Способ получения антиагломератора для синтетических каучуков



Способ получения антиагломератора для синтетических каучуков
Способ получения антиагломератора для синтетических каучуков
Способ получения антиагломератора для синтетических каучуков
Способ получения антиагломератора для синтетических каучуков
Способ получения антиагломератора для синтетических каучуков
Способ получения антиагломератора для синтетических каучуков

 


Владельцы патента RU 2548001:

Открытое акционерное общество "Синтез-Каучук" (RU)

Изобретение относится к способу получения антиагломератора на основе стеарата кальция, который находит применение в нефтехимической промышленности при получении синтетических каучуков. Описан способ получения антиагломератора для синтетических каучуков, заключающийся в том, что осуществляют подачу в емкость с мешалкой парового конденсата или обессоленной воды и нагревают до температуры 80°C, затем при перемешивании добавляют порошок стеарата кальция, полученную водную суспензию стеарата кальция с концентрацией 5-15 мас. % перемешивают в течение 3-5 часов и разбавляют паровым конденсатом или обессоленной водой до концентрации 2-5,4 мас. %, затем полученную водную суспензию стеарата кальция непрерывно циркулируют по контуру, включающему трубчатый турбулентный аппарат диффузор-конфузорной конструкции в течение не менее 5 часов с получением водной суспензии стеарата кальция с диаметром частиц в пределах 0,76-25 мкм. Техническим результатом заявляемого способа получения антиагломератора для синтетических каучуков является снижение размера частиц антиагломератора до 0,76-25 мкм и, как следствие, уменьшение дозировок антиагломератора на каучук до 8,1 кг/т для достижения необходимой эффективности антиагломерации полимерной крошки в воде, а также уменьшение содержания стеарата кальция/стеариновой кислоты в товарном каучуке; исключение большого количества стадий получения антиагломератора; снижение содержания ионов хлора в сточной воде при выделении синтетического каучука в 1,8 раз за счет исключения стадии взаимодействия хлористого кальция со стеаратом калия. 5 пр., 1 ил., 1 табл.

 

Изобретение относится к способу получения антиагломератора на основе стеарата кальция, который находит применение в нефтехимической промышленности при получении синтетических каучуков.

В производстве синтетических каучуков методом растворной полимеризации на стадии выделения водной дегазацией используются антиагломераторы, препятствующие слипанию полимерной крошки за счет создания на их поверхности структурно-механического барьера. Это позволяет транспортировать крошку каучука в виде пульпы и облегчает удаление из полимера остатков непрореагировавшего мономера и растворителя. В качестве антиагломератора в производстве синтетических каучуков широко используют мелкодисперсные водные суспензии нерастворимых солей стеариновой кислоты, в частности, стеарат кальция.

Известен способ получения антиагломератора для синтетических каучуков, который заключается в том, что в водный раствор гидроксида калия с концентрацией 2% при температуре 70-100°С добавляется твердая или гранулированная стеариновая кислота, далее образовавшийся в результате протекания реакции омыления водный раствор стеарата калия в линии циркуляционной воды в потоке взаимодействует с водным раствором хлористого кальция. При взаимодействии стеарата калия с хлористым кальцием образуется свежеосажденный стеарат кальция, который далее используется для выделения синтетического каучука на стадии дегазации (П.А. Кирпичников, В.В. Береснев, Л.М. Попова. Альбом технологических схем основных производств промышленности синтетического каучука: Учебное пособие для вузов. - 2-е изд., перераб. - Л.: Химия, 1986, с.136-137). Недостатком этого способа является то, что суспензия стеарата кальция получается недостаточно мелкая и неустойчивая. Наличие ионов хлора в сточной воде, образующихся в результате взаимодействия хлористого кальция со стеаратом калия, определяет необходимость проведения дополнительных мероприятий для очистки воды. Процесс получения антиагломератора включает в себя большое количество стадий.

Наиболее близким техническим решением к предлагаемому способу получения антиагломератора для синтетических каучуков - прототипом -является способ получения антиагломератора синтетических каучуков путем последовательного взаимодействия стеариновой кислоты с растворами щелочи и хлористого кальция и выделением суспензии стеарата кальция, причем стеариновую кислоту предварительно подают в водную среду с температурой 55-65°С, а продукт взаимодействия стеариновой кислоты со щелочью нагревают до 75-85°С и разбавляют в 1,5-2,5 раза, при этом диаметр частиц суспензии стеарата кальция находится в пределах 100-500 мкм (Патент РФ №2190592 C07С 51/41, C08С 2/06, C08K 5/095, опубл. 10.10.2002). Недостатками данного технического решения являются большой размер частиц стеарата кальция 100-500 мкм, невозможность контролировать дисперсность частиц стеарата кальция, которая определяет эффективность антиагломерации полимерной крошки в воде, что, как следствие, приводит к необходимости использования высоких дозировок антиагломератора для выделения крошки синтетического каучука и к высокому содержанию стеарата кальция/стеариновой кислоты в товарном каучуке, сложность дозирования исходных реагентов, а также использование избытка хлористого кальция для полного перевода стеарата калия в нерастворимый в воде стеарат кальция, что способствует значительному содержанию ионов хлора в сточных водах производства. Процесс получения антиагломератора включает в себя большое количество стадий.

Задачей предлагаемого изобретения является снижение размера частиц антиагломератора до 0,76-25 мкм, и, как следствие, уменьшение дозировок антиагломератора для достижения необходимой эффективности антиагломерации полимерной крошки в воде, а также уменьшение содержания стеарата кальция/стеариновой кислоты в товарном каучуке; исключение большого количества стадий получения антиагломератора; снижение содержания ионов хлора в сточной воде при выделении синтетического каучука за счет исключения стадии взаимодействия хлористого кальция со стеаратом калия.

Для решения поставленной задачи предложен способ получения антиагломератора для синтетических каучуков, заключающийся в следующем. В емкость с мешалкой подают паровой конденсат или обессоленную воду и нагревают до температуры 80°С, затем при перемешивании добавляют порошок стеарата кальция. Полученную водную суспензию стеарата кальция с концентрацией 5-15 мас.% перемешивают в течение 3-5 часов и далее разбавляют паровым конденсатом или обессоленной водой до концентрации 2-5,4 мас.%. Затем полученную водную суспензию стеарата кальция со средним диаметром частиц 1,7-70 мкм непрерывно циркулируют по контуру, включающему трубчатый турбулентный аппарат диффузор-конфузорной конструкции, в течение не менее 5 часов. При этом средний диаметр частиц антиагломератора находится в пределах 0,76-25 мкм. Далее полученная суспензия стеарата кальция подается на антиагломерацию синтетического каучука в циркуляционную воду.

Приготовление сначала водной суспензии стеарата кальция с концентрацией 5-15 мас.%, а потом разбавление полученной суспензии до рабочей концентрации 2-5,4 мас.% способствует лучшему смачиванию стеарата кальция и уменьшению размера частиц стеарата кальция в суспензии.

Для гидродинамического воздействия на суспензию стеарата кальция используется металлический трубчатый турбулентный аппарат диффузор-конфузорной конструкции (фиг.).

Геометрия трубчатого турбулентного аппарата обеспечивает максимальное значение диссипации удельной кинетической энергии турбулентности, позволяющее диспергировать частицы стеарата кальция в турбулентном потоке. Средняя скорость диссипации удельной кинетической энергии турбулентности рассчитывается по формуле:

где Vк - линейная скорость потока в узкой части аппарата;

f, fE - коэффициенты, которые определяются значениями геометрических параметров зоны смешения γ, dд/dк и Lс/dд (γ - угол раскрытия диффузора, dд - диаметр (внутренний) широкой части (диффузора), dк - диаметр (внутренний) узкой части (конфузора), Lc - длина диффузор-конфузорной секции):

Общая длина аппарата (L) обеспечивает соотношение, при котором время пребывания суспензии в аппарате сопоставимо с характерным временем турбулентного смешения, необходимого для гомогенизации всего объема потока:

где fк - коэффициент, который определяется значениями геометрических параметров зоны смешения dд/dк и Lс/dд:

Применительно к процессу гидродинамического воздействия на суспензию стеарата кальция оптимально использовать трубчатый турбулентный аппарат диффузор-конфузорной конструкции со следующими геометрическими параметрами: dд=70±3,5 мм, dк=35±1,75 мм, Lc=210±10,5 мм, Lп=195±9,75 мм, γ=40±2 град, L=1650±82,5 мм (фиг.), где Lп - длина входной и выходной секции, толщина стенок аппарата = 4±0,5 мм.

Таким образом, контур циркуляции, включающий трубчатый турбулентный аппарат диффузор-конфузорной конструкции, используется в процессе приготовления антиагломератора для решения проблемы агрегации частиц суспензии в объемном аппарате. Ввиду малых габаритов трубчатого турбулентного аппарата диффузор-конфузорной конструкции циркуляция суспензии до начала подачи ее на стадию выделения каучука проводится многократно в течение не менее 5 часов. При циркуляции за счет последовательно установленных гидравлических сопротивлений в виде внезапных конических сужений и расширений в потоке происходит формирование сдвиговых деформаций на частицы дисперсной фазы (стеарат кальция) со стороны сплошной среды (вода). Интенсивность сдвиговых деформаций определяется скоростью диссипации удельной кинетической энергии турбулентности в масштабах микросмешения. Оптимальная геометрия трубчатого турбулентного аппарата обеспечивает максимальное значение диссипации удельной кинетической энергии турбулентности, что применительно к процессу получения антиагломератора на основе стеарата кальция и способствует интенсивному дроблению частиц.

Однократная циркуляция суспензии через трубчатый турбулентный аппарат диффузор-конфузорной конструкции приводит к снижению среднего диаметра частиц на 70-80%, а также к формированию мелкодисперсной фракции с диаметром частиц в интервале 1,1-2,1 мкм, которой не наблюдается в исходной суспензии. Многократная циркуляция в течение не менее 5 часов позволяет получить средний диаметр частиц антиагломератора в пределах 0,76-25 мкм.

При сравнении с известными способами получения антиагломератора для синтетических каучуков, заявленный способ отличается отсутствием стадий получения растворов хлористого кальция и стеарата калия; отсутствием стадии взаимодействия стеарата калия с хлористым кальцием, в результате которого образуются стоки, содержащие ионы хлора; возможностью приготовления антиагломератора на основе стеарата кальция в одну стадию; использованием многократной циркуляции суспензии стеарата кальция через трубчатый турбулентный аппарат диффузор-конфузорной конструкции, геометрия которого обеспечивает максимальное значение диссипации удельной кинетической энергии турбулентности, что позволяет получить средний диаметр частиц антиагломератора в пределах 0,76-25 мкм.

Техническим результатом заявляемого способа получения антиагломератора для синтетических каучуков является снижение размера частиц антиагломератора до 0,76-25 мкм, и, как следствие, уменьшение дозировок антиагломератора на каучук до 8,1 кг/т для достижения необходимой эффективности антиагломерации полимерной крошки в воде, а также уменьшение содержания стеарата кальция/стеариновой кислоты в товарном каучуке; исключение большого количества стадий получения антиагломератора; снижение содержания ионов хлора в сточной воде при выделении синтетического каучука в 1,8 раз за счет исключения стадии взаимодействия хлористого кальция со стеаратом калия.

При анализе свойств и эффективности антиагломераторов используют следующие методы исследования.

Средний диаметр частиц антиагломератора определяют методом лазерной дифракции на приборе Sald-7101 (длина волны лазера 375 нм). Содержание ионов хлора в сточной воде определяют меркуриметрическим титрованием. Содержание антиагломератора в товарном каучуке определяют по п.4.8 ГОСТ 14925 в расчете на стеарат кальция.

Пример 1 (по прототипу).

В емкость с мешалкой подают паровой конденсат в количестве 13 м3 и нагревают до 60°С. Затем туда же засыпают 500 кг стеариновой кислоты, а после ее равномерного распределения в емкость загружают 250 литров 40%-ного раствора гидроксида калия. После загрузки щелочи температуру поднимают до 80°С и смесь перемешивают в течение 2-х часов. Затем в реактор добавляют еще 13 м3 воды и дозируют 350 литров 35%-ного раствора хлористого кальция. Перемешивают еще 0,5 часа. У полученной свежеосажденной суспензии определяют размер частиц и дозируют ее в циркуляционную воду, поступающую в дегазатор для антиагломерации крошки изопренового каучука, получаемого методом растворной полимеризации, в расчете 9,1 кг на 1 т каучука.

Пример 2.

В емкость с мешалкой подают 18 м3 обессоленной воды и нагревают до температуры 80°С. Затем через люк при перемешивании добавляют 2205 кг порошка стеарата кальция. Полученную водную суспензию стеарата кальция с концентрацией 11 мас.% перемешивают 4,5 часа и далее разбавляют обессоленной водой до 41 м3 до концентрации 5,4 мас.%. У полученной свежеосажденной суспензии стеарата кальция определяют размер частиц и дозируют ее в циркуляционную воду, поступающую в дегазатор для антиагломерации крошки изопренового каучука, получаемого методом растворной полимеризации, в расчете 8,6 кг на 1 т каучука.

Пример 3.

Водную суспензию стеарата кальция готовят как в примере 2, за исключением того, что после приготовления суспензии в емкости с мешалкой включают непрерывную циркуляцию потока, содержащего стеарат кальция, через трубчатый турбулентный аппарат диффузор-конфузорной конструкции. Продолжительность циркуляции составляет 5 часов. У полученной суспензии стеарата кальция определяют размер частиц и дозируют ее в циркуляционную воду, поступающую в дегазатор для антиагломерации крошки изопренового каучука, получаемого методом растворной полимеризации, в расчете 8,1 кг на 1 т каучука.

Пример 4.

Опыт проводят как в примере 3, за исключением того, что обессоленную воду после подачи в емкость с мешалкой нагревают до температуры 90°С. У полученной суспензии стеарата кальция определяют размер частиц и дозируют ее в циркуляционную воду, поступающую в дегазатор для антиагломерации крошки изопренового каучука, получаемого методом растворной полимеризации, в расчете 8,7 кг на 1 т каучука.

Пример 5.

Опыт проводят как в примере 3, за исключением того, что обессоленную воду после подачи в емкость с мешалкой нагревают до температуры 70°С. У полученной суспензии стеарата кальция определяют размер частиц и дозируют ее в циркуляционную воду, поступающую в дегазатор для антиагломерации крошки изопренового каучука, получаемого методом растворной полимеризации, в расчете 8,9 кг на 1 т каучука.

Результаты опытов приведены в таблице 1.

Из результатов опытов, приведенных в таблице 1, видно, что приготовление антиагломератора из порошка стеарата кальция приводит к получению суспензии со средним диаметром частиц 1,7-70 мкм, что позволяет уменьшить дозировку стеарата кальция на каучук с 9,1 кг/т (по прототипу) до 8,6 кг/т. Переход от двухстадийного способа получения стеарата кальция (по прототипу), в результате которого на промежуточной стадии образуются ионы хлора, к использованию готового стеарата кальция способствует снижению содержания ионов хлора в сточной воде в 1,8 раз. Многократная циркуляция суспензии стеарата кальция через трубчатый турбулентный аппарат диффузор-конфузорной конструкции дополнительно снижает средний диаметр частиц до 0,76-25 мкм, что определяет возможность уменьшения дозировки стеарата кальция на каучук до 8,1 кг/т и возможность уменьшения содержания антиагломератора в товарном каучуке до 0,73 мас.%. Снижение температуры приготовления суспензии стеарата кальция до 70°С ввиду снижения скорости массообмена определяет получение крупных частиц с диаметром 30-100 мкм, что способствует увеличению дозировки антиагломератора на каучук до 8,9 кг/т. Увеличение температуры приготовления суспензии стеарата кальция до 90°С за счет увеличения скорости массообмена приводит к получению мелких частиц с диаметром 0,5-5 мкм, что сопровождается ухудшением антиагломерирующей способности и увеличению дозировки антиагломератора до 8,7 кг/т.

Способ получения антиагломератора для синтетических каучуков, заключающийся в том, что осуществляют подачу в емкость с мешалкой парового конденсата или обессоленной воды и нагревают до температуры 80°C, затем при перемешивании добавляют порошок стеарата кальция, полученную водную суспензию стеарата кальция с концентрацией 5-15 мас. % перемешивают в течение 3-5 часов и разбавляют паровым конденсатом или обессоленной водой до концентрации 2-5,4 мас. %, затем полученную водную суспензию стеарата кальция непрерывно циркулируют по контуру, включающему трубчатый турбулентный аппарат диффузор-конфузорной конструкции в течение не менее 5 часов с получением водной суспензии стеарата кальция с диаметром частиц в пределах 0,76-25 мкм.



 

Похожие патенты:

Изобретение относится к резинометаллическим изделиям с самоклеющейся резиновой композицией. Композитное изделие, включающее по меньшей мере два конструктивных элемента, по меньшей мере один из которых содержит металл, и эластомерный элемент, и способ получения изделия, включающий смешение эластомерной композиции, содержащей по меньшей мере один эластомерный полимерный компонент и по меньшей мере один промотор адгезии, выбранный из группы, состоящей из неоалкоксицирконатов с органофосфатной группой и полиимидов; формование по меньшей мере частично отвержденного эластомерного элемента из эластомерной композиции; запрессовку формованного эластомерного элемента между двумя конструкционными элементами так, чтобы эластомерный элемент находился в состоянии сжатия в отсутствие внешней силы, и активацию указанного промотора адгезии, чтобы образовать связь между эластомерным элементом и по меньшей мере одним конструктивным элементом, вследствие чего указанный эластомерный элемент продолжает оставаться в состоянии сжатия.

Изобретение относится к композиции для бета-зародышеобразования полипропилена и способу ее получения. Композиция представляет собой частицы природной минеральной твердой подложки, поверхность которых имеет соль дикарбоновой кислоты, где дикарбоновая кислота содержит от 7 до 10 атомов углерода, и диспергирующий и/или измельчающий агент.

Изобретение относится к способу получения устойчивой при хранении жидкой сверхосновной соли щелочного или щелочноземельного металла. Способ включает реакцию смеси основания щелочного или щелочноземельного металла и алифатической или ароматической карбоновой кислоты, в которой эквивалентное соотношение основания металла и карбоновой кислоты составляет более чем 1:1, в присутствии жидкого углеводорода, и карбоксилирование реакционной смеси в присутствии 1,3-дикетона.

Изобретение имеет отношение к защитным покрытиям, к крепежу и другим поверхностям, покрытым этими покрытиями, например к таким покрытиям и крепежу, которые способны к защите одного или обоих из двух различных металлов, соединенных вместе, от коррозии или повреждения, такой как структурная коррозия или разрушение.

Изобретение относится к композиции полиамидной смолы, которая имеет превосходные свойства, такие как термостойкость, стойкость к химическому воздействию, прочность, износостойкость и формуемость, и поэтому широко применяется для получения формованных изделий в качестве технической пластмассы.

Изобретение относится к технологиям создания биоразлагаемых полимерных материалов, в частности к добавкам, повышающим способность полиолефинов к биоразложению, и может быть использовано для создания материалов и изделий из них, способных подвергаться ускоренному биоразложению в природных условиях.
Изобретение относится к нефтехимическому синтезу, в частности к способу получения стеарата свинца «чистого», который может быть использован в качестве термостабилизатора в производстве поливинилхлоридных смол (ПВХ) при переработке пластических масс, в производстве искусственных кож и линолеума, а также при производстве витаминных таблеток, лекарственных препаратов, в парфюмерно-косметической промышленности и научных целях.
Изобретение относится к композиционным фрикционным неметаллическим материалам на основе полимеров, а именно к материалам на основе фенолформальдегидной смолы, и может быть использовано при изготовлении амортизаторов, муфт сцепления, тормозных узлов и т.п.
Изобретение относится к поливинилхлоридным (ПВХ) пластизолям, предназначенным для изготовления детских игрушек. .
Изобретение относится к поливинилхлоридным (ПВХ) пластизолям, предназначенным преимущественно для изготовления детских игрушек. .
Изобретение относится к нефтехимическому синтезу, в частности к способу получения стеарата свинца «чистого», который может быть использован в качестве термостабилизатора в производстве поливинилхлоридных смол (ПВХ) при переработке пластических масс, в производстве искусственных кож и линолеума, а также при производстве витаминных таблеток, лекарственных препаратов, в парфюмерно-косметической промышленности и научных целях.

Изобретение относится к улучшенному способу получения стеарата кальция взаимодействием стеариновой кислоты и гидроокиси кальция при нагревании и интенсивном перемешивании, последующей фильтрацией и сушкой осадка.

Изобретение относится к нефтехимическому синтезу, в частности к способу получения свинца стеариновокислого двухосновного стабилизатора поливинилхлорида, и может быть использовано в качестве термостабилизатора в производстве поливинилхлоридных смол и изделий из них, например, при литье под давлением, непрозрачной и полупрозрачной изоляции проводов, который также обладает сильным смазочным свойством при экструзии и тому подобное.Сущность способа получения свинца стеариновокислого двухосновного стабилизатора поливинилхлорида, заключается в следующем.
Изобретение относится к способу получения насыщенных карбоновых кислот и их производных, включающему стадии: (а) взаимодействия производного ненасыщенной жирной кислоты, в котором карбоксильная группа подготовлена к взаимодействию с образованием модифицированной карбоксильной группы таким образом, чтобы предотвратить или в любом случае минимизировать любые возможные реакции карбоксильной группы, модифицированной таким образом, в процессе осуществления способа, с окисляющим соединением в присутствии катализатора, способного катализировать реакцию окисления двойной этиленовой связи производного ненасыщенной жирной кислоты с получением промежуточного продукта реакции вицинального диола; и (б) взаимодействия указанного промежуточного соединения с кислородом, или соединением, содержащим кислород, в присутствии катализатора, способного катализировать реакцию окисления гидроксильных групп вицинального диола до карбоксильных групп, характеризующемуся тем, что обе стадии (а) и (б) осуществляют в отсутствие добавленного органического растворителя, и тем, что соотношение вода/диол в реакции стадии (б) менее чем 1:1.
Изобретение относится к способу получения карбоксилатов редкоземельных элементов (РЗЭ), которые могут быть использованы в качестве компонентов катализаторов для производства диеновых каучуков с высоким содержанием 1,4-цис-звеньев.

Изобретение относится к способу получения 1- 13С-каприловой кислоты, которая используется в качестве диагностического препарата при диагностике моторно-эвакуаторной функции желудка.

Изобретение относится к производным 3-аминокапролактама формулы (I): где Х представляет собой -CO-R1 или -SO2-R2, R1 представляет собой алкильный (за исключением 5-метилгептанила и 6-метилгептанила, где радикал R1 присоединен к карбонилу в положении 1), галогеналкильный, алкокси (за исключением трет-бутилокси), алкенильный, алкинильный или алкиламино радикал из 4-20 атомов углерода (например, из 5-20 атомов углерода, 8-20 атомов углерода, 9-20 атомов углерода, 10-18 атомов углерода, 12-18 атомов углерода, 13-18 атомов углерода, 14-18 атомов углерода, 13-17 атомов углерода) и R2 представляет собой алкильный радикал из 4-20 атомов углерода (например, из 5-20 атомов углерода, 8-20 атомов углерода, 9-20 атомов углерода, 10-18 атомов углерода, 12-18 атомов углерода, 13-18 атомов углерода, 14-18 атомов углерода, 13-17 атомов углерода); или к его фармацевтически приемлемой соли.

Изобретение относится к химии производных переходных металлов и может найти применение в химической промышленности при получении карбоксилатов переходных металлов, а также относится к усовершенствованному способу получения карбоксилатов циркония взаимодействием четыреххлористого циркония с карбоксильными производными общей формулы RCOOM, где R - линейный или разветвленный алифатический радикал C nH2n+1 или остаток ненасыщенной кислоты, где n=0-16, a M - протон или катион щелочного металла, в котором в качестве соединений RCOOM используют щелочные соли алифатических или ненасыщенных кислот, взаимодействие четыреххлористого циркония с указанными соединениями проводят в твердой фазе в отсутствие растворителя при механической активации при мольном соотношении ZrCl4:RCOOM в пределах 1<m<4.5, где m - целое или дробное число, с последующей экстракцией образовавшегося карбоксилата циркония органическим растворителем.
Изобретение относится к способу получения насыщенных алифатических карбоновых кислот со стабильными изотопами углерода (1- 13С) реакцией гидрокарбоксилирования -олефинов с монооксидом углерода 13 СО и водой при температуре 100-170°С и давлении, не превышающем 5 МПа, в присутствии растворителя и каталитической системы, содержащей соединение палладия в виде комплекса PdCl2 (PPh3)2 и трифенилфосфина PPh3, взятых в соотношении из диапазона от 1:2 до 1:100, соответственно.

Изобретение относится к непрерывному способу карбонилирования алифатических углеводородов с длинной цепью для получения спиртов, кислот или других кислородсодержащих продуктов, таких как сложные эфиры.

Изобретение относится к усовершенствованному способу получения гликолевой кислоты. Гликолевая кислота находит широкое применение в различных отраслях промышленности: пищевой, кожевенной, нефтегазовой, обрабатывающей, текстильной, строительной и т.д.
Наверх