь. В некоторых вариантах реализации диффузионное покрытие 202 применяется к полному расходомерному каналу вибрационного расходомера 5.

Важно, что диффузионное покрытие 202 диффундирует, по меньшей мере, в участок сборки 10 расходомера до прикрепления термочувствительных элементов к сборке 10 расходомера. Это может включать в себя любого рода термочувствительные элементы, на которые может влиять температура обработки диффузией. Например, измерительные преобразователи расходомерной трубки, температурные датчики, приводы и монтажные кабельные соединения обычно включают в себя неметаллические компоненты, которые могут быть повреждены при нагревании. Другие компоненты также могут быть затронуты, например, связующие, пластмассы, электрическая изоляция и материалы схем и другие относительно низкотемпературные материалы.

Следовательно, диффузионное покрытие 202 в некоторых вариантах реализации применяется после выполнения большинства или после всех сварочных операций. В результате сварочные операции не могут повредить или воздействовать на диффузионное покрытие 202. Сварка уже покрытых компонентов не требуется, и, следовательно, нет вероятности того, что сварочная операция прожжет или ослабит покрытие. Кроме того, диффузионное покрытие 202 может, по меньшей мере, частично заполнить любые несовершенства сварки, например, небольшие углубления или небольшие зазоры.

Желаемый поверхностный состав может быть получен в зависимости от целей, например, для предотвращения коррозии расходомерной трубки 103. Альтернативно или дополнительно, желаемый поверхностный состав может предотвратить химическую реакцию с протекающим флюидом и/или предотвратить выщелачивание или перенос вещества между расходомерной трубкой 103 и протекающим флюидом. Кроме того, покрытие или покрытия могут предотвратить эрозию, предоставляя очень твердую поверхность. Кроме того, покрытия могут быть скользкими или предоставлять малые коэффициенты трения для потока.

Диффузионное покрытие 202 может быть выполнено посредством технологии осаждения. Диффузионное покрытие 202 может быть выполнено посредством технологии осаждения из газовой фазы. Диффузионное покрытие 202 может быть выполнено посредством технологии химического осаждения из газовой фазы.

Имеется много вариантов осаждения или диффузии, которые могут быть использованы, и много различных вариантов для газового осаждения/металлизации материала на поверхности. Некоторые типы осаждения из газовой фазы: аэрозольное химическое осаждение пара (CVD), плазменное CVD, микроволновое CVD, CVD с непосредственным жидкофазным литьем, CVD атомного слоя, CVD с нитью накала, быстрое термическое CVD и эпитаксия из газовой фазы. Следует понимать, что этот список не является исчерпывающим, и другие технологические процессы могут быть использованы или разработаны. Все эти процессы и вариации процессов могут быть использованы для выполнения покрытия поверхности и не ограничивают объем притязаний данного патента.

Диффузионное покрытие 202 выполняется с помощью высокотемпературной технологии, причем сборка 10 расходомера (или ее участок) помещается в диффузионную камеру вместе с носителем диффузии. Сборка 10 расходомера нагревается в присутствии носителя диффузии, причем диффузионная компонента в носителе диффузии диффундирует на поверхность и в поверхность или поверхности, сборки 10 расходомера. Температура может зависеть от материала сборки 10 расходомера, диффузионной компоненты, которая становится диффузионным покрытием 202, и других возможных факторов, включая в себя материал-носитель, желаемую скорость диффузии, внешнее нагревание и т.д.

Диффундированный внутрь металл становится частью сборки 10 расходомера, а не просто связывается или сцепляется со сборкой 10 расходомера. Это достигается с помощью высокотемпературной диффузионной среды, причем диффузионное покрытие диффундирует в сборку 10 расходомера при температуре выше заданной высокой температуры. В некоторых вариантах реализации заданная высокая температура составляет триста градусов по Фаренгейту или более или любую температуру, требуемую для диффузии непластмассового материала покрытия в металлический (или более твердый) материал расходомера. Диффузия может требовать, чтобы молекулы материала покрытия проникли, по меньшей мере, частично в материал расходомера и перемешались, связываясь и/или сцепляясь с молекулами материала расходомера.

Поэтому диффузионное покрытие 202 не может быть использовано для расходомерных трубок, выполненных из пластмассы. Даже из высокотемпературной пластмассы или термопласта.

Получающееся диффузионное покрытие 202 становится одним целым с материалом расходомерной трубки. Кроме того, диффузионное покрытие 202 не формируется и не ограничивается как однородный и отдельный слой, как показано на чертеже. Это отличается от предшествующего уровня техники.

Носитель диффузии может содержать газ, который переносит заданные диффузионные частицы (то есть диффузионную компоненту), осаждаемые на сборку 10 расходомера. Заданные диффузионные частицы могут содержать коррозионно-стойкий материал или смесь. Носитель диффузии может быть введен при обычном окружающем давлении или при давлении выше или ниже, чем окружающее давление. Альтернативно, носитель диффузии может содержать жидкость, жидкий раствор, пасту и так далее, которые включают в себя заданные диффузионные частицы или химикалии.

По меньшей мере, участок сборки 10 расходомера приводится в контакт с носителем диффузии, причем заданные диффузионные частицы диффундируют в части или по всей поверхности сборки 10 расходомера.

Носитель диффузии может дополнительно включать в себя любого рода химические реагенты, катализаторы или активаторы, которые способствуют процессу диффузии. Носитель диффузии термоактивируется, и заданные диффузионные частицы осаждаются на поверхность и диффундируют в поверхности сборки 10 расходомера. Наряду с термоактивацией носителя диффузии в некоторых CVD технологиях плазма также активизирует носитель диффузии и способствует качественному покрытию.

Диффузионное покрытие 202 может иметь любую подходящую толщину. Поскольку материал покрытия диффундирует в металл расходомерной трубки 103, диффузионное покрытие 202 может быть очень тонким. Одним из ограничений малой толщины диффузионного покрытия 202 может быть пористость нижележащего материала расходомерной трубки. Пористые материалы расходомерных трубок могут требовать более толстого диффузионного покрытия 202. Другим ограничением может быть гладкость поверхности расходомерных трубок. Шероховатая поверхность может требовать более толстого диффузионного покрытия 202, чтобы полностью покрыть нижележащий материал расходомерной трубки и заполнить микроотверстия в покрытии. Кроме того, потребность в более толстом диффузионном покрытии 202 на одной области сборки 10 расходомера может требовать более толстого диффузионного покрытия по всей сборке 10 расходомера. Следует понимать, что толщину диффузионного покрытия 202 может оказаться трудно измерить, поскольку диффузионное покрытие 202 может не представлять собой вполне гладкую поверхность и может не представлять собой правильный или однородный слой.

Диффузионное покрытие 202 может содержать металл или смесь металлов. Альтернативно, диффузионное покрытие 202 может содержать неметаллический материал, который пригоден для диффузии в расходомерную трубку 103.

Диффузионное покрытие 202 предпочтительно содержит материал, который является очень коррозионно-стойким. Диффузионное покрытие 202 содержит материал, который является химически очень стойким и нереакционным. Диффузионное покрытие 202 содержит материал, который не выщелачивает материал из текущего флюида. Диффузионное покрытие 202 содержит такой материал, чтобы текущий флюид не выщелачивал материал из диффузионного покрытия 202.

В некоторых вариантах реализации диффузионное покрытие 202 содержит кремний или главным образом кремниевый материал. В этом варианте реализации диффузионное покрытие 202 обычно может составлять приблизительно двадцать пять микрон по толщине. Альтернативно, диффузионное покрытие 202 может содержать углерод или главным образом углеродный материал, например, поставляемый носителем диффузии C2H2 например. В этом варианте реализации, диффузионное покрытие 202 обычно может составлять приблизительно восемьдесят микрон по толщине. Следует понимать, что другие материалы/носители диффузии предполагаются в рамках описания и формулы.

Диффузионное покрытие 202 в некоторых вариантах реализации выполняется для внутренних поверхностей расходомерной трубки 103 или сборки 10 расходомера. Диффузионное покрытие 202 в некоторых вариантах реализации выполняется для внешних поверхностей расходомерной трубки 103 или сборки 10 расходомера. Диффузионное покрытие 202 в некоторых вариантах реализации выполняется для всех поверхностей расходомерной трубки 103 или сборки 10 расходомера. Это может дополнительно включать в себя конструкции впускного и выпускного отверстий и расщепителей потока, например. Кроме того, диффузионное покрытие 202 может быть выполнено для других поверхностей сборки 10 расходомера, включая в себя фланцы/технологические соединители 101 и 101', поскольку может требоваться, чтобы технологические соединения 101 и 101' были коррозионно-стойкими. Другие компоненты, которые могут быть покрыты в соответствии с изобретением, включают в себя проставки, манифольды, соединительные или стягивающие скобы, балансные детали и монтажные детали. Вышеупомянутые примеры не являются исчерпывающими, и другие покрытые поверхности или компоненты предполагаются в рамках описания и формулы.

Расходомерная трубка 103 и/или сборка 10 расходомера могут быть выполнены из заданного материала. Расходомерная трубка 103 и/или сборка 10 расходомера могут быть выполнены из материала, который может быть подвергнут обработке высокотемпературной диффузией. В некоторых вариантах реализации расходомерная трубка 103 и/или сборка 10 расходомера могут быть выполнены из заданного металла или металлического материала, например. В некоторых вариантах реализации расходомерная трубка 103 может быть выполнена из нержавеющей стали, например, которая имеет и хорошие вибрационные характеристики, и хорошую коррозионную стойкость. Альтернативно, компоненты сборки 10 расходомера могут быть выполнены из других материалов. Сборка 10 расходомера может быть частично или полностью неметаллической, например, может быть выполнена из стекла, керамики, кварца или из других материалов, которые могут противостоять температурам обработки диффузией.

На Фиг.4 показан вибрационный расходомер 5 с единственной прямой трубкой, включающий в себя диффузионное покрытие 202 в соответствии с изобретением. Диффузионное покрытие 202 выполнено только на внутренней поверхности расходомерной трубки 103 в показанном варианте реализации. Однако, следует понимать, что различные области вибрационного расходомера 5 могут включать в себя диффузионное покрытие 202, как предварительно рассмотрено. Вибрационный расходомер 5 с прямой трубкой включает в себя диффузионное покрытие 202. Диффузионное покрытие 202 выполнено так, как показано на предыдущих чертежах и рассмотрено выше, и предоставляет преимущества относительно тонкого слоя коррозионно-стойкого покрытия без необходимости в толстой, дорогой, и модифицирующей колебания конструкции расходомерной трубки или сборки расходомера.

Вибрационный расходомер и способ в соответствии с изобретением могут использоваться в соответствии с любым из вариантов реализации, чтобы предоставить несколько преимуществ, если это желательно. Диффузионное покрытие предоставляет барьер между сборкой расходомера и протекающим флюидом. Диффузионное покрытие предоставляет монолитное покрытие, которое является частью конструкции, а не просто связано с ней. Следовательно, диффузионное покрытие не будет отделяться, отслаиваться или фрагментироваться. Диффузионное покрытие достаточно тонкое и добавляет незначительную массу и поэтому незначительно влияет на вибрационные характеристики. Диффузионное покрытие дает возможность сборке расходомера сохранить вибрационные качества материала расходомерных трубок. Диффузионное покрытие требует меньшего количества дорогостоящего материала для предоставления барьера.

1. Коррозионно-стойкий вибрационный расходомер (5), причем расходомер (5) содержит сборку (10) расходомера, включающую в себя одну или несколько расходомерных трубок (103), сконфигурированных с возможностью вибраций (колебаний), отличающийся тем, что:
содержит диффузионное покрытие (202), нанесенное по всему пути движения потока в сборке (10) расходомера, при этом диффузионное покрытие (202) диффундирует в участок сборки и содержит часть сборки (10) расходомера, указанное диффузионное покрытие (202) нанесено на внутренние поверхности, внешние поверхности и фланцы (101, 101') сборки (10) расходомера.

2. Коррозионно-стойкий вибрационный расходомер (5) по п.1, в котором диффузионное покрытие (202) диффундирует в весь путь движения потока в сборке (10) расходомера при температуре выше заданной высокой температуры.

3. Коррозионно-стойкий вибрационный расходомер (5) по п.1, в котором диффузионное покрытие (202) диффундирует в весь путь движения потока в сборке (10) расходомера до прикрепления термочувствительных элементов к сборке (10) расходомера.

4. Коррозионно-стойкий вибрационный расходомер (5) по п.1, в котором диффузионное покрытие (202) нанесено посредством технологии осаждения.

5. Коррозионно-стойкий вибрационный расходомер (5) по п.1, в котором диффузионное покрытие (202) нанесено посредством технологии осаждения из паровой фазы.

6. Коррозионно-стойкий вибрационный расходомер (5) по п.1, в котором диффузионное покрытие (202) нанесено посредством технологии химического осаждения из паровой фазы.

7. Коррозионно-стойкий вибрационный расходомер (5) по п.1, в котором диффузионное покрытие (202) нанесено на внутренние поверхности сборки (10) расходомера.

8. Коррозионно-стойкий вибрационный расходомер (5) по п.1, в котором диффузионное покрытие (202) нанесено на внешние поверхности сборки (10) расходомера.

9. Коррозионно-стойкий вибрационный расходомер (5) по п.1, в котором сборка (10) расходомера включает в себя, по меньшей мере, два технологических соединения (101, 101'), причем диффузионное покрытие (202) покрывает, по меньшей мере, два технологических соединения (101, 101').

10. Коррозионно-стойкий вибрационный расходомер (5) по п.1, в котором диффузионное покрытие (202) нанесено по существу на все поверхности сборки (10) расходомера.

11. Способ формирования коррозионно-стойкого вибрационного расходомера, содержащий монтаж сборки расходомера, включающего в себя одну или более расходомерных трубок, сконфигурированных с возможностью вибраций (колебаний), отличающийся тем, что:
наносят по всему пути движения потока сборки расходомера диффузионное покрытие, причем диффузионное покрытие диффундировано в участок сборки и содержит часть сборки расходомера, указанное диффузионное покрытие нанесено на внутренние поверхности, внешние поверхности и фланцы расходомерной сборки.

12. Способ по п.11, в котором диффузионное покрытие диффундирует в весь путь движения потока сборки расходомера при температуре выше заданной высокой температуры.

13. Способ по п.11, в котором диффузионное покрытие диффундируют в весь путь движения потока сборки расходомера до прикрепления термочувствительных элементов к сборке расходомера.

14. Способ по п.11, в котором диффузионное покрытие наносят посредством технологии осаждения.

15. Способ по п.11, в котором диффузионное покрытие наносят посредством технологии осаждения из паровой фазы.

16. Способ по п.11, в котором диффузионное покрытие наносят посредством технологии химического осаждения из паровой фазы.

17. Способ по п.11, в котором диффузионное покрытие наносят на внутренние поверхности сборки расходомера.

18. Способ по п.11, в котором диффузионное покрытие наносят на внешние поверхности сборки расходомера.

19. Способ по п.11, в котором сборка расходомера включает в себя, по меньшей мере, два технологических соединения, а диффузионное покрытие покрывает, по меньшей мере, два технологических соединения.

20. Способ по п.11, в котором диффузионное покрытие наносят по существу на все поверхности сборки расходомера.

21. Способ формирования коррозионно-стойкого вибрационного расходомера, содержащий монтаж сборки расходомера, включающего в себя одну или более расходомерных трубок, сконфигурированных с возможностью совершения вибраций (колебаний), отличающийся тем, что:
прикрепляют, по меньшей мере, два технологических соединения к сборке расходомера; и
наносят путем нанесения на весь путь движения потока сборки расходомера и, по меньшей мере, два технологических соединения, диффузионное покрытие, причем диффузионное покрытие диффундирует в участок сборки и содержит часть сборки расходомера.

22. Способ по п.21, в котором диффузионное покрытие диффундирует в весь путь движения потока сборки расходомера при температуре выше заданной высокой температуры.

23. Способ по п.21, в котором диффузионное покрытие диффундирует в весь путь движения потока сборки расходомера до прикрепления термочувствительных элементов к сборке расходомера.

24. Способ по п.21, в котором диффузионное покрытие наносят посредством технологии осаждения.

25. Способ по п.21, в котором диффузионное покрытие наносят посредством технологии осаждения из паровой фазы.

26. Способ по п.21, в котором диффузионное покрытие наносят посредством технологии химического осаждения из паровой фазы.

27. Способ по п.21, в котором диффузионное покрытие наносят на внутренние поверхности сборки расходомера.

28. Способ по п.21, в котором диффузионное покрытие наносят на внешние поверхностей сборки расходомера.

29. Способ по п.21, в котором диффузионное покрытие наносят по существу на все поверхности сборки расходомера.



 

Похожие патенты:

Вибрационный измеритель включает в себя один или несколько трубопроводов, сформированных из первого материала. Вибрационный измеритель дополнительно включает в себя привод, присоединенный к трубе одного или нескольких трубопроводов и сконфигурированный для возбуждения колебаний, по меньшей мере, участка трубопровода на одной или нескольких приводных частотах, и один или несколько измерительных преобразователей, присоединенных к трубе одного или нескольких трубопроводов и сконфигурированных для регистрации движения колеблющегося участка трубопровода.

В расходомере Кориолиса, в котором, по меньшей мере, детектируется одно из разности фаз и частоты колебаний, пропорциональные силе Кориолиса, действующей, по меньшей мере, на одну расходомерную трубку или пару расходомерных трубок, чтобы, тем самым, получить, по меньшей мере, одно из массового расхода и плотности измеряемого флюида, устройство обработки сигналов включает в себя: аналого-цифровые преобразователи для преобразования аналоговых сигналов, которые выводятся от пары датчиков детектирования колебаний, в цифровые сигналы, соответственно; модуль измерения частоты для измерения частоты θ колебаний, по меньшей мере, одной расходомерной трубки или пары расходомерных трубок; трансмиттер для создания частотно-кодированного сигнала, имеющего частоту, установленную как θ(1-1/N) частоты цифрового частотно-кодированного сигнала, выводимого из модуля измерения частоты; и пару ортогональных преобразователей частоты для преобразования, на основании частотно-кодированного сигнала, сгенерированного трансмиттером, частоты двух цифровых сигналов, соответствующих паре датчиков детектирования колебаний, которые выводятся из аналого-цифровых преобразователей, соответственно, и генерирования цифровых сигналов с частотами, установленными как 1/N частот двух цифровых сигналов, соответственно.

Изобретения относятся к измерительной технике, в частности к вибрационным расходомерам, и могут быть использованы для измерения параметров текучих сред. Расходомер включает в себя трубопровод и привод, сконфигурированный для колебания трубопровода.

Способ содержит этапы приема сигналов датчика от вибрационного расходомера и определения текущего нулевого смещения для вибрационного расходомера. Текущее нулевое смещение может быть определено исходя из принятых сигналов датчика.

Способ для расчета скорости звука флюида, текущего через вибрационный расходомер содержит возбуждение колебаний расходомера на одной или нескольких частотах и прием колебательного отклика.

Измерительный прибор включает в себя, по меньшей мере, частично помещенный, в частности, в заземленный корпус (100) измерительный преобразователь (MW) для регистрации, по меньшей мере, одного измеряемого параметра, а также, по меньшей мере, периодически электрически связанный с измерительным преобразователем электронный блок (ME) измерительного прибора.

Расходомер (200) с одним вводом и множественным выводом содержит приемный трубопровод (202) и делитель (203) потока. Расходомер (200) дополнительно включает в себя сенсорный элемент (204) первого потока, связанный с делителем (203) потока, включающий в себя первый выходной трубопровод (206), для получения первого сигнала расхода.

Вибрационный расходомер (205) состоит из трубопровода (210), содержащего первый концевой участок (211) и второй концевой участок (212). Вибрационный расходомер (205) затем подсоединяют к корпусу (300), который окружает, по меньшей мере, участок трубопровода (210).

Предложен способ эксплуатации системы вибрационного расходомера. Способ включает в себя этап приема сигнала первого датчика от первого вибрационного расходомера.

Вибрационный расходомер включает в себя трубопровод (210), по меньшей мере, один измерительный преобразователь (230, 231), приводной элемент (250); по меньшей мере, один привод (220) и основание (260).

Изобретение относится к измерительному датчику вибрационного типа для измерения движущейся в трубопроводе текучей среды, в частности, газа, жидкости, порошка и любого другого текучего материала. Заявленная группа изобретений включает измерительный датчик вибрационного типа, измерительную систему с измерительным датчиком, выполненную в виде проточного измерительного прибора, а также применение измерительного датчика. При этом измерительный датчик содержит корпус (71), у которого расположенный на входе конец образован расположенным на стороне впуска делителем (201) потока с четырьмя разнесенными между собой проточными отверстиями (201A, 201B, 201C, 201D), а расположенный на стороне выпуска конец образован расположенным на стороне выпуска делителем (202) потока с четырьмя разнесенными между собой проточными отверстиями (202А, 202B, 202C, 202D), а также трубное устройство с четырьмя изогнутыми измерительными трубами (181, 182, 183, 184), присоединенными к делителям (201, 202) потока, образующими гидравлические, параллельно расположенные тракты и подводящие текущую среду, причем каждая из четырех измерительных труб заходит своим расположенным на стороне впуска концом в одно из проточных отверстий делителя (201) потока, вторым, расположенным на стороне выпуска концом - в одно из проточных отверстий делителя (202) потока. В измерительном датчике согласно изобретению оба делителя (201, 202) потока выполнены и расположены в нем таким образом, что трубное устройство имеет воображаемую плоскость (YZ) продольного сечения, расположенную между первой и второй измерительными трубами, а также между третьей и четвертой измерительными трубами, в отношении которой трубное устройство является зеркально симметричным, а также имеет воображаемую плоскость (XZ) продольного сечения, расположенную между первой и третьей измерительными трубами, а также между второй и четвертой измерительными трубами, и перпендикулярную к воображаемой плоскости (YZ) продольного сечения, по отношению к которой трубное устройство выполнено также зеркально симметричным. Электромеханическое устройство возбуждения (5) измерительного датчика служит для образования и/или поддержания механических колебаний четырех измерительных труб (181, 182, 183, 184). Технический результат, достигаемый от реализации заявленной группы изобретений, заключается в создании измерительного датчика с высокой чувствительностью и высоким качеством колебаний, характеризующегося даже при больших количествах массового расхода свыше 1000 т/ч незначительной потерей давления, составляющей по возможности менее 3 бар, имеющего даже при большом номинальном внутреннем диаметре свыше 100 мм по возможности компактную конструкцию и пригодного, в частности, для применения в условиях чрезвычайно горячей или чрезвычайно холодной среды и/или при значительно колеблющихся температурах среды. 3 н. и 46 з.п. ф-лы, 7 ил.

Устройство обработки сигналов для расходомера Кориолиса, в котором, по меньшей мере, одна расходомерная трубка или пара расходомерных трубок поочередно возбуждаются посредством вибратора, приводимого в действие приводным устройством, чтобы возбудить колебания, по меньшей мере, одной расходомерной трубки или пары расходомерных трубок, и, по меньшей мере, одно - разность фаз и частота колебаний, пропорциональные силе Кориолиса, действующей, по меньшей мере, на одну расходомерную трубку или пару расходомерных трубок, регистрируется датчиками скорости или датчиками ускорения, которые являются датчиками регистрации колебаний, чтобы тем самым получить, по меньшей мере, одно - массовый расход и плотность измеряемого флюида, включает в себя трансмиттер (90) для передачи частотно-кодированного сигнала, который является модулируемым, и блок (85) преобразования частоты для выполнения преобразования частоты, чтобы добавить (или вычесть) частоту Fx выходного сигнала от трансмиттера (90) к (или из) частоте входного сигнала, регистрируемой датчиком скорости или датчиком ускорения, и смещения значения частоты, полученного преобразованием частоты, к постоянному значению. Технический результат - возможность измерения с неизменной точностью, измерение фазы и частоты с высоким качеством фильтрации и существенное сокращение количества вычислительных операций. 5 н. и 39 з.п. ф-лы, 17 ил.

Измерительное устройство кориолисова типа снабжено возбудителем крутильных колебаний, вмонтированным между расходомерными трубками во впускном разъеме, приемником крутильных колебаний, вмонтированным между расходомерными трубками в выпускном разъеме, блоком вычисления передаточной функции крутильных колебаний с подключенным к его выходу блоком аппроксимации передаточной функции крутильных колебаний, а также блоком вычисления температуры, при этом генератор широкополосных сигналов выполнен двухканальным с обеспечением генерации на первом канале сигнала в окрестности резонансной частоты изгибных колебаний, а на втором канале - в окрестности резонансной частоты крутильных колебаний, причем выход второго канала подключен к возбудителю крутильных колебаний, приемник крутильных колебаний соединен с входом блока вычисления передаточной функции крутильных колебаний, входы блока вычисления температуры подключены к соответствующим выходам блоков аппроксимации изгибных и крутильных колебаний, а его выходы подключены к соответствующим входам блоков вычисления передаточной функции изгибных и крутильных колебаний. Технический результат - повышение точности и стабильности измерений физических параметров жидкости, а также обеспечение возможности одновременно с измерением массового расхода и плотности жидкости измерять вязкость и температуру жидкости без использования термодатчиков. 1 ил.

Изобретение касается способа для обнаружения полного или частичного засорения измерительной трубы (А; В) расходомера Кориолиса (2), который может устанавливаться в трубопроводе и который имеет измерительный преобразователь вибрационного типа, по меньшей мере, с двумя благоприятными в гидродинамическом отношении, установленными параллельно измерительными трубами (А, В). При этом способ имеет шаги измерения потока в подмножестве, проходящего в подмножестве измерительных труб (А, В), и сравнения величины потока, полученной по этому измерению, с ожидаемым для этого подмножества контрольным значением. При этом контрольное значение определяется по полному массовому расходу, определенному в рамках измерения массового расхода по Кориолису. Кроме того, способ имеет шаг обнаружения засорения, по меньшей мере, одной измерительной трубы (А; В) измерительного преобразователя в случае, если величина потока в подмножестве отличается от контрольного значения более чем на одно предельное значение. Технический результат - надежное и своевременное обнаружение полного или частичного засорения одной или нескольких имеющихся в расходомере Кориолиса измерительных труб. 2 н. и 12 з.п. ф-лы, 4 ил.

Предложен способ для аттестации сборки датчика измерителя. Способ содержит этап приема одного или нескольких значений калибровки датчика. Способ дополнительно содержит этап сравнения принятых значений калибровки датчика с одним или несколькими известными значениями калибровки датчика. Способ может затем аттестовать сборку датчика, если одно или несколько принятых значений калибровки датчика находятся в пределах величины заданного допустимого отклонения одного или нескольких известных значений калибровки датчика. Технический результат - возможность точной и надежной проверки допустимости датчика с использованием информации, заложенной в самом датчике или в сети датчиков. 2 н. и 14 з.п. ф-лы, 4 ил.

Вибрационный измеритель (5) включает в себя один или несколько трубопроводов (103A, 103B), включающих в себя колеблющийся участок (471) и неколеблющийся участок (472), и привод (104), присоединенный к одному трубопроводу из одного или нескольких трубопроводов (103A, 103B) и сконфигурированный для возбуждения колебаний колеблющегося участка (471) трубопровода на одной или нескольких приводных частотах. Вибрационный измеритель (5) также включает в себя один или несколько измерительных преобразователей (105, 105'), присоединенных к одному трубопроводу из одного или нескольких трубопроводов (103A, 103B) и сконфигурированных для регистрации движения трубопровода. Одна или несколько деталей измерителя, исключая колеблющийся участок (471) трубопроводов (103A, 103B), привод (104) и измерительные преобразователи (105, 105'), снабжены демпфирующим материалом (310), нанесенным, по меньшей мере, на участок поверхности детали измерителя для одной или нескольких деталей измерителя, который снижает одну или несколько резонансных частот колебаний детали измерителя ниже одной или нескольких приводных частот. Технический результат - повышение точности вибрационного измерителя. 2 н. и 14 з.п. ф-лы, 5 ил.

Для осуществления мониторинга узла из труб измерительная система по изобретению включает в себя подключенный к передающему электронному оборудованию температурно-измерительный узел с имеющимся у него первым температурным датчиком для создания температурного сигнала, зависящего от температуры в первой измерительной трубке узла из труб, а также, по меньшей мере, вторым температурным датчиком для создания температурного сигнала, зависящего от температуры во второй измерительной трубке узла из труб. Способ по изобретению предусматривает, что при выявлении разницы температур между, по меньшей мере, двумя измерительными трубками в результате их засорения во время прохождения среды через узел из труб, а также, если выявленная разница температур отличается от заранее установленного предельно допустимого значения для разницы температур у незасоренного узла из труб, подается сигнал о частичном засорении узла из труб, в особенности о засорении какой-то одной конкретной измерительной трубки. Технический результат - повышение точности и информативности мониторинга узла из труб. 2 н. и 19 з.п. ф-лы, 5 ил.

Измерительная система включает первичный измерительный преобразователь (MW) вибрационного типа и электрически соединенный с ним преобразующий электрический блок (МБ). Первичный измерительный преобразователь имеет, по меньшей мере, одну измерительную трубу (10, 10'), по меньшей мере, один возбудитель колебаний, первый датчик (51) колебаний для регистрации, по меньшей мере, вибрации со стороны впуска, по меньшей мере, одной трубы и для формирования первого первичного сигнала (s1) первичного измерительного преобразователя и второй датчик (52) колебаний для регистрации, по меньшей мере, вибрации со стороны выпуска, по меньшей мере одной измерительной трубы и для формирования второго первичного сигнала (s2) первичного измерительного преобразователя. Преобразующий электронный блок подает задающий сигнал (iexc) для возбудителя колебаний, вызывающий, по меньшей мере, вибрацию, по меньшей мере, одной измерительной трубы, и генерирует с помощью первого первичного сигнала и с помощью второго первичного сигнала, также при применении измеренного значения числа Рейнольдса, генерирует измеренное значение (ХΔp) разности давлений, который представляет разность давлений, возникающую между двумя заданными опорными точками в протекающей среде. Технический результат - улучшение измерительной системы, а также достаточно точное измерение нежелательно высокого падения давления в протекающей среде. 2 н. и 34 з.п. ф-лы, 12 ил.

Изобретение относится к измерительной технике и может быть использовано при измерении расхода массовыми расходомером Кориолиса. Заявленная система (120) с множественными температурными датчиками включает в себя сеть (180) температурных датчиков, включающую в себя температурно-чувствительные резисторы RT1 и RT2 (186, 187) и частотно-селективные фильтры (184, 185), связанные с множеством температурно-чувствительных резисторов RT1 и RT2 (186, 187). Частотно-селективные фильтры (184, 185) пропускают отдельные, изменяющиеся во времени сигналы в сеть (180) температурных датчиков и пропускают ослабленные, отдельные, изменяющиеся во времени сигналы из сети. Система (120) дополнительно включает в себя контроллер (161) измерения температуры, связанный с сетью (180) температурных датчиков и конфигурированный для введения отдельных, изменяющихся во времени сигналов в сеть (180) температурных датчиков, для приема ослабленных, отдельных, изменяющихся во времени сигналов в ответ на введение сигналов. Ослабленные, отдельные, изменяющиеся во времени сигналы ослаблены температурно-чувствительными резисторами (186, 187) для формирования двух или более по существу одновременных значений температуры из ослабленных, отдельных, изменяющихся во времени сигналов. Технический результат - повышение точности получаемых данных измерений. 3 н. и 20 з.п. ф-лы, 8 ил.

Первичный измерительный преобразователь включает корпус (71) приемника, у которого конец корпуса со стороны впуска образован с помощью делителя (201) потока, имеющего точно четыре соответственно отстоящие друг от друга отверстия (201A, 202B, 203C, 2022D), и конец корпуса со стороны выпуска с помощью делителя (202) потока, имеющего точно четыре соответственно отстоящие друг от друга отверстия (201A, 202B, 202C, 202D), а также трубопровод с точно четырьмя при образовании аэрогидродинамически параллельно включенных нитей потока присоединенных к делителям (201, 202) потока только попарно параллельных изогнутых измерительных труб (181, 182, 183, 184) для ведения протекающей среды. При этом оба делителя (201, 202) потока образованы и расположены в первичном измерительном преобразователе так, что система труб имеет виртуальную плоскость (YZ) продольного сечения, проходящую как между первой и второй измерительными трубами, так и между третьей и четвертой измерительными трубами, относительно которой система труб является зеркально-симметричной, и имеет виртуальную плоскость (XZ) продольного сечения перпендикулярную к виртуальной плоскости (YZ), лежащую как между первой и третьей измерительными трубами, так и между второй и четвертой измерительными трубами, относительно которой система труб точно также является зеркально-симметричной. Технический результат - повышение чувствительности и добротности колебаний измерительного преобразователя. 3 н. и 78 з.п. ф-лы, 10 ил.
Наверх