Фотосенсибилизатор и способ его получения


 


Владельцы патента RU 2568597:

Общество с ограниченной ответственностью "РЕВИКСАН" (ООО "РЕВИКСАН") (RU)

Изобретение относится к области фармакологии, а именно к биологически активным соединениям хлоринового ряда и к способу их получения, и может быть использовано для получения трисмеглуминовой соли хлорина e6 в лиофильно высушенной форме, которая может быть использована в качестве высокоэффективного фотосенсибилизатора (ФС) для фотодинамической терапии (ФДТ) рака и других новообразований различного генезиса, а также для флюоресцентной диагностики раковых клеток. Способ получения фотосенсибилизатора для ФДТ включает растворение метилфеофорбида а в ацетоне, обработку полученного раствора водной щелочью NaOH или КОН с последующей нейтрализацией реакционной смеси разбавленной соляной кислотой, отделение выпавшего осадка хлорина e6 с последующей промывкой, обработку осадка водным раствором и лиофилизацию. Осуществление изобретения позволяет исключить образование псевдоколлоидного осадка, получение мелкодисперсного, плотного осадка фотосенсибилизатора с минимальным количеством посторонних примесей. Полученный фотосенсибилизатор обеспечивает полноценную криостабилизацию, уменьшение сроков реабилитации пациентов, а также повышение эффективности лизирования поврежденной и опухолевой ткани. 2 н.п. ф-лы, 2 пр.

 

Изобретение относится к области фармакологии, а именно к биологически активным соединениям хлоринового ряда и к способу их получения, и может быть использовано для получения трисмеглуминовой соли хлорина e6 в лиофильно высушенной форме, которая может быть использована в качестве высокоэффективного фотосенсибилизатора (ФС) для фотодинамической терапии (ФДТ) рака и других новообразований различного генезиса, а также для флюоресцентной диагностики раковых клеток.

В составе большинства современных ФС для ФДТ рака и других заболеваний используются производные хлорина e6. Некоторые из них нашли реальное воплощение в медицинской практике и широко применяются в качестве разрешенных препаратов для ФДТ рака и других новообразований. Так, например, из данных Регистра Лекарственных Средств России РЛС РФ (см. www.rlsnet.ru), разрешенный для клинического применения, ФС ФОТОЛОН [RU 2152790 C1 от 20.07.2000, Кл. A61K 31/409] (выпускается АО Белмедпрепараты) представляет собой лиофильно высушенный пористый порошок, содержащий тринатриевую соль хлорина e6 с целым рядом побочных хлоринов (см. Н.А. Isakau, T.V. Trukhacheva, A.L Zhebentyaev, P.T. Petrov, HPLC study of chlorine e6 and its molecular complex with polyvinylpyrrolidone. Biomedical Chromatogr., (2007), 21, 318-325) и. A. Isakau, T.V. Trukhacheva, P.T. Petrov Isolation and identification of impurities in chlorine e6. J. of Pharmaceutical and Biomedical Analysis, (2007), 45, 20-29) в комплексе с поливинилпирролидоном (ПВП). По мнению авторов присутствие в лекарственной форме ФОТОЛОНА значительного количества ПВП способствует улучшению некоторых характеристик данного препарата в качестве диагностического средства.

Другой ФС - РАДАХЛОРИН [RU 2183956 C1, A61K 31/79, от 27.06.2002, US Pat 7550587 от 23.06.2009] выпускается ООО РАДА-ФАРМА - представляет собой водный раствор смеси различных хлоринов переменного состава, в которой содержание основного продукта - тринатриевой соли хлорина e6 составляет 80-90% от общей суммы всех хлоринов. И, наконец, ФС - ФОТОДИТАЗИН [RU 2276976 C2, A61K 31/409 от 27.05.2006] (выпускается ООО BETA-ГРАНД) - представляет собой водный раствор смеси бис-N-метил-D-глюкаминовой соли хлорина e6 и небольшого количества других хлоринов (не более 2-4%) с ПВП.

Известен также ФС на основе хлорина e6, представляющий собой бисмеглуминовую мононатриевую соль хлорина e6, в виде лиофильно высушенной формы в присутствии мальтозы в качестве криостабилизатора [см. патент RU №2367434 CL, A61K 31/409, от 20.09.2009]. Однако этот ФС не используется в практической медицине. Специальными исследованиями показано, что максимально выраженным фотосенсибилизирующим эффектом обладает хлорин e6, а сопутствующие примеси, которые в основной своей массе легко агрегируют в водных средах, имеют более низкий квантовый выход генерации синглетного кислорода (см. Ю.А. Белый, А.В. Терещенко, П.Л. Володин, А. Каплан, Г.В. Пономарев. Сравнительное изучение фотодинамических эффектов фотосенсибилизаторов хлоринового ряда на интактной сетчатке экспериментальных животных «Рефракционная хирургия и офтальмология» 2006, 6, №2, с. 55-7). Эффективность препарата как ФС определяется коэффициентом тропности или контрастности. Поэтому присутствующие в препаратах ФОТОЛОН и РАДАХЛОРИН и, отчасти, в ФОТОДИТАЗИНЕ примеси сопутствующих хлоринов размывают четкую границу между раковой опухолью и близ расположенной здоровой тканью, что заметно снижает эффективность ФДТ при работе с данным препаратом из-за заметной фотодеструкции и рядом расположенной здоровой ткани. Таким образом, наличие примесей даже хлориновой природы заметно снижает эффективность препарата как ФС. Поэтому главной целью при создании ФС на основе хлорина e6 является получение исходного хлорина e6 максимально возможной чистоты с минимально возможными технологическими проблемами.

В настоящее время существует несколько способов получения высокочистого хлорина e6. Один из них заключается в специфической переработке «живой» хлореллы (Chlorella ellipsoidea) через последовательное выделение феофитина и его щелочного превращения до тринатриевой соли хлорина e6 с общим выходом до 1% с содержанием основного вещества в образце до 93-98%. Корейскими авторами подробно описана методика получения хлорина e6 высокой степени чистоты (US Pat 8349335, от January 8, 2013, Кл. 424/195.17), из которой следует, что только использование нативной («живой») хлореллы непосредственно в местах ее промышленной добычи позволяет получать в итоге высокоочищенный продукт с содержанием основного вещества не менее 93-98% с выходом около 1% считая на сухую хлореллу. Использование же высушенной хлореллы приводит к резкому снижению выхода (до 20-и раз). Основу метода получения хлорина e6 согласно данному патенту составляют несколько обязательных этапов: 1) многократная отмывка «живой» хлореллы от неорганических солей; 2) постепенная отмывка хлореллы водным этанолом для удаления полярных примесей; 3) экстракция хлорофилла а с применением 100%-ного этанола; 4) обработка хлорофильного спиртового экстракта IN соляной кислотой до pH 2.5 и отделение выпавшего феофитина фильтрацией; 5) кристаллической тринатриевой соли хлорина e6 фильтрацией хроматографическая очистка феофитина на колонке с нейтральной окисью алюминия с помощью градиентной хроматографии в системе гексан-хлористый метилен; 6) растворение кристаллического феофитина в ацетоне, добавление IN NaOH до pH 12; выдерживание щелочного раствора 12 часов и отделение; 7) растворение соли хлорина e6 в воде, фильтрация от нерастворимых примесей и лиофильная сушка водного раствора.

Ближайшим аналогом является фотосенсибилизатор и способ его получения, описанный в патенте РФ №2523380.

Фотосенсибилизатор для ФДТ в лиофильно высушенной форме включает соль хлорина e6 и криостабилизатор, при этом в качестве соли хлорина e6 он содержит трисмеглуминовую соль хлорина e6, а в качестве криостабилизатора меглумин в соотношении 1:0.1-0.2 весовых частей.

Способ получения фотосенсибилизатора для ФДТ включает растворение метилфеофорбида а в ацетоне, обработку полученного раствора водной щелочью (NaOH или КОН) с последующей нейтрализацией реакционной смеси разбавленной соляной кислотой до pH 4.5-5.0, отделение выпавшего осадка хлорина e6 с последующей промывкой дистиллированной водой, обработку осадка водным раствором и лиофилизацию, при этом обработку раствора метилфеофорбида а в ацетоне водной щелочью проводят при температуре 40-50°C, отделение осадка хлорина e6 осуществляют фильтрацией через слой целита 545 и хлорин e6 извлекают с целита водным раствором меглумина до достижения в растворе концентрации соли хлорина e6, соответствующей оптической плотности D=225-235/1 мл при длине волны максимума поглощения 655 нм и pH раствора 9.30-9.35.

Недостатками фотосенсибилизатора является то, что входящий в его состав меглумин не обеспечивает полноценную криостабилизацию, фотосенсибилизатор такого состава долговременно накапливается в поврежденных и опухолевых тканях, что увеличивает сроки реабилитации пациентов и не позволяет эффективно лизировать поврежденную и опухолевую ткань.

Недостатком способа получения фотосенсибилизатора является то, что обработку раствора метилфеофорбида а в ацетоне водной щелочью проводят при температуре 40-50°C, это приводит к неполному гидролизу метилфеофорбида с образованием большого количества примесей.

Недостатком является также то, что нейтрализация реакционной смеси разбавленной соляной кислотой до pH 4,5-5,0 приводит к образованию псевдоколлоидного осадка в течение продолжительного периода времени. Это влечет за собой захват осадком большого количества ацетона и его производных из реакционной смеси, отмыть полноценно которые последующей промывкой дистиллированной водой невозможно.

Задачей изобретения является создание фотосенсибилизатора и способа его получения, который позволяет получить ФС с высокими потребительскими свойствами, длительным сроком хранения, максимальной чистотой.

Техническим результатом изобретения по фотосенсибилизатору является обеспечение полноценной криостабилизации, уменьшение сроков реабилитации пациентов, а также повышение эффективности лизирования поврежденной и опухолевой ткани.

Технический результат по фотосенсибилизатору достигается тем, что фотосенсибилизатор для ФДТ в лиофильно высушенной форме, включающий соль хлорина e6 и меглумин в качестве криостабилизатора, согласно изобретению, в качестве соли хлорина e6 содержит трисмеглуминовую соль хлорина e6 и дополнительно декстран в качестве криостабилизатора при следующем соотношении компонентов в массовых процентах:

соль хлорина e6 1-27
меглумин 5-50
декстран остальное

Использование дополнительно декстрана в качестве криостабилизатора в сочетании с остальными компонентами в заявленных соотношениях позволяет сохранять потребительские качества фотосенсибилизатора в течение более длительных промежутках времени, при этом количество декстрана не может быть менее 23% из-за снижения эффекта криостабилизации и не может быть более 94% из-за снижения эффективности действия фотосенсибилизатора. Количество соли хлорина e6 не может быть менее 1% из-за резкого снижения терапевтического действия фотосенсибилизатора и не может быть более 27% из-за высокой фототоксичности фотосенсибилизатора.

Меглумин не может быть менее 5% из-за снижения эффекта криостабилизации и не может быть более 50% из-за снижения эффективности действия фотосенсибилизатора.

Техническим результатом изобретения по способу получения фотосенсибилизатора для ФДТ является исключение образования псевдоколлоидного осадка, получение мелкодисперсного, плотного осадка фотосенсибилизатора с минимальным количеством посторонних примесей.

Технический результат по способу получения фотосенсибилизатора достигается тем, что способ получения фотосенсибилизатора для ФДТ, включающий растворение метилфеофорбида а в ацетоне, обработку полученного раствора водной щелочью NaOH или КОН с последующей нейтрализацией реакционной смеси разбавленной соляной кислотой, отделение выпавшего осадка хлорина e6 с последующей промывкой, обработку осадка водным раствором и лиофилизацию, согласно изобретению, обработку раствора метилфеофорбида а в ацетоне водной щелочью проводят при температуре 51-60°C, нейтрализацию реакционной смеси разбавленной соляной кислотой проводят до pH 4,0-4,5, отделение осадка хлорина e6 осуществляют фильтрацией через слой целита 545, промывку осадка хлорина e6 проводят деионизованной водой, далее хлорин e6 извлекают с целита водным раствором меглумина и декстрана до достижения в растворе концентрации соли хлорина e6, соответствующей оптической плотности D=225-235/1 мл при длине волны максимума поглощения 661 нм и pH раствора 9,30-9,35.

Обработка раствора метилфеофорбида а в ацетоне водной щелочью при температуре 51-60°C позволяет провести гидролиз с образованием минимального количества примесей. Повышение температуры свыше 60°C может приводить к окислению компонентов реакционной смеси и образованию дополнительных примесей.

Использование деионизованной воды для промывки осадка от примесей позволяет осуществить полноценную промывку осадка меньшим объемом воды с меньшими потерями количества фотосенсибилизатора. Нейтрализация реакционной смеси разбавленной соляной кислотой до pH 4,0-4,5 позволяет избежать образования псевдоколлоидного осадка, получить мелкодисперсный, плотный осадок фотосенсибилизатора с минимальным количеством посторонних примесей.

Способ получения ФС для ФДТ включает растворение метилфеофорбида а в ацетоне, обработку полученного раствора водной щелочью с последующей нейтрализацией реакционной смеси, разбавленной соляной кислотой до pH=4,0-4,5, отделение выпавшего осадка хлорина e6 с последующей промывкой деионизованной водой, обработку осадка водным раствором меглумина и декстрана и лиофилизацию. Согласно предлагаемому изобретению, обработку раствора метилфеофорбида а в ацетоне водной щелочью проводят только при 51-60°C, отделение осадка хлорина e6 осуществляют фильтрацией через слой целита 545 и извлекают хлорин e6 с целита 545 водным раствором меглумина и декстрана до достижения в растворе концентрации соли хлорина e6, соответствующей оптической плотности 230-240 1 мл при длине волны максимума поглощения 661 нм и pH раствора 9.30-9.35, раствор фильтруют через миллипоры 0.22 ммк и лиофилизуют.

Из данных жидкостной хроматографии высокого давления (ЖХВД) следует, что разрушение фотосенсибилизатора за 2 года хранения практически не происходит (см. Пример 1)

Таким образом, в результате предлагаемой обработки реакционной смеси получена практически не разрушающаяся в процессе хранения лекарственная форма. Снижение оптической плотности раствора за 2 года составило всего 0,1%, что во много раз превышает устойчивость всех известных в настоящее время лекарственных препаратов класса ФС.

Пример 1

К раствору 4 г метилфеофорбида а в 800 мл ацетона добавляют в течение 1 часа 500 мл 10%-ного раствора едкого натра при интенсивном барбатировании аргона, перемешивают 2 часа при температуре 55 градусов, охлаждают до 5-10°C, добавляют 2 л дистиллированной воды, раствор нейтрализуют при интенсивном перемешивании барботированием аргона разбавленной соляной кислотой (1:3) до pH 4-4.5 до выпадения аморфного рыхлого осадка так, чтобы надосадочная жидкость приобрела прозрачную бледно-фиолетовую окраску, надосадочную жидкость декантируют, осадок суспендируют в минимальном количестве воды и фильтруют через слой целита 545 высотой 5 см на стеклянном фильтре диаметром 8 см, промывают целит деионизованной водой до отсутствия в фильтрате неорганических солей, верхний слой целита 545, содержащий хлорин e6, отделяют, помещают в колбу, добавляют 150 мл 1%-ного раствора меглумина и 5% раствора декстрана в апирогенной воде, перемешивают 5 минут, раствор хлорина e6 отфильтровывают, через целит пропускают еще 250 мл 1%-ного раствора меглумина и 5% раствора декстрана в апирогенной воде, целит дополнительно промывают еще 600 мл апирогенной воды, раствор профильтровывают дважды через фильтры Стерикап - миллипоры 0.22 ммк, доводят общий объем раствора до 1 л, если необходимо доводят pH раствора до 9.25-9.30, разливают во флаконы темного стекла по 10 мл, лиофилизуют в стандартных условиях и получают 100 флаконов фотосенсибилизатора в виде пористых таблеток, содержащих в каждом флаконе по 37.5-40 мг основного вещества - хлорина e6 (или не менее 75-80 мг гелиохлорина). Оптическая плотность ФС для гелиохлорина во флаконе при 655 нм и pH раствора 9.0-9.5 составляет 225-235. Аналогично, для ФОТОДИТАЗИНА оптическая плотность D (655 нм) составляет 205-210/1 мл, а для РАДАХЛОРИНА - 175-185/1 мл.

Пример 2

Условия проведения ЖХВД:

Хроматограф LC-20 Prominence SHIMADZU (Япония) Насос LC-20AD;

Термостат СТО-20А;

Детектор - спектрофотометр SPD-20A;

Колонка «LUNA» фирмы «PHENOMENEX» С-18, 4×250 мм, 5 мк;

Элюент MeOH:H2O:CF3COOH (90:10:0.01 v/v);

Скорость потока - 0,85 мл/мин;

Объем петли - 5 мкл;

Температура - 25°C;

Детекция при 405 нм.

10 мкл раствора хлорина e6 разбавляют в 1 мл элюента (до образования кислого раствора, что определяется по изменению окраски от бурой до синей, т.е. возникновению дикатиона хлорина e6). Полученный раствор пропускают через одноразовый шприцевый фильтр «CHROMAFIL» с размером пор 0,45 мкм, а затем анализируют.

В качестве стандарта использовали образец лиофильно высушенного хлорина e6. В результате предлагаемой обработки реакционной смеси получена практически не разрушающаяся в процессе хранения лекарственная форма. Снижение оптической плотности раствора за 2 года составило всего 0.1%, что во много раз превышает устойчивость всех известных в настоящее время лекарственных препаратов класса ФС.

Таким образом, изобретение позволяет получить ФС с высокими потребительскими свойствами, длительным сроком хранения, максимальной чистотой.

1. Фотосенсибилизатор для фотодинамической терапии (ФДТ) в лиофильно высушенной форме, включающий соль хлорина e6 и меглумин в качестве криостабилизатора, отличающийся тем, что в качестве соли хлорина e6 он содержит трисмеглуминовую соль хлорина e6 и дополнительно декстран в качестве криостабилизатора при следующем соотношении компонентов в массовых процентах:

соль хлорина e6 1-27
меглумин 5-50
декстран остальное

2. Способ получения фотосенсибилизатора для ФДТ по п. 1, включающий растворение метилфеофорбида а в ацетоне, обработку полученного раствора водной щелочью NaOH или KOH с последующей нейтрализацией реакционной смеси разбавленной соляной кислотой, отделение выпавшего осадка хлорина e6 с последующей промывкой, обработку осадка водным раствором и лиофилизацию, отличающийся тем, что обработку раствора метилфеофорбида а в ацетоне водной щелочью проводят при температуре 51-60°C, нейтрализацию реакционной смеси разбавленной соляной кислотой проводят до pH 4,0-4,5, отделение осадка хлорина e6 осуществляют фильтрацией через слой целита 545, промывку осадка хлорина e6 проводят деионизованной водой, далее хлорин e6 извлекают с целита водным раствором меглумина и декстрана до достижения в растворе концентрации соли хлорина e6, соответствующей оптической плотности D=225-235/1 мл при длине волны максимума поглощения 661 нм и pH раствора 9,30-9,35.



 

Похожие патенты:

Изобретение относится к клинической медицине и предназначено для выявления предрасположенности к раку и его первичной профилактики. Сущность изобретения состоит в том, что способ выявления предрасположенности к раку включает проведение исследования клеточного иммунитета по основным субпопуляциям лимфоцитов по CD-маркерам: a) CD3+; б) CD4+; в) CD8+; г) CD16+; д) CD56+, а способ первичной профилактики рака включает применение комплексных растительных препаратов «Капли Плетнева», которые восстанавливают метаболизм и энергообеспечение тканей и органов, содержащих β-каротин, витамины Р, С, РР, урсоловую кислоту, хлорофилл.

Изобретение относится к области медицины и предназначено для химиопрофилактики канцерогенеза печени и пищевода у экспериментальных животных. Способ включает введение диэтилнитрозамина с питьем в дозе 100 мг/л в течение 4 месяцев.

Группа изобретений относится к медицине и касается иммунобиологического средства для лечения рака мочевого пузыря на основе аденовирусного вектора, содержащего ген интерферона бета под контролем промотора, где в качестве аденовирусного вектора используют аденовирус человека, а средство дополнительно включает фермент, который обеспечивает расщепление секрета слизистой оболочки мочевого пузыря.

Настоящее изобретение относится к новым замещенным хинолинам общей формулы (I), где R1 представляет собой гидроксиС2-6 алкокси и R2 является Н, С1-10алкокси или гидроксиС1-10алкокси; R3 является Н или F, R4 является Н, F, Cl, Br, I или СN; и X является СН или N, или к их стереоизомерам, таутомерам, или фармацевтически приемлемым солям.

Настоящее изобретение относится к новым циклопентил- и циклогептилпиразоловым производным формулы I, где А и R1-R4 определены в формуле изобретения, или их фармацевтически приемлемым солям.

Изобретение относится к области органической химии, а именно к новым производным нитроимидазола формулы (1) и к его фармацевтически приемлемым солям, где Z представляет собой Z1 с формулой (2а), или Z представляет собой Z2 с формулой (2b): (СН2)nCH2X, или Z представляет собой Z3 с формулой (2с), и R1 и R2 каждый независимо может представлять собой Н или СН3, R3, R4, R6 и R7 каждый независимо может представлять собой Н, сульфонамид, сульфамат или сульфамид, R5 может представлять собой Н, сульфонамид, сульфамат или сульфамид, Х=сульфонамид, сульфамат или сульфамид, Y=S, и n=0, 1 или 2, и где, если n=0, R2=2-CH3, Z=Z1, R3=R4=R6=R7=H и R5=SO2NH2, то NO2 находится не в положении 4, и где если R5 представляет собой Н, то по меньшей мере один из R3, R4, R6 и R7 не является Н.

Изобретение относится к области иммунологии. Предложены выделенное антитело-антагонист против FGFR3 и его функциональный фрагмент, а также полинуклеотид, вектор экспрессии, клетка-хозяин и способ получения антитела против FGFR3 или его функционального фрагмента.

Изобретение относится к области органической химии, а именно к новым гетероциклическим соединениям общей формулы (IIIа) или к его терапевтически приемлемой соли, где А1 представляет собой С(А2); А2 представляет собой Н; В1 представляет собой OR1 или NHR1, где R1 представляет собой C1-алкил замещенный R10; D1 и Е1 представляют собой Н; и Y1 представляет собой NO2; G1 представляет собой C1-алкил, замещенный OP(O)(ОН)(ОН); R10 представляет собой С6-циклоалкил, каждый из которых имеет один СН2 фрагмент, незамененный или замененный с помощью независимо выбранного О; где фрагмент, представляющий собой R10, является незамещенным или замещенным одним, или двумя, или тремя, или четырьмя, или пятью заместителями, независимо выбранными из группы, состоящей из R50, OR50, F, Cl, Br, и I; и R50 представляет собой C1-алкил.

Изобретение относится к медицине, онкологии и предназначено для лечения злокачественных глиом головного мозга. В послеоперационном периоде проводят дистанционную лучевую терапию и химиотерапию.

Изобретение относится к соединениям формулы (I), (II), (III) и (VI), обладающим свойствами ингибитора TNF-α, и их фармацевтическим солям и стереоизомерам, а также фармацевтической композиции на их основе и способу лечения с их использованием.
Изобретение относится к способу инкапсуляции препарата Сел-Плекс. Указанный способ заключается в том, что Сел-Плекс диспергируют в суспензию ксантановой камеди в бутаноле в присутствии препарата Е472с при перемешивании, затем приливают хлороформ, полученную суспензию микрокапсул отфильтровывают и сушат, при этом соотношение ядро/оболочка в микрокапсулах составляет 1:1, 1:2 или 1:3.
Изобретение относится к фармацевтической промышленности, а именно к способу получения микрокапсул антиоксидантов: витаминов С, Е, элеутерококка или экстракта женьшеня.
Группа изобретений относится к фармацевтической области и касается быстрорастворимой пероральной фармацевтической композиции, содержащей открытую матричную сеть, несущую фармацевтически активный ингредиент, где открытая матричная сеть содержит инулин и маннит, а также способа получения описанных композиций.

Группа изобретений относится к фармацевтической области и касается быстрорастворимой фармацевтической композиции, содержащей открытую матричную сеть, несущую фармацевтически активный ингредиент, где открытая матричная сеть содержит леван, а также способа получения описанных композиций.

Способ получения микрокапсул аминокислот в оболочке из альгината натрия может быть использован в фармакологии, фармацевтике, медицине. Согласно способу по изобретению аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию альгината натрия в бутаноле в присутствии препарата E472c при перемешивании 1000 об/сек.
Изобретение относится в области нанотехнологии, в частности к инкапсуляции. Способ получения микрокапсул розмарина, при этом суспензию розмарина в изопропаноле диспергируют в суспензию каррагинана в изопропаноле, затем перемешивают при 1300 об/с, после приливают ацетонитрил и воду; после чего полученную суспензию отфильтровывают и сушат, при определенных условиях.

Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул витамина А, С, D, Е или Q10, заключающийся в том, что витамин А, С, D, Е или Q10 добавляют в суспензию ксантановой камеди в бутаноле, при перемешивании 1300 об/с, после чего приливают ацетонитрил, отфильтровывают полученную суспензию и сушат, при определенных условиях.

Изобретение относится к способу получения нанокапсул антибиотиков. В качестве оболочки нанокапсул используется ксантановая камедь, в качестве ядра - антибиотик.
Изобретение относится к области инкапсуляции, в частности к способу получения микрокапсул танина в оболочке из альгината натрия. Согласно способу по изобретению танин суспензируют в бензоле и диспергируют полученную смесь в суспензию альгината натрия в бутаноле в присутствии препарата Е472с при перемешивании 1000 об/сек.
Изобретение относится к фармацевтической промышленности, в частности к способу получения микрокапсул ветеринарного препарата биопага-Д. Способ получения микрокапсул ветеринарного препарата биопага-Д заключается в том, что в качестве оболочки микрокапсул используют низкоэтерифицированный или высокоэтерифицированный яблочный или цитрусовый пектин, при этом к определенному количеству суспензии низкоэтерифицированного или высокоэтерифицированного яблочного или цитрусового пектина в этаноле прибавляют Е472с в качестве поверхностно-активного вещества, затем полученную смесь перемешивают на магнитной мешалке, после чего добавляют суспензию биопага-Д в диметилсульфоксиде, затем добавляют определенное количество толуола и воды, далее полученную суспензию микрокапсул отфильтровывают, промывают толуолом и сушат в эксикаторе над хлористым кальцием.

Группа изобретений относится к фармацевтической химии, а именно к катионному пурпуринимиду и его применению в качестве фотосенсибилизатора (ФС) для фотодинамической инактивации бактериальных биопленок.
Наверх