Способ получения наночастиц сукцината хитозана


 


Владельцы патента RU 2562721:

Общество с ограниченной ответственностью "Фармхим" (ООО "Фармхим") (RU)

Изобретение относится к химической технологии. Способ предусматривает растворение в дистиллированной воде янтарной кислоты при температуре 20°C, фильтрацию нерастворившейся янтарной кислоты и добавление к полученному раствору низкомолекулярного хитозана, выдерживании при перемешивании со скоростью 200 об/мин в течение 2 часов. По окончании реакции добавляют этанол, центрифугируют. Твердый остаток фильтруют и сушат в вакуумном сушильном шкафу при температуре 30°C. Изобретение позволяет получить наноразмерные частицы сукцината хитозана. 1 ил., 5 пр.

 

Изобретение относится к химической технологии, а именно к способам получения хитина и его производных, и может быть использовано при получении сукцината хитозана и его наночастиц.

В настоящее время все большее внимание исследователей обращено на создание наноразмерных полимерных материалов. В силу высокой удельной поверхности наночастиц эти вещества способны многократно увеличивать свою активность по сравнению с макроскопическими частицами и, более того, проявлять новые свойства. Как известно, хитозан и его производные проявляют широкий спектр практически ценных свойств, нашедших применение в химии, медицине, фармацевтике и других отраслях.

Предложен способ получения карбоксилсодержащих производных хитозана взаимодействием последнего с карбоксилсодержащим реагентом, который отличается тем, что реакция осуществляется в твердом состоянии в условиях воздействия сдвиговых напряжений и давления при температуре 25-100°C. В качестве карбоксилсодержащего реагента используют янтарную, малоновую кислоты или их ангидриды в количестве 0,25-1,5 моль на один моль аминогрупп хитозана. Исключение растворителей делает процесс экологически чистым (патент РФ 2100373, кл. C08B 37/08, 1976).

Описывается способ получения натриевой соли сукцината хитозана, предусматривающий приготовление гомогенного раствора хитозана, его взаимодействие с янтарным ангидридом с последующей нейтрализацией щелочным реагентом до pH - среды 6,9-7,5. Выделение целевого продукта проводят без применения органических растворителей методом распылительной или сублимационной сушки (патент РФ 2144040, кл. C08B 37/08, 1998).

Описанные выше способы получения сукцинатов хитозана имеют ряд существенных недостатков. Так, проведение процесса в гетерогенных условиях приводит к значительной композиционной неоднородности полученных производных, т.к. в этом случае реакция протекает только на границе раздела фаз, при этом внутренние слои частиц хитозана остаются незатронутыми. Данные способы не предназначены для получения наноразмерных частиц сукцинатов хитозана.

Задачей изобретения является разработка способа получения наночастиц сукцината хитозана.

Технический результат заключается в реализации поставленной задачи.

Способ получения наночастиц сукцинатов хитозана включает взаимодействие хитозана и янтарной кислоты с последующим выделением целевого продукта. Согласно изобретению готовят 0,11-0,17% раствор янтарной кислоты при комнатной температуре, фильтруют нерастворившуюся янтарную кислоту и вносят в полученный раствор предварительно очищенный низкомолекулярный хитозан с молекулярной массой 3, 9 или 30 кДа, выдерживают при перемешивании со скоростью 200 об/мин в течение 2 часов, по окончании реакции прибавляют этанол и центрифугируют, твердый остаток фильтруют и сушат в вакуумном сушильном шкафу при температуре 30°C.

Пример 1. В круглодонную трехгорлую колбу емкостью 250 мл, снабженную механической мешалкой, обратным холодильником и термометром, помещают 0,17 г (0.00144 моль) янтарной кислоты, добавляют 100 мл дистиллированной воды и растворяют при перемешивании и температуре 20°C. После растворения всего количества янтарной кислоты полученную массу фильтруют и снова помещают в реактор, затем прибавляют 0,17 г (0,102 масс.%) предварительно очищенного хитозана (средняя молекулярная масса 30 кДа) при перемешивании со скоростью 200 об/мин. Реакционную массу в этих условиях перемешивают в течение 2 часов. Размер частиц в водной дисперсии составлял по данным динамического светорассеяния 205 нм. По окончании реакции прибавляют 75 мл этанола и центрифугируют. Твердый остаток фильтруют и сушат в вакуумном сушильном шкафу при температуре 30°C.

Пример 2. В круглодонную трехгорлую колбу емкостью 250 мл, снабженную механической мешалкой, обратным холодильником и термометром, помещают 0,11 г (0,00093 моль) янтарной кислоты, добавляют 170 мл дистиллированной воды и растворяют при перемешивании при температуре 20°C. После растворения всего количества янтарной кислоты полученную массу фильтруют и снова помещают в реактор, затем прибавляют 0,1 г (0,06 масс.%) предварительно очищенного хитозана (средняя молекулярная масса 9 кДа) при перемешивании со скоростью 200 об/мин. Реакционную массу в этих условиях перемешивают в течение 2 часов. Размер частиц в водной дисперсии составлял по данным динамического светорассеяния 270 нм. По окончании реакции прибавляют 75 мл этанола и центрифугируют. Твердый остаток фильтруют и сушат в вакуумном сушильном шкафу при температуре 30°C.

Пример 3. В круглодонную трехгорлую колбу емкостью 250 мл, снабженную механической мешалкой, обратным холодильником и термометром, помещают 0,17 г (0,00144 моль) янтарной кислоты, добавляют 100 мл дистиллированной воды и растворяют при перемешивании при температуре 20°C. После растворения всего количества янтарной кислоты полученную массу фильтруют и снова помещают в реактор, затем прибавляют 0,17 г (0,102 масс.%) предварительно очищенного хитозана (средняя молекулярная масса 9 кДа) при перемешивании со скоростью 200 об/мин. Реакционную массу в этих условиях перемешивают в течение 2 часов. Размер частиц в водной дисперсии составлял по данным динамического светорассеяния 186 нм. По окончании реакции прибавляют 75 мл этанола и центрифугируют. Твердый остаток фильтруют и сушат в вакуумном сушильном шкафу при температуре 30°C.

Пример 4. В круглодонную трехгорлую колбу емкостью 250 мл, снабженную механической мешалкой, обратным холодильником и термометром, помещают 0,11 г (0,00093 моль) янтарной кислоты, добавляют 100 мл дистиллированной воды и растворяют при перемешивании при температуре 20°C. После растворения всего количества янтарной кислоты в реактор помещают 0,1 г (0,1 масс.%) предварительно очищенного хитозана (средняя молекулярная масса 3 кДа) при перемешивании со скоростью 200 об/мин. Реакционную массу перемешивают в течение 2 часов при температуре 20°C. Размер частиц в водной дисперсии составлял по данным динамического светорассеяния 340 нм. По окончании реакции прибавляют 75 мл этанола и центрифугируют. Твердый остаток фильтруют и сушат в вакуумном сушильном шкафу при температуре 30°C.

Пример 5. В круглодонную трехгорлую колбу емкостью 250 мл, снабженную механической мешалкой, обратным холодильником и термометром, помещают 0,17 г (0,00144 моль) янтарной кислоты, добавляют 100 мл дистиллированной воды и растворяют при перемешивании при температуре 20°C. После растворения всего количества янтарной кислоты полученную массу фильтруют и снова помещают в реактор, затем прибавляют 0,17 г (0,102 масс.%) предварительно очищенного хитозана (средняя молекулярная масса 3 кДа) при перемешивании со скоростью 200 об/мин. Реакционную массу в этих условиях перемешивают в течение 2 часов. Размер частиц в водной дисперсии составлял по данным динамического светорассеяния 165 нм. По окончании реакции прибавляют 75 мл этанола и центрифугируют. Твердый остаток фильтруют и сушат в вакуумном сушильном шкафу при температуре 30°C.

На рис.1 приведена гистограмма распределения частиц по размерам сукцинатов хитозана.

Способ получения наночастиц сукцинатов хитозана, включающий взаимодействие хитозана и янтарной кислоты, с последующим выделением целевого продукта, характеризующийся тем, что готовят 0,11-0,17% раствор янтарной кислоты при комнатной температуре, фильтруют нерастворившуюся янтарную кислоту и вносят в полученный раствор предварительно очищенный низкомолекулярный хитозан 3, 9 или 30 кДа, выдерживают при перемешивании со скоростью 200 об/мин в течение 2 часов, по окончании реакции добавляют этанол и центрифугируют, твердый остаток фильтруют и сушат в вакуумном сушильном шкафу при температуре 30°C.



 

Похожие патенты:

Изобретение относится к химии соединений додекагидро-клозо-додекаборатного B 12 H 12 2 − − а н и о н а , хитозана, солей переходных металлов, а именно к аддуктам додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами переходных металлов, в частности Cu(II), или Со(II), или Ni(II), или Zn(II), или Мn(II), и способу их получения.

Изобретение относится к области биотехнологии. Предложен способ получения хитин-глюканового комплекса и полимеров, содержащих глюкозу, маннозу и/или галактозу.

Изобретение относится к новому способу получения производного гиалуроновой кислоты, содержащего альдегидную группу в положении (6) гликозаминного полисахаридного фрагмента.

Изобретение относится к способу поперечной ковалентной сшивки макромолекул хитозана с получением продукта, образующего при смешивании с водой высоковязкие гидрогели, применяемые в качестве перспективных материалов биотехнологического, биомедицинского и фармакологического назначения.

Изобретение относится к медицине, а именно к терапевтической стоматологии, и предназначено для восстановления мягких и костных тканей пародонта и костных тканей челюстей.

Изобретение относится к получению хитозана. Способ предусматривает предварительную обработку природного хитинсодержащего сырья для удаления из него необогащенного хитином материала путем обработки слабым раствором гидроксида натрия с последующим отделением и промывкой хитинсодержащего сырья.

Изобретение относится к новому соединению - N,O-(2,3-дигидроксипропил)хитозанил-борату, имеющему формулу , где m=500-3000. Соединение обладает антибактериальным, иммуномодулирующим и антитоксическим действием.

Изобретение относится к получению хитозана из хитина и может найти применение в медицине, химической, текстильной, бумажной и пищевой промышленности. Способ предусматривает предварительное измельчение хитина до размеров 1-2×2-3 мм.

Группа изобретений относится к медицине. Описаны композиции, включающие гиалуроновую кислоту с низкой степенью модификации функциональных групп, и смеси, получаемые в результате регулируемой реакции такой слегка модифицированной гиалуроновой кислоты с подходящими дифункциональными или многофункциональными сшивающими реагентами.

Изобретение относится к природным полимерам из класса полисахаридов и может найти применение в медицине, в частности фотон захватной терапии (ФЗТ), фототермической терапии, фото- и радиосенсибилизации, химиотерапии, лечении ревматоидного артрита, антиВИЧ терапии, косметологии, эстетической дерматологии и пластической хирургии.
Изобретение относится к полимерным пленочным материалам, модифицированным нанокомпозитными соединениями, предназначенным для применения в электронной промышленности, электротехнике, машиностроении.

Изобретение относится к фармацевтической промышленности, в частности к способу получения нанокапсул витаминов А, С, D, Е или Q10. Способ получения нанокапсул витаминов А, С, D, Е или Q10 заключается в том, что определенное количество витамина А, С, D, Е или Q10 добавляют в суспензию каррагинана в бутаноле, содержащую каррагинан в присутствии Е472с, при перемешивании, после чего приливают гексан, отфильтровывают полученную суспензию и сушат.

Изобретение относится к химии и водородной энергетике и может быть использовано в транспортном машиностроении. Водород получают в генераторе 1, направляют в приёмник 2, разделяют на два потока 3 и воздействуют на них импульсным магнитным полем с амплитудой магнитной индукции В более 100 гаусс.

Изобретение относится к технологиям получения наноструктурированного углеродного материала и может быть использовано в химической, электротехнической, машиностроительной промышленности при изготовлении усиливающих наполнителей резин и пластмасс, пигментов для типографских красок, в производстве сплавов, специальных сортов бумаги, электродов, гальванических элементов.

Изобретение относится к области оптики, а именно к острой фокусировке электромагнитного излучения, и может быть использовано для высокоразрешающей оптической записи и сканирующей оптической микроскопии.

Изобретение относится к способу инкапсуляции аспирина в ксантановой камеди. Указанный способ характеризуется тем, что суспензию аспирина смешивают с бензолом и диспергируют полученную смесь в суспензию ксантановой камеди в бутаноле в присутствии препарата Е472с при перемешивании 1000 об/с, далее приливают хлороформ, полученную суспензию нанокапсул отфильтровывают и сушат, при этом соотношение оболочка/ядро в нанокапсулах составляет 1:5, 3:1 или 1:1.

Изобретение относится к способу получения нанокапсул цефалоспориновых антибиотиков в альгинате натрия. Указанный способ характеризуется тем, что в суспензию альгината натрия и препарата Е472с в бутаноле добавляют порошок цефалоспорина в бензоле, после образования цефалоспорином самостоятельной твердой фазы добавляют четыреххлористый углерод, полученную суспензию нанокапсул отфильтровывают, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:3.

Изобретение относится к химическим методам иммобилизации лекарственных препаратов на поверхность детонационных наноалмазов. Изобретение представляет способ иммобилизации лекарственного препарата на поверхность детонационных алмазов, основанный на получении суспензии детонационных алмазов и лекарственного препарата растворением в органическом или водно-органическом растворителе, последующем упаривании полученной суспензии лекарственного препарата с наноалмазами и сушке, отличающийся тем, что в качестве лекарственного препарата используют галодиф, при этом полученную суспензию галодифа и детонационных наноалмазов выдерживают при комнатной температуре в течение не менее 24 часов при интенсивном перемешивании, а иммобилизацию галодифа осуществляют на окисленную поверхность детонационных наноалмазов.

Изобретение относится к химической технологии. На первой стадии производства наночастиц антипирена гидроксида магния осуществляют взаимодействие водного раствора хлорида магния с щелочным компонентом при температуре не выше 100°C и мольном отношении ионов ОН-: Mg++ в пределах (1,9-2,1):1.

Изобретение относится к средствам для изготовления материалов, позволяющих компенсировать врожденные пороки развития человека и животных. Предложенный лазерный формирователь объемных нанокомпозитов содержит столик, на котором установлен сосуд для размещения водно-белковой дисперсии углеродных нанотрубок, оптически сопряженный с оптоволоконным световодом и пирометрическим измерителем температуры и сопряженный с термопарой.

Изобретение относится к технологии обработки кремниевых монокристаллических пластин и может быть использовано для создания электронных структур на его основе. Способ электрической пассивации поверхности кремния тонкопленочным органическим покрытием из поликатионных молекул включает предварительную подготовку подложки для создания эффективного отрицательного электростатического заряда, приготовление водного раствора поликатионных молекул, адсорбцию поликатионных молекул на подложку в течение 10-15 минут, промывку в деионизованной воде и сушку подложки с осажденным слоем в потоке сухого воздуха, при этом в качестве подложки использован монокристаллический кремний со слоем туннельно прозрачного диоксида кремния, с шероховатостью, меньшей или сравнимой с толщиной создаваемого покрытия, предварительную подготовку кремниевой подложки проводят путем ее кипячения при 75°C в течение 10-15 минут в растворе NH4OH/H2O2/H2O в объемном соотношении 1/1/4, для приготовления водного раствора поликатионных молекул использован полиэтиленимин, а во время адсорбции поликатионных молекул на подложку осуществляют освещение подложки со стороны раствора светом с интенсивностью в диапазоне 800-1000 лк, достаточной для изменения плотности заряда поверхности полупроводниковой структуры за время адсорбции. Техническим результатом изобретения является уменьшение плотности поверхностных электронных состояний и увеличение эффективного времени жизни неравновесных носителей заряда на границах раздела «органический слой - диэлектрик» и «диэлектрик - полупроводник». 5 ил., 6 табл., 3 пр.
Наверх